On Different Graph Covering Numbers Structural, Extremal and Algorithmic Results

Total Page:16

File Type:pdf, Size:1020Kb

On Different Graph Covering Numbers Structural, Extremal and Algorithmic Results More on Different Graph Covering Numbers Structural, Extremal and Algorithmic Results Master Thesis of Peter Stumpf At the Department of Informatics Institute of Theoretical Computer Science Reviewers: Prof. Dr. Dorothea Wagner Prof. Dr. Peter Sanders Prof. Maria Axenovich Ph.D. Advisors: Torsten Ueckerdt Marcel Radermacher Time Period: 23.02.2017 – 22.08.2017 KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu Statement of Authorship I hereby declare that this document has been composed by myself and describes my own work, unless otherwise acknowledged in the text. Karlsruhe, 22nd August 2017 iii Abstract A covering number measures how “difficult” it is to cover all edges of a host graph with guest graphs of a given guest class. E.g., the global covering number, which has received the most attention, is the smallest number k such that the host graph is the union of k guest graphs from the guest class. In this thesis, we consider the recent framework of the global, the local and the folded covering number (Knauer and Ueckerdt, Discrete Mathematics 339 (2016)). The local covering number relaxes the global covering number by counting the guest graphs only locally at every vertex. And the folded covering number relaxes the local covering number even further, by allowing several vertices in the same guest graph to be identified, at the expense of counting these with multiplicities. More precisely, we consider a cover of a host graph H with regards to a guest class G to be a finite set of guest graphs S = {G1,...,Gm} ⊂ G paired with an edge-surjective homomorphism φ: V (G1 ∪· ... ∪· Gm) → V (H). The cover is called guest-injective, if for i = 1, . , m its restricted homomorphism φ|Gi is vertex-injective. The global covering number is thus the smallest number k such that there is a guest-injective cover with |S| = k. The local covering number is the smallest number k such that there is a guest-injective cover with |φ−1(v)| ≤ k for every vertex v ∈ H. And the folded covering number is the smallest number k such that there is a (not necessarily guest-injective) cover with |φ−1(v)| ≤ k for every vertex v ∈ H. In this thesis we investigate the relations between these numbers. As one result we show that the local covering number of any shift graph with regards to bipartite graphs is at most 2, while the corresponding global covering numbers can be arbitrarily large. This is the first known separation of local and global covering number with a subgraph-hereditary guest class. This concludes the study of separation results, as a separation of folded and local covering number with such a guest class was already known, as well as the fact that such a separation is not possible for union-closed topological-minor-closed guest classes. Furthermore, we investigate for a, b ∈ N0 with b < 2a the classes of (a, b)-sparse graphs as guest classes. For these the local and the global covering number always coincide. This generalizes existing results for forests and pseudo-forests. We prove that the global covering number with regards to these (a, b)-sparse graphs always matches a fairly simple lower bound given by a variation of the host graph’s maximum average degree. We moreover provide an efficient algorithm to calculate corresponding optimal covers. While most attention in the given framework focuses on properties for the guest classes, we also investigate graph classes of host graphs without fixing the guest class. Namely, we introduce a property called cover resistance. We call a class H of host graphs (f/l/g)-cover resistant, if the (folded/local/global) covering numbers for these host graphs usually become arbitrarily large. I.e., it is (f/l/g)-cover resistant, if for each union-closed induced-hereditary guest class G we have