Graph Operations and Upper Bounds on Graph Homomorphism Counts

Total Page:16

File Type:pdf, Size:1020Kb

Graph Operations and Upper Bounds on Graph Homomorphism Counts Graph Operations and Upper Bounds on Graph Homomorphism Counts Luke Sernau March 9, 2017 Abstract We construct a family of countexamples to a conjecture of Galvin [5], which stated that for any n-vertex, d-regular graph G and any graph H (possibly with loops), n n d d hom(G, H) ≤ max hom(Kd,d,H) 2 , hom(Kd+1,H) +1 , n o where hom(G, H) is the number of homomorphisms from G to H. By exploiting properties of the graph tensor product and graph exponentiation, we also find new infinite families of H for which the bound stated above on hom(G, H) holds for all n-vertex, d-regular G. In particular we show that if HWR is the complete looped path on three vertices, also known as the Widom-Rowlinson graph, then n d hom(G, HWR) ≤ hom(Kd+1,HWR) +1 for all n-vertex, d-regular G. This verifies a conjecture of Galvin. arXiv:1510.01833v3 [math.CO] 8 Mar 2017 1 Introduction Graph homomorphisms are an important concept in many areas of graph theory. A graph homomorphism is simply an adjacency-preserving map be- tween a graph G and a graph H. That is, for given graphs G and H, a function φ : V (G) → V (H) is said to be a homomorphism from G to H if for every edge uv ∈ E(G), we have φ(u)φ(v) ∈ E(H) (Here, as throughout, all graphs are simple, meaning without multi-edges, but they are permitted 1 to have loops). When H = Kq, the complete loop-free graph on q vertices, a homomorpism from G to H is just a proper q-coloring of G. For this reason homomorphisms from G to H are often referred to as H-colorings of G. While graph homomorphisms have proven to be a very useful tool, many extremal problems involving them remain open [2]. One such question is the following. Question 1. Let H be an arbitrary graph. Fix natural numbers d and n, with d < n. What d-regular graphs G on n vertices maximize hom(G,H), the number of homomorphisms from G to H? This question remains open, but one conjecture (first given in [5]) is that the maximizer graph for any H is one of two possibilities. Conjecture 1. Fix an arbitrary graph H. Let G be a loop-free d-regular graph on n vertices. Then n n d d hom(G,H) ≤ max hom(Kd,d,H) 2 , hom(Kd+1,H) +1 . n o Note that if 2d divides n, n n d hom(Kd,d,H) 2 = hom Kd,d,H , 2d n n where by 2d Kd,d we mean the disjoint union of 2d copies of Kd,d. Likewise, if d + 1 divides n, n n hom(K ,H) d+1 = hom K ,H . d+1 d +1 d+1 So Conjecture 1 is really making a claim about maximizer graphs, rather than merely asserting an upper bound. Namely, it asserts that up to some divisibility considerations, the maximizer of the number of homomorphisms is either the disjoint union of an appropriate number of copies of Kd,d or the disjoint union of an appropriate number of copies of Kd+1. This conjecture arose as a correction to an earlier conjecture (made in [6]), that hom(G,H) ≤ n d hom(Kd,d,H) 2 , always. In [6], Galvin and Tetali were able to show this stronger form for the special case where G is bipartite, and so it was natural to consider generalizing the result to all graphs. But taking H to be the disjoint union of loops gives a case where disjoint copies of Kd+1 is the maximizer, and so we are forced to consider the weaker form given in Conjecture 1. 2 The first aim of this article is to show that Conjecture 1 is false. Indeed, in Section 3 we give counterexamples for all d ≥ 4 (see Theorem 5 for the exact statement). It is now not clear what the correct version of Conjecture 1 should be for general H. In the absence of a general statement, one sensible avenue of n n approach is to consider conditions on H under which one of 2d Kd,d, d+1 Kd+1 is the maximizer of the number of homomorphisms for all G. In [10], Zhao n/2d gave an infinite family of H for which hom(G,H) ≤ hom(Kd,d,H) for all n-vertex, d-regular G, and in [5] Galvin exhibited infinitely many triples n/(d+1) (n,d,H) for which hom(G,H) ≤ hom(Kd+1,H) for all n-vertex, d- regular G. The