Technical Program

Total Page:16

File Type:pdf, Size:1020Kb

Technical Program TECHNICAL PROGRAM Wednesday, 9:00-10:30 Wednesday, 10:50-12:20 WA-01 WB-02 Wednesday, 9:00-10:30 - Fo1 Wednesday, 10:50-12:20 - Fo2 Opening Ceremony Mixed Integer Linear Programming Stream: Invited Presentations and Ceremonies Stream: Discrete and Combinatorial Optimization, Plenary session Graphs and Networks Chair: Marco Lübbecke Invited session Chair: Alexander Martin 1 - Sports Scheduling meets Business Analytics Michael Trick 1 - Error bounds for mixed integer linear optimization Faster computers and algorithms have transformed how sports sched- problems ules have been created in practice in a wide range of sports. Techniques Oliver Stein such as Combinatorial Benders Decomposition, Large Scale Neighbor- hood Search, and Brand-and-Price have greatly increased the range of We introduce computable a-priori and a-posteriori error bounds for op- sports leagues that can use operations research methods to create their timality and feasibility of a point generated as the rounding of an op- schedules. With this increase in computational and algorithmic power timal point of the LP relaxation of a mixed integer linear optimization comes the opportunity to create not just playable schedules but more problem. Treating the mesh size of integer vectors as a parameter al- profitable schedules. Using data mining and other predictive analytics lows us to study the effect of different ‘granularities’ in the discrete techniques, it is possible to model attendance and other revenue effects variables on the error bounds. Our analysis mainly bases on the con- of the schedule. Combining these models with advanced schedule cre- struction of a so-called grid relaxation retract. Relations to proximity ation approaches leads to schedules that can generate more revenue for results and the integer rounding property are highlighted. teams and leagues. These concepts are illustrated with experiences in professional and college sports leagues. 2 - Separation of Generic Cutting Planes in Branch-and- Price Using a Basis Jonas Timon Witt, Marco Lübbecke When reformulating a given mixed integer program by the use of clas- sical Dantzig-Wolfe decomposition, a subset of the constraints is par- tially convexified, which corresponds to implicitly adding all valid in- equalities for the associated integer hull. Since these inequalities are not known, a solution of the original linear programming (LP) relax- ation which is obtained by transferring an optimal basic solution of the reformulated LP relaxation is in general not basic. In order to obtain an optimal basic solution we would have to explicitly add valid in- equalities for the integer hull associated with the partially convexified constraints such that the considered solution becomes basic. Hence, cutting planes which are separated using a basis like Gomory mixed integer cuts or strong Chvatal-Gomory cuts are usually not directly ap- plicable when separating such a solution in the original problem. Nev- ertheless, we can use some crossover method in order to obtain a basic solution which is nearby the considered non-basic solution and sepa- rate this auxiliary solution by applying all separators including those using a basis. The generated cutting planes might not only cut off the auxiliary solution, but also the solution we originally wanted to sepa- rate. So far, this problem was only considered extensively by Range, who proposed the previously described approach including a particular crossover method to find such a nearby basic solution. We present a modified crossover method and extend this procedure by considering additional valid inequalities strengthening the original LP relaxation. Furthermore, we provide the first full implementation of a separator like this and tested it on instances of several problem classes. 3 - A Lagrangian Relaxation Algorithm for Modularity Maximization Problem Kotohumi Inaba, Yoichi Izunaga, Yoshitsugu Yamamoto The modularity proposed by Newman and Girvan is one of the most common measures when the nodes of a graph are grouped into commu- nities consisting of tightly connected nodes. Due to the NP-hardness of the problem, few exact algorithms have been proposed. Aloise et al. formulated the problem as a set partitioning problem, which has to take into account all, exponentially many, nonempty subsets of the node set, and makes it difficult to secure the computational resource when the number of nodes is large. Their algorithm is based on the linear programming relaxation, LP relaxation for short, and uses the column generation technique. Although it provides a tight upper bound of the optimal value, it can suffer a high degeneracy due to the set partitioning constraints. In this study, we propose an algorithm based on the La- grangian relaxation. We relax the set partitioning constraints and add them to the objective function as a penalty with Lagrangian multipli- ers, and obtain the Lagrangian relaxation problem with only the binary variable constraints. For a given Lagrangian multiplier vector, an opti- mal solution of the Lagrangian relaxation problem can be