host graphs in H with arbitrarily large (folded/local/global) covering numbers, unless G contains H. For the classes of host graphs the relaxations of folded and local covering number are inverse, i.e., the f-cover resistance implies l-cover resistance which in turn implies g-cover resistance. We give examples for each of these resistances. As a result of our investigation, we characterize the induced-hereditary guest classes with bounded folded covering number as those containing all bipartite graphs. We further show the class of all graphs is the only induced-hereditary guest class with bounded local covering number. v Deutsche Zusammenfassung Eine Überdeckungszahl misst wie “schwer” es ist alle Kanten eines Gastgebergraphen mit Gastgraphen einer gegebenen Gastklasse zu überdecken. Die globale Überdeck- ungszahl ist z.B. die kleinste Zahl k für die der Gastgebergraph die Vereinigung von k Gastgraphen ist. Sie hat bisher am meisten Aufmerksamkeit erhalten. In dieser Arbeit betrachten wir ein junges Rahmenkonzept welches die globale, die lokale und die gefaltete Überdeckungszahl umfasst. (Knauer und Ueckerdt, Discrete Mathematics 339 (2016)). Die locale Überdeckungszahl relaxiert die globale Überdeckungszahl, indem sie die Gäste nur lokal an jedem einzelnem Knoten zählt. Und die gefaltete Überdeckungszahl wiederum relaxiert die lokale Überdeckungszahl, indem sie es zulässt mehrere Knoten des gleichen Gastgraphen zu identifizieren, die dafür jedoch auch mehrfach gezählt werden. Genauer gesagt betrachten wir eine Überdeckung eines Gastgebergraphen H bezüglich einer Gastklasse G als Paar einer endliche Menge von Gastgraphen S = {G1,...,Gm} ⊂ G zusammen mit einem Kanten-surjektiven Homomorphismus φ: V (G1 ∪· ...∪· Gm) → V (H). Wir bezeichnen die Überdeckung als Gast-injektiv, wenn für i = 1, . , m der eingeschränkte Homomoprhismus φ|Gi Knoten-injektiv ist. In diesem Formalismus ist die globale Überdeckungszahl die kleinste Zahl k, sodass es eine Gast-injektive Überdeckung mit |S| = k gibt. Die lokale Überdeckungszahl ist die kleinste Zahl k, sodass es eine Gast-injektive Überdeckung gibt mit |φ−1(v)| ≤ k für jeden Knoten v ∈ H. Und die gefaltete Überdeckungszahl ist die kleinste Zahl k, sodass es eine (nicht notwendigerweise Gast-injektive) Überdeckung gibt mit |φ−1(v)| ≤ k für jeden Knoten v ∈ H. In dieser Arbeit untersuchen wir die Beziehungen unter diesen Überdeckungszahlen. Eines unserer Resultate ist, dass bezüglich bipartiter Graphen die lokale Überdeck- ungszahl jedes Shift Graphs höchstens 2 beträgt, während die entsprechende globale Überdeckungszahl beliebig groß wird. Dies stellt die erste bekannte Separierung der lokalen und der globalen Überdeckungszahl mit einer Subgraph-hereditären Gastklasse dar. Damit schließen wir die Studie der Separierungen ab, da eine entsprechende Separierung der gefalteten und der lokalen Überdeckungszahl bereits bekannt war, und wir zudem wissen, dass solche Separierungen nicht mit Gastklassen möglich sind, die abgeschlossen unter disjunkter Vereinigung und dem Nehmen von topologischen Minoren sind. Wir untersuchen außerdem für a, b ∈ N0 mit b < 2a die Klasse der (a, b)-dünnbesetzten Graphen als Gastklasse. Für diese Klassen fallen die lokale und die globale Überdeck- ungszahl zusammen. Damit verallgemeinern wir bestehende Resultate für Wälder und Pseudowälder. Wir zeigen dass die globale Überdeckungszahl bezüglich dieser (a, b)-dünnbesetzten Graphen immer mit einer sehr einfachen unteren Schranke zusam- menfällt, die als Variation des maximalen Durschnittsgrades des Gastgebergraphens gegeben is. Darüberhinaus beschreiben wir einen effizienten Algorithmus mit dem man entsprechende optimale Überdeckungen erhält. Während der größte Teil der Aufmerksamkeit im gegebenen Rahmenkonzept auf Eigen- schaften der Gastklassen liegt, untersuchen wir auch Graphklassen von Gastgeber- graphen ohne die Gastklasse festzulegen. Genauer gesagt führen wir die Eigenschaft der Überdeckungsresistenz ein. Eine