Expander Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JMM 2017 Student Poster Session Abstract Book
Abstracts for the MAA Undergraduate Poster Session Atlanta, GA January 6, 2017 Organized by Eric Ruggieri College of the Holy Cross and Chasen Smith Georgia Southern University Organized by the MAA Committee on Undergraduate Student Activities and Chapters and CUPM Subcommittee on Research by Undergraduates Dear Students, Advisors, Judges and Colleagues, If you look around today you will see over 300 posters and nearly 500 student presenters, representing a wide array of mathematical topics and ideas. These posters showcase the vibrant research being conducted as part of summer programs and during the academic year at colleges and universities from across the United States and beyond. It is so rewarding to see this session, which offers such a great opportunity for interaction between students and professional mathematicians, continue to grow. The judges you see here today are professional mathematicians from institutions around the world. They are advisors, colleagues, new Ph.D.s, and administrators. We have acknowledged many of them in this booklet; however, many judges here volunteered on site. Their support is vital to the success of the session and we thank them. We are supported financially by Tudor Investments and Two Sigma. We are also helped by the mem- bers of the Committee on Undergraduate Student Activities and Chapters (CUSAC) in some way or other. They are: Dora C. Ahmadi; Jennifer Bergner; Benjamin Galluzzo; Kristina Cole Garrett; TJ Hitchman; Cynthia Huffman; Aihua Li; Sara Louise Malec; Lisa Marano; May Mei; Stacy Ann Muir; Andy Nieder- maier; Pamela A. Richardson; Jennifer Schaefer; Peri Shereen; Eve Torrence; Violetta Vasilevska; Gerard A. -
Graph Theory, Prentice -Hall of India
Annexure 145 www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 3; August 2011 Product Cordial Labeling in the Context of Tensor Product of Graphs S K Vaidya (Corresponding author) Department of Mathematics, Saurashtra University Rajkot-360 005. GUJARAT, India E-mail: [email protected] N B Vyas Atmiya Institute of Technology and Science Rajkot-360 005. GUJARAT, India E-mail: [email protected] Received: March 10, 2011 Accepted: March 28, 2011 doi:10.5539/jmr.v3n3p83 Abstract For the graph G1 and G2 the tensor product is denoted by G1(T p)G2 which is the graph with vertex set V(G1(T p)G2) = V(G1) × V(G2) and edge set E(G1(T p)G2) = {(u1, v1), (u2, v2)/u1u2E(G1) and v1v2E(G2)}. The graph Pm(T p)Pn is disconnected for ∀m, n while the graphs Cm(T p)Cn and Cm(T p)Pn are disconnected for both m and n even. We prove that these graphs are product cordial graphs. In addition to this we show that the graphs obtained by joining the connected components of respective graphs by a path of arbitrary length also admit product cordial labeling. Keywords: Cordial labeling, Porduct cordial labeling, Tensor product AMS Subject classification (2010): 05C78. 1. Introduction We begin with simple, finite and undirected graph G = (V(G), E(G)). For standard terminology and notations we follow (West, D. B, 2001). The brief summary of definitions and relevant results are given below. 1.1 Definition: If the vertices of the graph are assigned values subject to certain condition(s) then it is known as graph labeling. -
Graph Operations and Upper Bounds on Graph Homomorphism Counts
Graph Operations and Upper Bounds on Graph Homomorphism Counts Luke Sernau March 9, 2017 Abstract We construct a family of countexamples to a conjecture of Galvin [5], which stated that for any n-vertex, d-regular graph G and any graph H (possibly with loops), n n d d hom(G, H) ≤ max hom(Kd,d,H) 2 , hom(Kd+1,H) +1 , n o where hom(G, H) is the number of homomorphisms from G to H. By exploiting properties of the graph tensor product and graph exponentiation, we also find new infinite families of H for which the bound stated above on hom(G, H) holds for all n-vertex, d-regular G. In particular we show that if HWR is the complete looped path on three vertices, also known as the Widom-Rowlinson graph, then n d hom(G, HWR) ≤ hom(Kd+1,HWR) +1 for all n-vertex, d-regular G. This verifies a conjecture of Galvin. arXiv:1510.01833v3 [math.CO] 8 Mar 2017 1 Introduction Graph homomorphisms are an important concept in many areas of graph theory. A graph homomorphism is simply an adjacency-preserving map be- tween a graph G and a graph H. That is, for given graphs G and H, a function φ : V (G) → V (H) is said to be a homomorphism from G to H if for every edge uv ∈ E(G), we have φ(u)φ(v) ∈ E(H) (Here, as throughout, all graphs are simple, meaning without multi-edges, but they are permitted 1 to have loops). -