second aim of this article is to continue this line of inves- tigation. We develop the properties of two graph operations, and then use them to establish a large family of choices of H for which some number of copies of Kd,d is the maximizer, as well as another large family for which an appropriate number of copies of Kd+1 is the maximizer. Specifically, we prove the following. Theorem 1. Let H1 and H2 be graphs with the property that for all n and d n/2d and all n-vertex, d-regular G, we have hom(G,Hi) ≤ hom(Kd,d,Hi) . Let A be an arbitrary graph, and B an arbitrary bipartite graph. If H˜ is any of A B H1 × H2, H1 , or A , then for all n and d and all n-vertex, d-regular G, we have n/2d hom(G, H˜ ) ≤ hom(Kd,d, H˜ ) . (1) B The operations of tensor product H1 × H2 and graph exponentiation A will be defined formally in Section 4. As an example of Theorem 1, consider the graph H consisting of one edge, with one endvertex looped. For this choice of H, it is easy to see that hom(G,H) is the number of independent sets in G (that is, the number of sets of mutually non-adjacent vertices). Zhao [11] showed that in this case n d hom(G,H) ≤ hom(Kd,d,H) 2 holds for all G. Now applying Theorem 1 we find that (1) holds for all n-vertex d-regular G with H˜ = H × H. This graph turns out the be the graph on four vertices composed of a triangle with one vertex looped, and an additional vertex adjacent to the looped vertex. It’s worth noting that this is not a graph that can be addressed using the methods Zhao develops in [10]. Zhao provides the following sufficient condition. 3 Theorem 2. For an arbitrary graph H, construct a graph Hbst with vertices V (Hbst)= V (H)×V (H) and an edge between (u, v) and (u′, v′) ∈ V (Hbst) if and only if uu′ ∈ E(H), vv′ ∈ E(H), and either uv′ ∈/ E(H) or u′v∈ / E(H). If Hbst is bipartite, then for all n and d and all n-vertex, d-regular G, n/2d hom(G,H) ≤ hom(Kd,d,H) . (2) Our choice of H˜ does not meet this criterion, because H˜ bst contains an odd cycle (the construction is straightforward, and has been omitted). We also make use of the tensor product and the graph exponent to es- tablish a family of choices of H for which hom(G,H) is upper bounded by n d hom(Kd+1,H) +1 . Theorem 3. Let G be an arbitrary d-regular graph on n vertices. For an arbitrary graph H and bipartite graph B, n B B d hom(G,l(H )) ≤ hom(Kd+1,l(H )) +1 where l(G) denotes the induced subgraph of G formed by the set of looped vertices of G. When H is a path on two vertices with a loop on the first, and B is a single edge, l(HB) is easily seen to be a path on three vertices with a loop at each vertex. This graph, which we will call HWR, is often referred to as the Widom-Rowlinson graph and it encodes a well-studied model in statistical physics (see [1] for a good discussion). Galvin conjectured (implicitly in [5] n/(d+1) and explicitly in [4]) that hom(G,HWR) ≤ hom(Kd+1,HWR) for all n-vertex d-regular G, making it the simplest non-trivial example of an H for which unions of Kd+1 maximize the homomorphism count among regular graphs, and Theorem 3 verifies this conjecture. In an earlier version of this paper (arXiv:1510.01833v1) the right-hand B n/d side of the inequality in Theorem 3 was the weaker hom(Kd,l(H )) . This turned out to be the result of a small error in the proof. We are grateful to E. Cohen (personal communication) for pointing out this error. After the earlier version of this paper appeared, a separate result that also implies Galvin’s conjecture was obtained by Cohen, Perkins and Tetali [3]. In Section 2 we recall some results that will be important in what follows. In Section 3 we give a construction providing counterexamples to Conjecture 1. The results from Section 2 are then built upon in Section 4, culminating in the proof of Theorem 1. Lastly, in Section 5, we continue the discussion of exponential graphs in order to prove Theorem 3. 4 2 Foundational Results Before delving into the main body of work, it will be useful to recall a hand- ful of important results that we will draw on heavily.