Klasse H heißt (f,l,g)-überdeckungsresistent, wenn die (gefaltete/lokale/globale) Überdeckungszahl für diese Gastgebergraphen gewöhnlich sehr groß werden. Genauer, die Klasse is (f,l,g)-überdeckungsresistent, wenn wir für jede Gastklasse G, die abgeschlossen unter disjunkter Vereinigung und induziert-hereditär ist, Gastgebergraphen mit beliebig großen Überdeckungszahlen finden, es sei denn G enthält H bereits. Für die Gastgeberklassen ist die Reihenfolge vi der Relaxierungen der gefalteten und der lokalen Überdeckungszahl umgekehrt. Das heißt, die f-Überdeckungsresistenz impliziert die l-Überdeckungsresistenz, welche wiederung die g-Überdeckungsresistenz impliziert. Wir geben für jede dieser Re- sistenzen Beispiele. Als Resultat erhalten wir die Charakterisierung der induziert- hereditären Gastklassen mit beschränkter gefalteter Überdeckungszahl als jene Klassen, die alle bipartiten Graphen enthalten. Wir zeigen außerdem, dass die Klasse aller Graphen die einzige Gastklasse mit beschränkter lokaler Überdeckungszahl ist. vii Contents 1 Introduction1 2 Preliminaries5 2.1 Hypergraphs . .7 2.2 Hyper Ramsey Theory . .7 2.3 Matroids . .7 2.4 Directed Graphs . .7 2.5 Graph Classes . .7 2.6 Easier Notation . .8 3 Covering Numbers9 3.1 The Union Covering Number . 11 3.2 Basic Results . 13 4 Separability and Non-Separability 15 4.1 Separation of Local- and Union-Covering Number with Regards to a Subgraph- Hereditary Guest Class . 16 4.1.1 Shift Graphs are u-Cover Resistant . 19 4.2 Non-Separability for Host Classes of Bounded χ ................ 20 4.3 Non-Separability of (a, b)-Sparse Graphs . 22 4.3.1 Covers with Regards to (a, b)-Sparse Graphs . 23 5 Computing (a, b)-Sparse Covers 31 5.1 Detecting (a, b)-Sparse Graphs . 31 5.2 Computing Optimal Global (a, b)-Sparse Covers . 38 6 Guests of Bounded Degree 55 7 Cover Resistance 57 7.1 Motivation . 57 7.2 Cover Resistance . 57 7.3 Relation to Induced Ramsey Theory . 58 7.4 Constructing Cover Resistant Host Classes . 63 7.5 Relations Between Different Cover Resistances . 65 7.6 Negative Results . 68 7.7 f-Cover Resistance . 70 7.8 The Class of All Graphs is l-Cover Resistant . 72 8 Conclusion 73 8.1 Separability . 73 8.2 The Guest Class of (a, b)-Sparse Graphs . 74 8.3 Cover Resistance . 74 ix Contents Bibliography 77 x 1. Introduction In general a covering number states how “difficult” it is to cover all edges of a host graph H by guest graphs from a given guest class G.
Recommended publications
  • Homomorphisms of 3-Chromatic Graphs
    Discrete Mathematics 54 (1985) 127-132 127 North-Holland HOMOMORPHISMS OF 3-CHROMATIC GRAPHS Michael O. ALBERTSON Department of Mathematics, Smith College, Northampton, MA 01063, U.S.A. Karen L. COLLINS Department of Mathematics, M.L T., Cambridge, MA 02139, U.S.A. Received 29 March 1984 Revised 17 August 1984 This paper examines the effect of a graph homomorphism upon the chromatic difference sequence of a graph. Our principal result (Theorem 2) provides necessary conditions for the existence of a homomorphism onto a prescribed target. As a consequence we note that iterated cartesian products of the Petersen graph form an infinite family of vertex transitive graphs no one of which is the homomorphic image of any other. We also prove that there is a unique minimal element in the homomorphism order of 3-chromatic graphs with non-monotonic chromatic difference sequences (Theorem 1). We include a brief guide to some recent papers on graph homomorphisms. A homomorphism f from a graph G to a graph H is a mapping from the vertex set of G (denoted by V(G)) to the vertex set of H which preserves edges, i.e., if (u, v) is an edge in G, then (f(u), f(v)) is an edge in H. If in addition f is onto V(H) and each edge in H is the image of some edge in G, then f is said to be onto and H is called a homomorphic image of G. We define the homomorphism order ~> on the set of finite connected graphs as G ~>H if there exists a homomorphism which maps G onto H.