obtained by 1 WB-03 OR 2014 - Aachen checking the sign of coefficients, but it is hard to compute all the co- Our result complements the results obtained in the companion paper efficients of variables. Then we propose to use the column generation of Krumke and Thielen, where a nondeterministic polynomial time al- technique in order to alleviate the computational burden. Namely, we gorithm for the more general problem of deciding of strong imple- start the algorithm with a small number of variables and gradually add mentability via indirect mechanisms is given. This more general prob- variables as the computation goes on. We also propose some methods lem is expected to be NP-complete. to accelerate the convergence. WB-04 WB-03 Wednesday, 10:50-12:20 - Fo4 Wednesday, 10:50-12:20 - Fo3 Robust knapsack problems Computational Social Choice Stream: Robust and Stochastic Optimization Stream: Algorithmic Game Theory Invited session Invited session Chair: Marc Goerigk Chair: Stephan Westphal 1 - Packing a Knapsack of Unknown Capacity 1 - On the Discriminative Power of Tournament Solu- Yann Disser, Max Klimm, Nicole Megow, Sebastian Stiller tions We study the problem of packing a knapsack without knowing its ca- Hans Georg Seedig, Felix Brandt pacity. Whenever we attempt to pack an item that does not fit, the item is discarded; if the item fits, we have to include it in the packing. We Tournament solutions constitute an important class of social choice show that there is always a policy that packs a value within factor 2 of functions that only depend on the pairwise majority comparisons be- the optimum packing, irrespective of the actual capacity. If all items tween alternatives. Recent analytical results have shown that several have unit density, we achieve a factor equal to the golden ratio 1.618. concepts with appealing axiomatic properties such as the Banks set or Both factors are shown to be best possible. In fact, we obtain the above the minimal covering set tend to not discriminate at all when the tour- factors using packing policies that are universal in the sense that they naments are chosen from the uniform distribution. This is in sharp fix a particular order of the items and try to pack the items in this order, contrast to empirical studies which have found that real-world prefer- independent of the observations made while packing. We give efficient ence profiles often exhibit Condorcet winners, i.e. alternatives that all algorithms computing these policies. On the other hand, we show that, tournament solutions select as the unique winner. In this work, we aim for any alpha > 1, the problem of deciding whether a given universal to fill the gap between these extremes by examining the distribution of policy achieves a factor of alpha is coNP-complete. If alphe is part of the number of alternatives returned by common tournament solutions the input, the same problem is shown to be coNP-complete for items for empirical data as well as data generated according to stochastic with unit densities. Finally, we show that it is coNP-hard to decide, preference models such as impartial culture, impartial anonymous cul- for given alpha, whether a set of items admits a universal policy with ture, Mallows mixtures, spatial models, and Polya-Eggenberger urn factor alpha, even if all items have unit densities. models. 2 - Algorithms for the Recoverable Robust Knapsack 2 - Complexity of Strong Implementation of Social Problem Choice Functions in Dominant Strategies Christina Büsing, Sebastian Goderbauer, Arie Koster, Manuel Sven Krumke, Clemens Thielen Kutschka We consider the classical mechanism design problem of strongly im- In this talk we present a recoverable robust knapsack problem, where plementing social choice functions in a setting where monetary trans- the uncertainty of the item weights follows the approach of Bertsimas fers are allowed. In contrast to weak implementation, where only one and Sim. In contrast to the classical robust setting, a limited recovery equilibrium of a mechanism needs to yield the desired outcomes given action is allowed, i.e., up to k items may be removed when the actual by the social choice function, strong implementation (also known as weights are known. We will introduce several algorithms based on a full implementation) means that a mechanism is sought in which all compact integer linear programming formulation, different robustness equilibria yield the desired outcomes. For strong implementation, one cuts and robust extended cover inequalities and compare their run-time cannot restrict attention to incentive compatible direct revelation mech- w.r.t. the recovery action and the scenario set. anisms via the Revelation Principle, so the question whether a given social choice function is strongly implementable cannot be answered 3 - The Robust Knapsack Problem with Queries as easily as for weak implementation. When considering Bayes Nash Marc Goerigk, Manoj Gupta, Jonas Ide, Anita Schöbel, equilibria, the Augmented Revelation Principle states that it suffices Sandeep Sen to consider mechanisms in which the set of types of each agent is a subset of the set of her possible bids.