Recommended publications
  • Automorphisms of the Double Cover of a Circulant Graph of Valency at Most 7
    AUTOMORPHISMS OF THE DOUBLE COVER OF A CIRCULANT GRAPH OF VALENCY AT MOST 7 ADEMIR HUJDUROVIC,´ ¯DOR¯DE MITROVIC,´ AND DAVE WITTE MORRIS Abstract. A graph X is said to be unstable if the direct product X × K2 (also called the canonical double cover of X) has automorphisms that do not come from automorphisms of its factors X and K2. It is nontrivially unstable if it is unstable, connected, and non-bipartite, and no two distinct vertices of X have exactly the same neighbors. We find all of the nontrivially unstable circulant graphs of valency at most 7. (They come in several infinite families.) We also show that the instability of each of these graphs is explained by theorems of Steve Wilson. This is best possible, because there is a nontrivially unstable circulant graph of valency 8 that does not satisfy the hypotheses of any of Wilson's four instability theorems for circulant graphs. 1. Introduction Let X be a circulant graph. (All graphs in this paper are finite, simple, and undirected.) Definition 1.1 ([16]). The canonical bipartite double cover of X is the bipartite graph BX with V (BX) = V (X) 0; 1 , where × f g (v; 0) is adjacent to (w; 1) in BX v is adjacent to w in X: () Letting S2 be the symmetric group on the 2-element set 0; 1 , it is clear f g that the direct product Aut X S2 is a subgroup of Aut BX. We are interested in cases where this subgroup× is proper: Definition 1.2 ([12, p.
    [Show full text]
  • Homomorphisms of 3-Chromatic Graphs
    Discrete Mathematics 54 (1985) 127-132 127 North-Holland HOMOMORPHISMS OF 3-CHROMATIC GRAPHS Michael O. ALBERTSON Department of Mathematics, Smith College, Northampton, MA 01063, U.S.A. Karen L. COLLINS Department of Mathematics, M.L T., Cambridge, MA 02139, U.S.A. Received 29 March 1984 Revised 17 August 1984 This paper examines the effect of a graph homomorphism upon the chromatic difference sequence of a graph. Our principal result (Theorem 2) provides necessary conditions for the existence of a homomorphism onto a prescribed target. As a consequence we note that iterated cartesian products of the Petersen graph form an infinite family of vertex transitive graphs no one of which is the homomorphic image of any other. We also prove that there is a unique minimal element in the homomorphism order of 3-chromatic graphs with non-monotonic chromatic difference sequences (Theorem 1). We include a brief guide to some recent papers on graph homomorphisms. A homomorphism f from a graph G to a graph H is a mapping from the vertex set of G (denoted by V(G)) to the vertex set of H which preserves edges, i.e., if (u, v) is an edge in G, then (f(u), f(v)) is an edge in H. If in addition f is onto V(H) and each edge in H is the image of some edge in G, then f is said to be onto and H is called a homomorphic image of G. We define the homomorphism order ~> on the set of finite connected graphs as G ~>H if there exists a homomorphism which maps G onto H.