    [Show full text]
  • Graph Operations and Upper Bounds on Graph Homomorphism Counts
    Graph Operations and Upper Bounds on Graph Homomorphism Counts Luke Sernau March 9, 2017 Abstract We construct a family of countexamples to a conjecture of Galvin [5], which stated that for any n-vertex, d-regular graph G and any graph H (possibly with loops), n n d d hom(G, H) ≤ max hom(Kd,d,H) 2 , hom(Kd+1,H) +1 , n o where hom(G, H) is the number of homomorphisms from G to H. By exploiting properties of the graph tensor product and graph exponentiation, we also find new infinite families of H for which the bound stated above on hom(G, H) holds for all n-vertex, d-regular G. In particular we show that if HWR is the complete looped path on three vertices, also known as the Widom-Rowlinson graph, then n d hom(G, HWR) ≤ hom(Kd+1,HWR) +1 for all n-vertex, d-regular G. This verifies a conjecture of Galvin. arXiv:1510.01833v3 [math.CO] 8 Mar 2017 1 Introduction Graph homomorphisms are an important concept in many areas of graph theory. A graph homomorphism is simply an adjacency-preserving map be- tween a graph G and a graph H. That is, for given graphs G and H, a function φ : V (G) → V (H) is said to be a homomorphism from G to H if for every edge uv ∈ E(G), we have φ(u)φ(v) ∈ E(H) (Here, as throughout, all graphs are simple, meaning without multi-edges, but they are permitted 1 to have loops).
    [Show full text]
  • Chromatic Number of the Product of Graphs, Graph Homomorphisms, Antichains and Cofinal Subsets of Posets Without AC
    CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS, GRAPH HOMOMORPHISMS, ANTICHAINS AND COFINAL SUBSETS OF POSETS WITHOUT AC AMITAYU BANERJEE AND ZALAN´ GYENIS Abstract. In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. • If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. • If in a partially ordered set, all chains are finite and all antichains have size ℵα, then the set has size ℵα for any regular ℵα. • CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets). • CWF (Every partially ordered set has a cofinal well-founded subset). • DT (Dilworth’s decomposition theorem for infinite p.o.sets of finite width). We also study a graph homomorphism problem and a problem due to Andr´as Hajnal without AC. Further, we study a few statements restricted to linearly-ordered structures without AC. 1. Introduction Firstly, the first author observes the following in ZFA (Zermelo-Fraenkel set theory with atoms). (1) In Problem 15, Chapter 11 of [KT06], applying Zorn’s lemma, Komj´ath and Totik proved the statement “Every partially ordered set without a maximal element has two disjoint cofinal subsets” (CS). In Theorem 3.26 of [THS16], Tachtsis, Howard and Saveliev proved that CS does not imply ‘there are no amorphous sets’ in ZFA. We observe ω that CS 6→ ACfin (the axiom of choice for countably infinite familes of non-empty finite − sets), CS 6→ ACn (‘Every infinite family of n-element sets has a partial choice function’) 1 − for every 2 ≤ n<ω and CS 6→ LOKW4 (Every infinite linearly orderable family A of 4-element sets has a partial Kinna–Wegner selection function)2 in ZFA.
    [Show full text]
  • No Finite-Infinite Antichain Duality in the Homomorphism Poset D of Directed Graphs
    NO FINITE-INFINITE ANTICHAIN DUALITY IN THE HOMOMORPHISM POSET D OF DIRECTED GRAPHS PETER¶ L. ERDOS} AND LAJOS SOUKUP Abstract. D denotes the homomorphism poset of ¯nite directed graphs. An antichain duality is a pair hF; Di of antichains of D such that (F!) [ (!D) = D is a partition. A generalized duality pair in D is an antichain duality hF; Di with ¯nite F and D: We give a simpli¯ed proof of the Foniok - Ne·set·ril- Tardif theorem for the special case D, which gave full description of the generalized duality pairs in D. Although there are many antichain dualities hF; Di with in¯nite D and F, we can show that there is no antichain duality hF; Di with ¯nite F and in¯nite D. 1. Introduction If G and H are ¯nite directed graphs, write G · H or G ! H i® there is a homomorphism from G to H, that is, a map f : V (G) ! V (H) such that hf(x); f(y)i is a directed edge 2 E(H) whenever hx; yi 2 E(G). The relation · is a quasi-order and so it induces an equivalence relation: G and H are homomorphism-equivalent if and only if G · H and H · G. The homomorphism poset D is the partially ordered set of all equivalence classes of ¯nite directed graphs, ordered by ·. In this paper we continue the study of antichain dualities in D (what was started, in this form, in [2]). An antichain duality is a pair hF; Di of disjoint antichains of D such that D = (F!) [ (!D) is a partition of D, where the set F! := fG : F · G for some F 2 Fg, and !D := fG : G · D for some D 2 Dg.