Efficient Quantum Circuits for Szegedy Quantum Walks
Efficient quantum circuits for Szegedy quantum walks T. Loke and J.B. Wang∗ School of Physics, The University of Western Australia, Perth WA 6009, Australia Abstract A major advantage in using Szegedy's formalism over discrete-time and continuous-time quantum walks lies in its ability to define a unitary quantum walk on directed and weighted graphs. In this paper, we present a general scheme to construct efficient quantum circuits for Szegedy quantum walks that correspond to classical Markov chains possessing transforma- tional symmetry in the columns of the transition matrix. In particular, the transformational symmetry criteria do not necessarily depend on the sparsity of the transition matrix, so this scheme can be applied to non-sparse Markov chains. Two classes of Markov chains that are amenable to this construction are cyclic permutations and complete bipartite graphs, for which we provide explicit efficient quantum circuit implementations. We also prove that our scheme can be applied to Markov chains formed by a tensor product. We also briefly discuss the implementation of Markov chains based on weighted interdependent net- works. In addition, we apply this scheme to construct efficient quantum circuits simulating the Szegedy walks used in the quantum Pagerank algorithm for some classes of non-trivial graphs, providing a necessary tool for experimental demonstration of the quantum Pagerank algorithm. 1. Introduction In the last two decades, quantum walks have produced a wide variety of quantum algo- rithms to address different problems, such as the graph isomorphism problem [1{3], ranking nodes in a network [4{6], and quantum simulation [7{11]. -
Expander Graphs
4 Expander Graphs Now that we have seen a variety of basic derandomization techniques, we will move on to study the first major “pseudorandom object” in this survey, expander graphs. These are graphs that are “sparse” yet very “well-connected.” 4.1 Measures of Expansion We will typically interpret the properties of expander graphs in an asymptotic sense. That is, there will be an infinite family of graphs Gi, with a growing number of vertices Ni. By “sparse,” we mean that the degree Di of Gi should be very slowly growing as a function of Ni. The “well-connectedness” property has a variety of different interpretations, which we will discuss below. Typically, we will drop the subscripts of i and the fact that we are talking about an infinite family of graphs will be implicit in our theorems. As in Section 2.4.2, we will state many of our definitions for directed multigraphs (which we’ll call digraphs for short), though in the end we will mostly study undirected multigraphs. 80 4.1 Measures of Expansion 81 4.1.1 Vertex Expansion The classic measure of well-connectedness in expanders requires that every “not-too-large” set of vertices has “many” neighbors: Definition 4.1. A digraph G isa(K,A) vertex expander if for all sets S of at most K vertices, the neighborhood N(S) def= {u|∃v ∈ S s.t. (u,v) ∈ E} is of size at least A ·|S|. Ideally, we would like D = O(1), K =Ω(N), where N is the number of vertices, and A as close to D as possible. -
Arxiv:1711.08757V3 [Cs.CV] 26 Jul 2018 1 Introduction
Deep Expander Networks: Efficient Deep Networks from Graph Theory Ameya Prabhu? Girish Varma? Anoop Namboodiri Center for Visual Information Technology Kohli Center on Intelligent Systems, IIIT Hyderabad, India [email protected], fgirish.varma, [email protected] https://github.com/DrImpossible/Deep-Expander-Networks Abstract. Efficient CNN designs like ResNets and DenseNet were pro- posed to improve accuracy vs efficiency trade-offs. They essentially in- creased the connectivity, allowing efficient information flow across layers. Inspired by these techniques, we propose to model connections between filters of a CNN using graphs which are simultaneously sparse and well connected. Sparsity results in efficiency while well connectedness can pre- serve the expressive power of the CNNs. We use a well-studied class of graphs from theoretical computer science that satisfies these properties known as Expander graphs. Expander graphs are used to model con- nections between filters in CNNs to design networks called X-Nets. We present two guarantees on the connectivity of X-Nets: Each node influ- ences every node in a layer in logarithmic steps, and the number of paths between two sets of nodes is proportional to the product of their sizes. We also propose efficient training and inference algorithms, making it possible to train deeper and wider X-Nets effectively. Expander based models give a 4% improvement in accuracy on Mo- bileNet over grouped convolutions, a popular technique, which has the same sparsity but worse connectivity. X-Nets give better performance trade-offs than the original ResNet and DenseNet-BC architectures. We achieve model sizes comparable to state-of-the-art pruning techniques us- ing our simple architecture design, without any pruning. -