    [Show full text]
  • JMM 2017 Student Poster Session Abstract Book
    Abstracts for the MAA Undergraduate Poster Session Atlanta, GA January 6, 2017 Organized by Eric Ruggieri College of the Holy Cross and Chasen Smith Georgia Southern University Organized by the MAA Committee on Undergraduate Student Activities and Chapters and CUPM Subcommittee on Research by Undergraduates Dear Students, Advisors, Judges and Colleagues, If you look around today you will see over 300 posters and nearly 500 student presenters, representing a wide array of mathematical topics and ideas. These posters showcase the vibrant research being conducted as part of summer programs and during the academic year at colleges and universities from across the United States and beyond. It is so rewarding to see this session, which offers such a great opportunity for interaction between students and professional mathematicians, continue to grow. The judges you see here today are professional mathematicians from institutions around the world. They are advisors, colleagues, new Ph.D.s, and administrators. We have acknowledged many of them in this booklet; however, many judges here volunteered on site. Their support is vital to the success of the session and we thank them. We are supported financially by Tudor Investments and Two Sigma. We are also helped by the mem- bers of the Committee on Undergraduate Student Activities and Chapters (CUSAC) in some way or other. They are: Dora C. Ahmadi; Jennifer Bergner; Benjamin Galluzzo; Kristina Cole Garrett; TJ Hitchman; Cynthia Huffman; Aihua Li; Sara Louise Malec; Lisa Marano; May Mei; Stacy Ann Muir; Andy Nieder- maier; Pamela A. Richardson; Jennifer Schaefer; Peri Shereen; Eve Torrence; Violetta Vasilevska; Gerard A.
    [Show full text]
  • Graph Theory, Prentice -Hall of India
    Annexure 145 www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 3; August 2011 Product Cordial Labeling in the Context of Tensor Product of Graphs S K Vaidya (Corresponding author) Department of Mathematics, Saurashtra University Rajkot-360 005. GUJARAT, India E-mail: [email protected] N B Vyas Atmiya Institute of Technology and Science Rajkot-360 005. GUJARAT, India E-mail: [email protected] Received: March 10, 2011 Accepted: March 28, 2011 doi:10.5539/jmr.v3n3p83 Abstract For the graph G1 and G2 the tensor product is denoted by G1(T p)G2 which is the graph with vertex set V(G1(T p)G2) = V(G1) × V(G2) and edge set E(G1(T p)G2) = {(u1, v1), (u2, v2)/u1u2E(G1) and v1v2E(G2)}. The graph Pm(T p)Pn is disconnected for ∀m, n while the graphs Cm(T p)Cn and Cm(T p)Pn are disconnected for both m and n even. We prove that these graphs are product cordial graphs. In addition to this we show that the graphs obtained by joining the connected components of respective graphs by a path of arbitrary length also admit product cordial labeling. Keywords: Cordial labeling, Porduct cordial labeling, Tensor product AMS Subject classification (2010): 05C78. 1. Introduction We begin with simple, finite and undirected graph G = (V(G), E(G)). For standard terminology and notations we follow (West, D. B, 2001). The brief summary of definitions and relevant results are given below. 1.1 Definition: If the vertices of the graph are assigned values subject to certain condition(s) then it is known as graph labeling.
    [Show full text]
  • Chromatic Number of the Product of Graphs, Graph Homomorphisms, Antichains and Cofinal Subsets of Posets Without AC
    CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS, GRAPH HOMOMORPHISMS, ANTICHAINS AND COFINAL SUBSETS OF POSETS WITHOUT AC AMITAYU BANERJEE AND ZALAN´ GYENIS Abstract. In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. • If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. • If in a partially ordered set, all chains are finite and all antichains have size ℵα, then the set has size ℵα for any regular ℵα. • CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets). • CWF (Every partially ordered set has a cofinal well-founded subset). • DT (Dilworth’s decomposition theorem for infinite p.o.sets of finite width). We also study a graph homomorphism problem and a problem due to Andr´as Hajnal without AC. Further, we study a few statements restricted to linearly-ordered structures without AC. 1. Introduction Firstly, the first author observes the following in ZFA (Zermelo-Fraenkel set theory with atoms). (1) In Problem 15, Chapter 11 of [KT06], applying Zorn’s lemma, Komj´ath and Totik proved the statement “Every partially ordered set without a maximal element has two disjoint cofinal subsets” (CS). In Theorem 3.26 of [THS16], Tachtsis, Howard and Saveliev proved that CS does not imply ‘there are no amorphous sets’ in ZFA. We observe ω that CS 6→ ACfin (the axiom of choice for countably infinite familes of non-empty finite − sets), CS 6→ ACn (‘Every infinite family of n-element sets has a partial choice function’) 1 − for every 2 ≤ n<ω and CS 6→ LOKW4 (Every infinite linearly orderable family A of 4-element sets has a partial Kinna–Wegner selection function)2 in ZFA.