    [Show full text]
  • Nearly Tight Approximability Results for Minimum Biclique Cover and Partition
    Nearly Tight Approximability Results for Minimum Biclique Cover and Partition Parinya Chalermsook1, Sandy Heydrich1;3, Eugenia Holm2, and Andreas Karrenbauer1∗ 1 Max Planck Institute for Informatics, Saarbr¨ucken, Germany 2 Dept. for Computer and Information Science, University of Konstanz, Germany 3 Saarbr¨ucken Graduate School of Computer Science {andreas.karrenbauer,parinya.chalermsook,sandy.heydrich}@mpi-inf.mpg.de [email protected] Abstract. In this paper, we consider the minimum biclique cover and minimum biclique partition problems on bipartite graphs. In the min- imum biclique cover problem, we are given an input bipartite graph G = (V; E), and our goal is to compute the minimum number of complete bipartite subgraphs that cover all edges of G. This problem, besides its correspondence to a well-studied notion of bipartite dimension in graph theory, has applications in many other research areas such as artificial intelligence, computer security, automata theory, and biology. Since it is NP-hard, past research has focused on approximation algorithms, fixed parameter tractability, and special graph classes that admit polynomial time exact algorithms. For the minimum biclique partition problem, we are interested in a biclique cover that covers each edge exactly once. We revisit the problems from approximation algorithms' perspectives and give nearly tight lower and upper bound results. We first show that both problems are NP-hard to approximate to within a factor of n1−" (where n is the number of vertices in the input graph). Using a stronger complexity assumption, the hardness becomes Ω~(n), where Ω~(·) hides lower order terms. Then we show that approximation factors of the form n=(log n)γ for some γ > 0 can be obtained.
    [Show full text]
  • Graph Relations and Constrained Homomorphism Partial Orders (Relationen Von Graphen Und Partialordungen Durch Spezielle Homomorphismen) Long, Yangjing
    Graph Relations and Constrained Homomorphism Partial Orders Der Fakultät für Mathematik und Informatik der Universität Leipzig eingereichte DISSERTATION zur Erlangung des akademischen Grades DOCTOR RERUM NATURALIUM (Dr.rer.nat.) im Fachgebiet Mathematik vorgelegt von Bachelorin Yangjing Long geboren am 08.07.1985 in Hubei (China) arXiv:1404.5334v1 [math.CO] 21 Apr 2014 Leipzig, den 20. März, 2014 献给我挚爱的母亲们! Acknowledgements My sincere and earnest thanks to my ‘Doktorväter’ Prof. Dr. Peter F. Stadler and Prof. Dr. Jürgen Jost. They introduced me to an interesting project, and have been continuously giving me valuable guidance and support. Thanks to my co-authers Prof. Dr. Jiří Fiala and Prof. Dr. Ling Yang, with whom I have learnt a lot from discussions. I also express my true thanks to Prof. Dr. Jaroslav Nešetřil for the enlightening discussions that led me along the way to research. I would like to express my gratitude to my teacher Prof. Dr. Yaokun Wu, many of my senior fellow apprentice, especially Dr. Frank Bauer and Dr. Marc Hellmuth, who have given me a lot of helpful ideas and advice. Special thanks to Dr. Jan Hubička and Dr. Xianqing Li-jost, not only for their guidance in mathematics and research, but also for their endless care and love—they have made a better and happier me. Many thanks to Dr. Danijela Horak helping with the artwork in this thesis, and also to Dr. Andrew Goodall, Dr. Johannes Rauh, Dr. Chao Xiao, Dr. Steve Chaplick and Mark Jacobs for devoting their time and energy to reading drafts of the thesis and making language corrections.
    [Show full text]
  • Covering Graphs with Few Complete Bipartite Subgraphs *
    Covering Graphs with Few Complete Bipartite Subgraphs ⋆ Herbert Fleischner1, Egbert Mujuni2,⋆⋆, Dani¨el Paulusma3⋆ ⋆ ⋆, and Stefan Szeider3† 1 Department of Computer Science, Vienna Technical University A-1040 Vienna, Austria [email protected] 2 Mathematics Department, University of Dar es Salaam PO Box 35062, Dar es Salaam, Tanzania [email protected] 3 Department of Computer Science, Durham University Durham DH1 3LE, United Kingdom {daniel.paulusma,stefan.szeider}@durham.ac.uk Abstract. We consider computational problems on covering graphs with bicliques (complete bipartite subgraphs). Given a graph and an inte- ger k, the biclique cover problem asks whether the edge-set of the graph can be covered with at most k bicliques; the biclique partition problem is defined similarly with the additional condition that the bicliques are required to be mutually edge-disjoint. The biclique vertex-cover problem asks whether the vertex-set of the given graph can be covered with at most k bicliques, the biclique vertex-partition problem is defined simi- larly with the additional condition that the bicliques are required to be mutually vertex-disjoint. All these four problems are known to be NP- complete even if the given graph is bipartite. In this paper we investigate them in the framework of parameterized complexity: do the problems become easier if k is assumed to be small? We show that, considering k as the parameter, the first two problems are fixed-parameter tractable, while the latter two problems are not fixed-parameter tractable unless P = NP. Keywords. bicliques, parameterized complexity, covering and parti- tioning problems. 1 Introduction Let G be a simple undirected graph and let S be a set of (not necessarily vertex- induced) subgraphs of G.