Connections Between Graph Theory and Cryptography
Connections between graph theory and cryptography Connections between graph theory and cryptography Natalia Tokareva G2C2: Graphs and Groups, Cycles and Coverings September, 24–26, 2014. Novosibirsk, Russia Connections between graph theory and cryptography Introduction to cryptography Introduction to cryptography Connections between graph theory and cryptography Introduction to cryptography Terminology Cryptography is the scientific and practical activity associated with developing of cryptographic security facilities of information and also with argumentation of their cryptographic resistance. Plaintext is a secret message. Often it is a sequence of binary bits. Ciphertext is an encrypted message. Encryption is the process of disguising a message in such a way as to hide its substance (the process of transformation plaintext into ciphertext by virtue of cipher). Cipher is a family of invertible mappings from the set of plaintext sequences to the set of ciphertext sequences. Each mapping depends on special parameter a key. Key is removable part of the cipher. Connections between graph theory and cryptography Introduction to cryptography Terminology Deciphering is the process of turning a ciphertext back into the plaintext that realized with known key. Decryption is the process of receiving the plaintext from ciphertext without knowing the key. Connections between graph theory and cryptography Introduction to cryptography Terminology Cryptography is the scientific and practical activity associated with developing of cryptographic security -
On the Generalized Θ-Number and Related Problems for Highly Symmetric Graphs
On the generalized #-number and related problems for highly symmetric graphs Lennart Sinjorgo ∗ Renata Sotirov y Abstract This paper is an in-depth analysis of the generalized #-number of a graph. The generalized #-number, #k(G), serves as a bound for both the k-multichromatic number of a graph and the maximum k-colorable subgraph problem. We present various properties of #k(G), such as that the series (#k(G))k is increasing and bounded above by the order of the graph G. We study #k(G) when G is the graph strong, disjunction and Cartesian product of two graphs. We provide closed form expressions for the generalized #-number on several classes of graphs including the Kneser graphs, cycle graphs, strongly regular graphs and orthogonality graphs. Our paper provides bounds on the product and sum of the k-multichromatic number of a graph and its complement graph, as well as lower bounds for the k-multichromatic number on several graph classes including the Hamming and Johnson graphs. Keywords k{multicoloring, k-colorable subgraph problem, generalized #-number, Johnson graphs, Hamming graphs, strongly regular graphs. AMS subject classifications. 90C22, 05C15, 90C35 1 Introduction The k{multicoloring of a graph is to assign k distinct colors to each vertex in the graph such that two adjacent vertices are assigned disjoint sets of colors. The k-multicoloring is also known as k-fold coloring, n-tuple coloring or simply multicoloring. We denote by χk(G) the minimum number of colors needed for a valid k{multicoloring of a graph G, and refer to it as the k-th chromatic number of G or the multichromatic number of G. -
Linkedness and Path-Pairability in the Cartesian Product of Graphs
Linkedness and Path-Pairability in the Cartesian Product of Graphs by Gábor Mészáros Submitted to Central European University Department of Mathematics and its Applications In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics and its Applications Supervisor: Ervin Győri Alfréd Rényi Institute of Mathematics Budapest, Hungary 2015 i Contents List of Figures ii 1. Introduction 1 2. Notation, terminology, and folklore results 3 3. Linkedness 5 3.1. Linkedness and connectivity 6 3.2. Special graph classes 9 3.3. Related graph properties and generalizations 11 4. Path-pairability 16 4.1. Necessary and sufficient conditions 17 4.2. Maximum degree 18 4.3. Diameter 20 5. The Cartesian product of graphs and parameter inheritance 25 5.1. Main results 28 5.2. Results for grid graphs 40 5.3. Path-pairable products 47 6. Additional remarks and open questions 52 6.1. Path-pairable planar graphs 52 6.2. Linkedness and path-pairability of directed graphs 55 6.3. Other graph products 57 References 59 ii List of Figures 1 Example for a 5-connected, not 2-linked graph. 61 2 Planar graphs are not 3-linked. 61 3 Path-pairable graph of order 12 61 4 Cartesian product of a claw and a triangle 62 5 Line-up and final match phases. 62 6 Small path-pairable planar graphs can be easily constructed. 62 7 Linking via edge-disjoint directed cycles. 63 8 Four kinds of products of K2 and P2 63 iii Abstract In this dissertation I summarize my work in the field of linkedness and path- pairability of graphs with primary focus on the inheritance of the mentioned prop- erties in the Cartesian product of graphs. -