    [Show full text]
  • No Finite-Infinite Antichain Duality in the Homomorphism Poset D of Directed Graphs
    NO FINITE-INFINITE ANTICHAIN DUALITY IN THE HOMOMORPHISM POSET D OF DIRECTED GRAPHS PETER¶ L. ERDOS} AND LAJOS SOUKUP Abstract. D denotes the homomorphism poset of ¯nite directed graphs. An antichain duality is a pair hF; Di of antichains of D such that (F!) [ (!D) = D is a partition. A generalized duality pair in D is an antichain duality hF; Di with ¯nite F and D: We give a simpli¯ed proof of the Foniok - Ne·set·ril- Tardif theorem for the special case D, which gave full description of the generalized duality pairs in D. Although there are many antichain dualities hF; Di with in¯nite D and F, we can show that there is no antichain duality hF; Di with ¯nite F and in¯nite D. 1. Introduction If G and H are ¯nite directed graphs, write G · H or G ! H i® there is a homomorphism from G to H, that is, a map f : V (G) ! V (H) such that hf(x); f(y)i is a directed edge 2 E(H) whenever hx; yi 2 E(G). The relation · is a quasi-order and so it induces an equivalence relation: G and H are homomorphism-equivalent if and only if G · H and H · G. The homomorphism poset D is the partially ordered set of all equivalence classes of ¯nite directed graphs, ordered by ·. In this paper we continue the study of antichain dualities in D (what was started, in this form, in [2]). An antichain duality is a pair hF; Di of disjoint antichains of D such that D = (F!) [ (!D) is a partition of D, where the set F! := fG : F · G for some F 2 Fg, and !D := fG : G · D for some D 2 Dg.
    [Show full text]
  • Efficient Quantum Circuits for Szegedy Quantum Walks
    Efficient quantum circuits for Szegedy quantum walks T. Loke and J.B. Wang∗ School of Physics, The University of Western Australia, Perth WA 6009, Australia Abstract A major advantage in using Szegedy's formalism over discrete-time and continuous-time quantum walks lies in its ability to define a unitary quantum walk on directed and weighted graphs. In this paper, we present a general scheme to construct efficient quantum circuits for Szegedy quantum walks that correspond to classical Markov chains possessing transforma- tional symmetry in the columns of the transition matrix. In particular, the transformational symmetry criteria do not necessarily depend on the sparsity of the transition matrix, so this scheme can be applied to non-sparse Markov chains. Two classes of Markov chains that are amenable to this construction are cyclic permutations and complete bipartite graphs, for which we provide explicit efficient quantum circuit implementations. We also prove that our scheme can be applied to Markov chains formed by a tensor product. We also briefly discuss the implementation of Markov chains based on weighted interdependent net- works. In addition, we apply this scheme to construct efficient quantum circuits simulating the Szegedy walks used in the quantum Pagerank algorithm for some classes of non-trivial graphs, providing a necessary tool for experimental demonstration of the quantum Pagerank algorithm. 1. Introduction In the last two decades, quantum walks have produced a wide variety of quantum algo- rithms to address different problems, such as the graph isomorphism problem [1{3], ranking nodes in a network [4{6], and quantum simulation [7{11].