    [Show full text]
  • Counting Subgraphs Via Homomorphisms∗
    Counting Subgraphs via Homomorphisms∗ Omid Aminiy Fedor V. Fominz Saket Saurabhx Abstract We introduce a generic approach for counting subgraphs in a graph. The main idea is to relate counting subgraphs to counting graph homomorphisms. This approach provides new algorithms and unifies several well known results in algorithms and combinatorics includ- ing the recent algorithm of Bj¨orklund,Husfeldt and Koivisto for computing the chromatic polynomial, the classical algorithm of Kohn, Gottlieb, Kohn, and Karp for counting Hamil- tonian cycles, Ryser's formula for counting perfect matchings of a bipartite graph, and color coding based algorithms of Alon, Yuster, and Zwick. By combining our method with known combinatorial bounds, ideas from succinct data structures, partition functions and the color coding technique, we obtain the following new results: • The number of optimal bandwidth permutations of a graph on n vertices excluding n+o(n) a fixed graph as a minor can be computedp in time O(2 ); in particular in time O(2nn3) for trees and in time 2n+O( n) for planar graphs. • Counting all maximum planar subgraphs, subgraphs of bounded genus, or more gen- erally subgraphs excluding a fixed graph M as a minor can be done in 2O(n) time. • Counting all subtrees with a given maximum degree (a generalization of counting Hamiltonian paths) of a given graph can be done in time 2O(n). • A generalization of Ryser's formula: Let G be a graph with an independent set of size `. Then the number of perfect matchings in G can be found in time O(2n−`n3).
    [Show full text]
  • Approximation Algorithms for Graph Homomorphism Problems
    Approximation Algorithms for Graph Homomorphism Problems Michael Langberg?1, Yuval Rabani??2, and Chaitanya Swamy3 1 Dept. of Computer Science, Caltech, Pasadena, CA 91125. [email protected] 2 Computer Science Dept., Technion — Israel Institute of Technology, Haifa 32000, Israel. [email protected] 3 Center for the Mathematics of Information, Caltech, Pasadena, CA 91125. [email protected] Abstract. We introduce the maximum graph homomorphism (MGH) problem: given a graph G, and a target graph H, find a mapping ϕ : VG 7→ VH that maximizes the number of edges of G that are mapped to edges of H. This problem encodes various fundamental NP-hard prob- lems including Maxcut and Max-k-cut. We also consider the multiway uncut problem. We are given a graph G and a set of terminals T ⊆ VG. We want to partition VG into |T | parts, each containing exactly one terminal, so as to maximize the number of edges in EG having both endpoints in the same part. Multiway uncut can be viewed as a special case of prela- 0 beled MGH where one is also given a prelabeling ϕ : U 7→ VH ,U ⊆ VG, and the output has to be an extension of ϕ0. Both MGH and multiway uncut have a trivial 0.5-approximation algo- rithm. We present a 0.8535-approximation algorithm for multiway uncut based on a natural linear programming relaxation. This relaxation has 6 an integrality gap of 7 ' 0.8571, showing that our guarantee is almost 1 tight. For maximum graph homomorphism, we show that a 2 + ε0 - approximation algorithm, for any constant ε0 > 0, implies an algorithm for distinguishing between certain average-case instances of the subgraph isomorphism problem that appear to be hard.