Recommended publications
  • Nearly Tight Approximability Results for Minimum Biclique Cover and Partition
    Nearly Tight Approximability Results for Minimum Biclique Cover and Partition Parinya Chalermsook1, Sandy Heydrich1;3, Eugenia Holm2, and Andreas Karrenbauer1∗ 1 Max Planck Institute for Informatics, Saarbr¨ucken, Germany 2 Dept. for Computer and Information Science, University of Konstanz, Germany 3 Saarbr¨ucken Graduate School of Computer Science {andreas.karrenbauer,parinya.chalermsook,sandy.heydrich}@mpi-inf.mpg.de [email protected] Abstract. In this paper, we consider the minimum biclique cover and minimum biclique partition problems on bipartite graphs. In the min- imum biclique cover problem, we are given an input bipartite graph G = (V; E), and our goal is to compute the minimum number of complete bipartite subgraphs that cover all edges of G. This problem, besides its correspondence to a well-studied notion of bipartite dimension in graph theory, has applications in many other research areas such as artificial intelligence, computer security, automata theory, and biology. Since it is NP-hard, past research has focused on approximation algorithms, fixed parameter tractability, and special graph classes that admit polynomial time exact algorithms. For the minimum biclique partition problem, we are interested in a biclique cover that covers each edge exactly once. We revisit the problems from approximation algorithms' perspectives and give nearly tight lower and upper bound results. We first show that both problems are NP-hard to approximate to within a factor of n1−" (where n is the number of vertices in the input graph). Using a stronger complexity assumption, the hardness becomes Ω~(n), where Ω~(·) hides lower order terms. Then we show that approximation factors of the form n=(log n)γ for some γ > 0 can be obtained.
    [Show full text]
  • Covering Graphs with Few Complete Bipartite Subgraphs *
    Covering Graphs with Few Complete Bipartite Subgraphs ⋆ Herbert Fleischner1, Egbert Mujuni2,⋆⋆, Dani¨el Paulusma3⋆ ⋆ ⋆, and Stefan Szeider3† 1 Department of Computer Science, Vienna Technical University A-1040 Vienna, Austria [email protected] 2 Mathematics Department, University of Dar es Salaam PO Box 35062, Dar es Salaam, Tanzania [email protected] 3 Department of Computer Science, Durham University Durham DH1 3LE, United Kingdom {daniel.paulusma,stefan.szeider}@durham.ac.uk Abstract. We consider computational problems on covering graphs with bicliques (complete bipartite subgraphs). Given a graph and an inte- ger k, the biclique cover problem asks whether the edge-set of the graph can be covered with at most k bicliques; the biclique partition problem is defined similarly with the additional condition that the bicliques are required to be mutually edge-disjoint. The biclique vertex-cover problem asks whether the vertex-set of the given graph can be covered with at most k bicliques, the biclique vertex-partition problem is defined simi- larly with the additional condition that the bicliques are required to be mutually vertex-disjoint. All these four problems are known to be NP- complete even if the given graph is bipartite. In this paper we investigate them in the framework of parameterized complexity: do the problems become easier if k is assumed to be small? We show that, considering k as the parameter, the first two problems are fixed-parameter tractable, while the latter two problems are not fixed-parameter tractable unless P = NP. Keywords. bicliques, parameterized complexity, covering and parti- tioning problems. 1 Introduction Let G be a simple undirected graph and let S be a set of (not necessarily vertex- induced) subgraphs of G.
    [Show full text]
  • On Covering Numbers of Different Kinds
    On Covering Numbers of Different Kinds Bachelor Thesis of Peter Stumpf At the Department of Informatics Institute of Theoretical Computer Science Reviewers: Prof. Dr. Dorothea Wagner Prof. Maria Axenovich Ph.D. Advisors: Torsten Ueckerdt Thomas Blaesius Time Period: 17.4.2015 – 16.8.2015 KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu Statement of Authorship I hereby declare that this document has been composed by myself and describes my own work, unless otherwise acknowledged in the text. Karlsruhe, 11th May 2015 iii Abstract A covering number measures how “difficult” it is to cover all edges of a host graph with guest graphs of a given guest class. E.g., the global covering number, which has received the most attention, is the smallest number k such that the host graph is the union of k guest graphs from the guest class. In this thesis, we consider the global, the local and the folded covering number and compare them for same pairs of host and guest classes. We investigate by how much global, local and folded covering number can differ. We give an example of a hereditary union-closed guest class where the folded covering number is at most 2, whereas the local covering number can be arbitrarily large. In contrast we show that within every host class the global covering number with regards to a topological minor-closed union-closed guest class is bounded if and only if its corresponding folded covering number is bounded. In the context of computational complexity, we construct a host class within which computing the local covering number with regards to interval graphs is NP-hard, whereas computing the global covering number is possible in constant time.