    [Show full text]
  • Lombardi Drawings of Graphs 1 Introduction
    Lombardi Drawings of Graphs Christian A. Duncan1, David Eppstein2, Michael T. Goodrich2, Stephen G. Kobourov3, and Martin Nollenburg¨ 2 1Department of Computer Science, Louisiana Tech. Univ., Ruston, Louisiana, USA 2Department of Computer Science, University of California, Irvine, California, USA 3Department of Computer Science, University of Arizona, Tucson, Arizona, USA Abstract. We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs. 1 Introduction The American artist Mark Lombardi [24] was famous for his drawings of social net- works representing conspiracy theories. Lombardi used curved arcs to represent edges, leading to a strong aesthetic quality and high readability. Inspired by this work, we intro- duce the notion of a Lombardi drawing of a graph, in which edges are drawn as circular arcs with perfect angular resolution: consecutive edges are evenly spaced around each vertex. While not all vertices have perfect angular resolution in Lombardi’s work, the even spacing of edges around vertices is clearly one of his aesthetic criteria; see Fig. 1. Traditional graph drawing methods rarely guarantee perfect angular resolution, but poor edge distribution can nevertheless lead to unreadable drawings. Additionally, while some tools provide options to draw edges as curves, most rely on straight-line edges, and it is known that maintaining good angular resolution can result in exponential draw- ing area for straight-line drawings of planar graphs [17,25].
    [Show full text]
  • Expander Graphs
    Basic Facts about Expander Graphs Oded Goldreich Abstract. In this survey we review basic facts regarding expander graphs that are most relevant to the theory of computation. Keywords: Expander Graphs, Random Walks on Graphs. This text has been revised based on [8, Apdx. E.2]. 1 Introduction Expander graphs found numerous applications in the theory of computation, ranging from the design of sorting networks [1] to the proof that undirected connectivity is decidable in determinstic log-space [15]. In this survey we review basic facts regarding expander graphs that are most relevant to the theory of computation. For a wider perspective, the interested reader is referred to [10]. Loosely speaking, expander graphs are regular graphs of small degree that exhibit various properties of cliques.1 In particular, we refer to properties such as the relative sizes of cuts in the graph (i.e., relative to the number of edges), and the rate at which a random walk converges to the uniform distribution (relative to the logarithm of the graph size to the base of its degree). Some technicalities. Typical presentations of expander graphs refer to one of several variants. For example, in some sources, expanders are presented as bi- partite graphs, whereas in others they are presented as ordinary graphs (and are in fact very far from being bipartite). We shall follow the latter convention. Furthermore, at times we implicitly consider an augmentation of these graphs where self-loops are added to each vertex. For simplicity, we also allow parallel edges. We often talk of expander graphs while we actually mean an infinite collection of graphs such that each graph in this collection satisfies the same property (which is informally attributed to the collection).
    [Show full text]
  • The Operations Invariant Properties on Graphs Yanzhong Hu, Gang
    International Conference on Education Technology and Information System (ICETIS 2013) The Operations Invariant Properties on Graphs Yanzhong Hu, Gang Cheng School of Computer Science, Hubei University of Technology, Wuhan, 430068, China [email protected], [email protected] Keywords:Invariant property; Hamilton cycle; Cartesian product; Tensor product Abstract. To determine whether or not a given graph has a Hamilton cycle (or is a planar graph), defined the operations invariant properties on graphs, and discussed the various forms of the invariant properties under the circumstance of Cartesian product graph operation and Tensor product graph operation. The main conclusions include: The Hamiltonicity of graph is invariant concerning the Cartesian product, and the non-planarity of the graph is invariant concerning the tensor product. Therefore, when we applied these principles into practice, we testified that Hamilton cycle does exist in hypercube and the Desargues graph is a non-planarity graph. INTRODUCTION The Planarity, Eulerian feature, Hamiltonicity, bipartite property, spectrum, and so on, is often overlooked for a given graph. The traditional research method adopts the idea of direct proof. In recent years, indirect proof method is put forward, (Fang Xie & Yanzhong Hu, 2010) proves non- planarity of the Petersen graph, by use the non-planarity of K3,3, i.e., it induces the properties of the graph G with the properties of the graph H, here H is a sub-graph of G. However, when it comes to induce the other properties, the result is contrary to what we expect. For example, Fig. 1(a) is a Hamiltonian graph which is a sub-graph of Fig.