    [Show full text]
  • Homomorphisms of Cayley Graphs and Cycle Double Covers
    Homomorphisms of Cayley Graphs and Cycle Double Covers Radek Huˇsek Robert S´amalˇ ∗ Computer Science Institute Charles University Prague, Czech Republic fhusek,[email protected] Submitted: Jan 16, 2019; Accepted: Dec 31, 2019; Published: Apr 3, 2020 c The authors. Released under the CC BY license (International 4.0). Abstract We study the following conjecture of Matt DeVos: If there is a graph homomor- phism from a Cayley graph Cay(M; B) to another Cayley graph Cay(M 0;B0) then every graph with an (M; B)-flow has an (M 0;B0)-flow. This conjecture was origi- nally motivated by the flow-tension duality. We show that a natural strengthening of this conjecture does not hold in all cases but we conjecture that it still holds for an interesting subclass of them and we prove a partial result in this direction. We also show that the original conjecture implies the existence of an oriented cycle double cover with a small number of cycles. Mathematics Subject Classifications: 05C60, 05C21, 05C15 1 Introduction For an abelian group M (all groups in this article are abelian even though we often do not say it explicitly), an M-flow ' on a directed graph G = (V; E) is a mapping E ! M such that the oriented sum around every vertex v is zero: X X '(vw) − '(uv) = 0: vw2E uv2E We say that M-flow ' is an (M; B)-flow if '(e) 2 B for all e 2 E. We always assume that B ⊆ M and that B is symmetric, i. e., B = −B.
    [Show full text]
  • LNCS 3729, Pp
    RDF Entailment as a Graph Homomorphism Jean-Fran¸cois Baget INRIA Rhˆone-Alpes, 655 avenue de l’Europe, 38334, Saint Ismier, France [email protected] Abstract. Semantic consequence (entailment) in RDF is ususally com- puted using Pat Hayes Interpolation Lemma. In this paper, we reformu- late this mechanism as a graph homomorphism known as projection in the conceptual graphs community. Though most of the paper is devoted to a detailed proof of this result, we discuss the immediate benefits of this reformulation: it is now easy to translate results from different communities (e.g. conceptual graphs, constraint programming, . ) to obtain new polynomial cases for the NP- complete RDF entailment problem, as well as numerous algorithmic optimizations. 1 Introduction Simple RDF is the knowledge representation language on which RDF (Resource Description Framework) and its extension RDFS are built. As a logic, it is pro- vided with a syntax (its abstract syntax will be used here), and model theoretic semantics [1]. These semantics are used to define entailments: an RDF graph G entails an RDF graph H iff H is true whenever G is. However, since an infinity of interpretations must be evaluated according to this definition, an operational inference mechanism, sound and complete w.r.t. entailment, is needed. This is the purpose of the interpolation lemma [1]: a finite procedure characterizing en- tailments. It has been extended to take into account more expressive languages (RDF, RDFS [1], and other languages e.g. [2]). All these extensions rely on a polynomial-time initial treatment of the graphs, the hard kernel remaining the basic simple entailment, which is a NP-hard problem.
    [Show full text]
  • Geometric Graph Homomorphisms
    1 Geometric Graph Homomorphisms Debra L. Boutin Department of Mathematics Hamilton College, Clinton, NY 13323 [email protected] Sally Cockburn Department of Mathematics Hamilton College, Clinton, NY 13323 [email protected] Abstract A geometric graph G is a simple graph drawn on points in the plane, in general position, with straightline edges. A geometric homo- morphism from G to H is a vertex map that preserves adjacencies and crossings. This work proves some basic properties of geometric homo- morphisms and defines the geochromatic number as the minimum n so that there is a geometric homomorphism from G to a geometric n-clique. The geochromatic number is related to both the chromatic number and to the minimum number of plane layers of G. By pro- viding an infinite family of bipartite geometric graphs, each of which is constructed of two plane layers, which take on all possible values of geochromatic number, we show that these relationships do not de- termine the geochromatic number. This paper also gives necessary (but not sufficient) and sufficient (but not necessary) conditions for a geometric graph to have geochromatic number at most four. As a corollary we get precise criteria for a bipartite geometric graph to have geochromatic number at most four. This paper also gives criteria for a geometric graph to be homomorphic to certain geometric realizations of K2;2 and K3;3. 1 Introduction Much work has been done studying graph homomorphisms. A graph homo- morphism f : G ! H is a vertex map that preserves adjacencies (but not necessarily non-adjacencies). If such a map exists, we write G ! H and 2 say `G is homomorphic to H.' As of this writing, there are 166 research pa- pers and books addressing graph homomorphisms.
    [Show full text]