    [Show full text]
  • On the Fine-Grained Complexity of Rainbow Coloring∗
    On the Fine-Grained Complexity of Rainbow Coloring∗ Łukasz Kowalik1, Juho Lauri2, and Arkadiusz Socała3 1 University of Warsaw, Warsaw, Poland [email protected] 2 Tampere University of Technology, Tampere, Finland [email protected] 3 University of Warsaw, Warsaw, Poland [email protected] Abstract The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors. Our main result states that for any k ≥ 2, there is no algorithm for 3/2 Rainbow k-Coloring running in time 2o(n ), unless ETH fails. Motivated by this negative result we consider two parameterized variants of the problem. In the Subset Rainbow k- Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we are additionally given a set S of pairs of vertices and we ask if there is a coloring in which all the pairs in S are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT when parameterized by |S|. We also study Maximum Rainbow k-Coloring problem, where we are additionally given an integer q and we ask if there is a coloring in which at least q anti-edges are connected by rainbow paths. We show that the problem is FPT when parameterized by q and has a kernel of size O(q) for every k ≥ 2, extending the result of Ananth et al. [FSTTCS 2011]. We believe that our techniques used for the lower bounds may shed some light on the complexity of the classical Edge Coloring problem, where it is a major open question if a 2O(n)-time algorithm exists.
    [Show full text]
  • On Different Graph Covering Numbers Structural, Extremal and Algorithmic Results
    More on Different Graph Covering Numbers Structural, Extremal and Algorithmic Results Master Thesis of Peter Stumpf At the Department of Informatics Institute of Theoretical Computer Science Reviewers: Prof. Dr. Dorothea Wagner Prof. Dr. Peter Sanders Prof. Maria Axenovich Ph.D. Advisors: Torsten Ueckerdt Marcel Radermacher Time Period: 23.02.2017 – 22.08.2017 KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu Statement of Authorship I hereby declare that this document has been composed by myself and describes my own work, unless otherwise acknowledged in the text. Karlsruhe, 22nd August 2017 iii Abstract A covering number measures how “difficult” it is to cover all edges of a host graph with guest graphs of a given guest class. E.g., the global covering number, which has received the most attention, is the smallest number k such that the host graph is the union of k guest graphs from the guest class. In this thesis, we consider the recent framework of the global, the local and the folded covering number (Knauer and Ueckerdt, Discrete Mathematics 339 (2016)). The local covering number relaxes the global covering number by counting the guest graphs only locally at every vertex. And the folded covering number relaxes the local covering number even further, by allowing several vertices in the same guest graph to be identified, at the expense of counting these with multiplicities. More precisely, we consider a cover of a host graph H with regards to a guest class G to be a finite set of guest graphs S = {G1,...,Gm} ⊂ G paired with an edge-surjective homomorphism φ: V (G1 ∪· ..
    [Show full text]
  • On the Fine-Grained Complexity of Rainbow Coloring
    On the fine-grained complexity of rainbow coloring∗ Łukasz Kowalik† Juho Lauri‡ Arkadiusz Socała§ Abstract The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors. Our main result states that for any k ≥ 2, there 3/2 is no algorithm for Rainbow k-Coloring running in time 2o(n ), unless ETH fails. Motivated by this negative result we consider two parameterized variants of the problem. In Subset Rainbow k-Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we are additionally given a set S of pairs of vertices and we ask if there is a coloring in which all the pairs in S are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT when parameterized by |S|. We also study Maximum Rainbow k-Coloring problem, where we are additionally given an integer q and we ask if there is a coloring in which at least q anti-edges are connected by rainbow paths. We show that the problem is FPT when parameterized by q and has a kernel of size O(q) for every k ≥ 2 (thus proving that the problem is FPT), extending the result of Ananth et al. [FSTTCS 2011]. 1 Introduction The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors.