    [Show full text]
  • On the Generalized Θ-Number and Related Problems for Highly Symmetric Graphs
    On the generalized #-number and related problems for highly symmetric graphs Lennart Sinjorgo ∗ Renata Sotirov y Abstract This paper is an in-depth analysis of the generalized #-number of a graph. The generalized #-number, #k(G), serves as a bound for both the k-multichromatic number of a graph and the maximum k-colorable subgraph problem. We present various properties of #k(G), such as that the series (#k(G))k is increasing and bounded above by the order of the graph G. We study #k(G) when G is the graph strong, disjunction and Cartesian product of two graphs. We provide closed form expressions for the generalized #-number on several classes of graphs including the Kneser graphs, cycle graphs, strongly regular graphs and orthogonality graphs. Our paper provides bounds on the product and sum of the k-multichromatic number of a graph and its complement graph, as well as lower bounds for the k-multichromatic number on several graph classes including the Hamming and Johnson graphs. Keywords k{multicoloring, k-colorable subgraph problem, generalized #-number, Johnson graphs, Hamming graphs, strongly regular graphs. AMS subject classifications. 90C22, 05C15, 90C35 1 Introduction The k{multicoloring of a graph is to assign k distinct colors to each vertex in the graph such that two adjacent vertices are assigned disjoint sets of colors. The k-multicoloring is also known as k-fold coloring, n-tuple coloring or simply multicoloring. We denote by χk(G) the minimum number of colors needed for a valid k{multicoloring of a graph G, and refer to it as the k-th chromatic number of G or the multichromatic number of G.
    [Show full text]
  • Linkedness and Path-Pairability in the Cartesian Product of Graphs
    Linkedness and Path-Pairability in the Cartesian Product of Graphs by Gábor Mészáros Submitted to Central European University Department of Mathematics and its Applications In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics and its Applications Supervisor: Ervin Győri Alfréd Rényi Institute of Mathematics Budapest, Hungary 2015 i Contents List of Figures ii 1. Introduction 1 2. Notation, terminology, and folklore results 3 3. Linkedness 5 3.1. Linkedness and connectivity 6 3.2. Special graph classes 9 3.3. Related graph properties and generalizations 11 4. Path-pairability 16 4.1. Necessary and sufficient conditions 17 4.2. Maximum degree 18 4.3. Diameter 20 5. The Cartesian product of graphs and parameter inheritance 25 5.1. Main results 28 5.2. Results for grid graphs 40 5.3. Path-pairable products 47 6. Additional remarks and open questions 52 6.1. Path-pairable planar graphs 52 6.2. Linkedness and path-pairability of directed graphs 55 6.3. Other graph products 57 References 59 ii List of Figures 1 Example for a 5-connected, not 2-linked graph. 61 2 Planar graphs are not 3-linked. 61 3 Path-pairable graph of order 12 61 4 Cartesian product of a claw and a triangle 62 5 Line-up and final match phases. 62 6 Small path-pairable planar graphs can be easily constructed. 62 7 Linking via edge-disjoint directed cycles. 63 8 Four kinds of products of K2 and P2 63 iii Abstract In this dissertation I summarize my work in the field of linkedness and path- pairability of graphs with primary focus on the inheritance of the mentioned prop- erties in the Cartesian product of graphs.
    [Show full text]