    [Show full text]
  • P4-Free Partition and Cover Numbers and Application
    P4-free Partition and Cover Numbers and Application Alexander R. Block Simina Br^anzei Hemanta K. Maji Himanshi Mehta Tamalika Mukherjee Hai H. Nguyen Abstract P4-free graphs{ also known as cographs, complement-reducible graphs, or hereditary Dacey graphs{have been well studied in graph theory. Motivated by computer science and information theory applications, our work encodes (flat) joint probability distributions and Boolean functions as bipartite graphs and studies bipartite P4-free graphs. For these applications, the graph properties of edge partitioning and covering a bipartite graph using the minimum number of these graphs are particularly relevant. Previously, such graph properties have appeared in leakage-resilient cryptography and (variants of) coloring problems. Interestingly, our covering problem is closely related to the well-studied problem of prod- uct/Prague dimension of loopless undirected graphs, which allows us to employ algebraic lower- bounding techniques for the product/Prague dimension. We prove that computing these num- bers is NP-complete, even for bipartite graphs. We establish a connection to the (unsolved) Zarankiewicz problem to show that there are bipartite graphs with size-N partite sets such that these numbers are at least " · N 1−2", for " 2 f1=3; 1=4; 1=5;::: g. Finally, we accurately esti- mate these numbers for bipartite graphs encoding well-studied Boolean functions from circuit complexity, such as set intersection, set disjointness, and inequality. For applications in information theory and communication & cryptographic complexity, we consider a system where a setup samples from a (flat) joint distribution and gives the partic- ipants, Alice and Bob, their portion from this joint sample.
    [Show full text]
  • The Biclique Covering Number of Grids
    THE BICLIQUE COVERING NUMBER OF GRIDS KRYSTAL GUO1, TONY HUYNH2, AND MARCO MACCHIA3 Abstract. We determine the exact value of the biclique covering number for all grid graphs. 1. Introduction Let G be a graph. A biclique of G is a complete bipartite subgraph. The biclique covering number of G, denoted bc(G), is the minimum number of bicliques of G required to cover the edges of G. The biclique covering number is studied in fields as diverse as polyhedral combinatorics [10,2], biology [12], and communication complexity [13], where it is also known as bipartite dimension or rectangle covering number. Computing the biclique covering number is a classic NP-hard problem. Indeed, deciding if bc(G) 6 k appears as problem GT18 in Garey and Johnson [7]. It is also NP-hard to approximate within a factor of n1−", where n is the number of vertices of G (see [4]). As such, there are very few classes of graphs for which we know the biclique covering number exactly. For example, it is well-known that the biclique covering number of the complete graph Kn is dlog2 ne (see [5] for a proof). Note that the minimum number of bicliques that partition E(Kn) is n − 1 by the Graham-Pollak theorem [9]. This result was later extended to biclique coverings C of Kn such that each edge is in at most k bicliques of C. Alon [1] showed that the minimum number of bicliques in such coverings is Θ(kn1=k). Two − − more classes of graphs for which we know the biclique covering number exactly are K2n and Kn;n, which are the graphs obtained from K2n and Kn;n by deleting the edges of a perfect matching.
    [Show full text]
  • Enumeration Algorithms and Graph Theoretical Models to Address Biological Problems Related to Symbiosis
    Università Italo-Francese / Université Franco-Italienne, AGREEMENT FOR THE CO-DIRECTION OF THE Ph.D THESIS: Sapienza, Università di Roma: Université Claude Bernard, Lyon 1: Dept. of Computer Science Ecole doctorale E2M2 Supervisor Tiziana Calamoneri Supervisor Marie-France Sagot Author: Mattia Gastaldello Enumeration Algorithms and Graph Theoretical Models to Address Biological Problems Related To Symbiosis Contents Introduction 5 0.1 Enumeration algorithms ............................ 10 0.1.1 Complexity Classes for Enumeration Algorithms ........... 10 0.1.2 Techniques to Design Enumeration Algorithms ............ 12 Cytoplasmic Incompatibility and Chain Graphs 17 1.1 Introduction and Motivations ......................... 17 1.2 Models for the Cytoplasmic Incompatibilty .................. 19 1.3 Preliminary Notation .............................. 25 1.4 Toxin and Antitoxin: The graph theoretic interpretation .......... 27 1.5 Chian Graphs and Bipartite Edge Covers ................... 30 1.5.1 Enumerating Maximal Chain Subgraphs ............... 30 1.5.2 Minimum Chain Subgraph Cover ................... 37 1.5.3 Enumeration of Minimal Chain Subgraph Covers .......... 38 1.6 Chain Graphs and Interval Orders ....................... 42 1.6.1 Preliminaries on Poset Theory ..................... 43 1.6.2 Computation of the Interval Order Dimension ............ 43 1.6.3 Enumeration of Minimal Extensions and Maximal Reductions of Interval Order .............................. 44 1.7 Computing the Poset Dimension ........................ 44 1.7.1
    [Show full text]
  • Graph Factorization from Wikipedia, the Free Encyclopedia Contents
    Graph factorization From Wikipedia, the free encyclopedia Contents 1 2 × 2 real matrices 1 1.1 Profile ................................................. 1 1.2 Equi-areal mapping .......................................... 2 1.3 Functions of 2 × 2 real matrices .................................... 2 1.4 2 × 2 real matrices as complex numbers ............................... 3 1.5 References ............................................... 4 2 Abelian group 5 2.1 Definition ............................................... 5 2.2 Facts ................................................. 5 2.2.1 Notation ........................................... 5 2.2.2 Multiplication table ...................................... 6 2.3 Examples ............................................... 6 2.4 Historical remarks .......................................... 6 2.5 Properties ............................................... 6 2.6 Finite abelian groups ......................................... 7 2.6.1 Classification ......................................... 7 2.6.2 Automorphisms ....................................... 7 2.7 Infinite abelian groups ........................................ 8 2.7.1 Torsion groups ........................................ 9 2.7.2 Torsion-free and mixed groups ................................ 9 2.7.3 Invariants and classification .................................. 9 2.7.4 Additive groups of rings ................................... 9 2.8 Relation to other mathematical topics ................................. 10 2.9 A note on the typography ......................................
    [Show full text]
  • The Biclique Covering Number of Grids
    The biclique covering number of grids Krystal Guo1 Tony Huynh2 Marco Macchia3 D´epartement de Math´ematique, Universit´elibre de Bruxelles, Belgium. (1) [email protected] (2) [email protected] (3) [email protected] Submitted: Nov 16, 2018; Accepted: Oct 28, 2019; Published: Nov 8, 2019 c The authors. Released under the CC BY-ND license (International 4.0). Abstract We determine the exact value of the biclique covering number for all grid graphs. Mathematics Subject Classifications: 05C70 1 Introduction Let G be a graph. A biclique of G is a complete bipartite subgraph. The biclique covering number of G, denoted bc(G), is the minimum number of bicliques of G required to cover the edges of G. The biclique covering number is studied in fields as diverse as polyhedral combinatorics [10,2], biology [11], and communication complexity [12], where it is also known as bipartite dimension or rectangle covering number. Computing the biclique covering number is a classic NP-hard problem. Indeed, decid- ing if bc(G) 6 k appears as problem GT18 in Garey and Johnson [7]. It is also NP-hard to approximate within a factor of n1−", where n is the number of vertices of G (see [4]). As such, there are very few classes of graphs for which we know the biclique covering number exactly. For example, it is well-known that the biclique covering number of the complete graph Kn is dlog2 ne (see [5] for a proof). Note that the minimum number of bicliques that partition E(Kn) is n−1 by the Graham-Pollak theorem [9].
    [Show full text]
  • Juho Lauri Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds
    Juho Lauri Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds Julkaisu 1428 • Publication 1428 Tampere 2016 Tampereen teknillinen yliopisto. Julkaisu 1428 Tampere University of Technology. Publication 1428 Juho Lauri Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds Thesis for the degree of Doctor of Science in Technology to be presented with due permission for public examination and criticism in Tietotalo Building, Auditorium TB224, at Tampere University of Technology, on the 3rd of November 2016, at 12 noon. Tampereen teknillinen yliopisto - Tampere University of Technology Tampere 2016 ISBN 978-952-15-3836-0 (printed) ISBN 978-952-15-3842-1 (PDF) ISSN 1459-2045 Abstract We study rainbow connectivity of graphs from the algorithmic and graph-theoretic points of view. The study is divided into three parts. First, we study the complexity of deciding whether a given edge-colored graph is rainbow-connected. That is, we seek to verify whether the graph has a path on which no color repeats between each pair of its vertices. We obtain a comprehensive map of the hardness landscape of the problem. While the problem is NP-complete in general, we identify several structural properties that render the problem tractable. At the same time, we strengthen the known NP-completeness results for the problem. We pinpoint various parameters for which the problem is fixed-parameter tractable, including dichotomy results for popular width parameters, such as treewidth and pathwidth. The study extends to variants of the problem that consider vertex-colored graphs and/or rainbow shortest paths. We also consider upper and lower bounds for exact parameterized algorithms.
    [Show full text]