Strongly Distance-Balanced Graphs and Graph Products1 1 Introduction
Strongly distance-balanced graphs and graph products1 Kannan Balakrishnana, Manoj Changatb, Iztok Peterinc, Simon Spacapan· d, Primo·z Sparl· e, Ajitha R. Subhamathib aDepartment of Computer Applications, Cochin University of Science and Technology, Cochin-22, India bDepartment of Futures Studies, University of Kerala, Trivandrum-695034, India cUniversity of Maribor, FEECS, Smetanova 17, 2000 Maribor, Slovenia dUniversity of Maribor, FME, Smetanova 17, 2000 Maribor, Slovenia eFaculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia Abstract A graph G is strongly distance-balanced if for every edge uv of G and every i ¸ 0 the number of vertices x with d(x; u) = d(x; v)¡1 = i equals the number of vertices y with d(y; v) = d(y; u) ¡ 1 = i. It is proved that the strong product of graphs is strongly distance-balanced if and only if both factors are strongly distance- balanced. It is also proved that connected components of the direct product of two bipartite graphs are strongly distance-balanced if and only if both factors are strongly distance-balanced. Additionally, a new characterization of distance- balanced graphs and an algorithm of time complexity O(mn) for their recognition, where m is the number of edges and n the number of vertices of the graph in question, are given. 1 Introduction Let G be a simple undirected graph. The distance dG(u; v) between vertices u; v 2 V (G) is the length of a shortest path between u and v in G. (If the graph G is clear from the context, we simply write d(u; v).) For a pair of adjacent vertices a; b 2 V (G) let Wab denote the set of all vertices of G closer to a than to b and let aWb denote the set of all ab a b vertices of G that are at the same distance to a and b. -
Layouts of Expander Graphs
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 1, pages 1–21 http://cjtcs.cs.uchicago.edu/ Layouts of Expander Graphs † ‡ Vida Dujmovic´∗ Anastasios Sidiropoulos David R. Wood Received January 20, 2015; Revised November 26, 2015, and on January 3, 2016; Published January 14, 2016 Abstract: Bourgain and Yehudayoff recently constructed O(1)-monotone bipartite ex- panders. By combining this result with a generalisation of the unraveling method of Kannan, we construct 3-monotone bipartite expanders, which is best possible. We then show that the same graphs admit 3-page book embeddings, 2-queue layouts, 4-track layouts, and have simple thickness 2. All these results are best possible. Key words and phrases: expander graph, monotone layout, book embedding, stack layout, queue layout, track layout, thickness 1 Introduction Expanders are classes of highly connected graphs that are of fundamental importance in graph theory, with numerous applications, especially in theoretical computer science [31]. While the literature contains various definitions of expanders, this paper focuses on bipartite expanders. For e (0;1], a bipartite 2 graph G with bipartition V(G) = A B is a bipartite e-expander if A = B and N(S) > (1 + e) S for A [ j j j j j j j j every subset S A with S j j . Here N(S) is the set of vertices adjacent to some vertex in S. An infinite ⊂ j j 6 2 family of bipartite e-expanders, for some fixed e > 0, is called an infinite family of bipartite expanders. There has been much research on constructing and proving the existence of expanders with various desirable properties. -
On the Connectivity of the Direct Product of Graphs∗
AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 41 (2008), Pages 45–56 On the connectivity of the direct product of graphs∗ Boˇstjan Breˇsar University of Maribor, FEECS Smetanova 17, 2000 Maribor Slovenia [email protected] Simon Spacapanˇ University of Maribor, FME Smetanova 17, 2000 Maribor Slovenia [email protected] Abstract In this note we show that the edge-connectivity λ(G × H) of the di- rect product of graphs G and H is bounded below by min{λ(G)|E(H)|, λ(H)|E(G)|,δ(G × H)} and above by min{2λ(G)|E(H)|, 2λ(H)|E(G)|, δ(G × H)} except in some special cases when G is a relatively small bi- partite graph, or both graphs are bipartite. Several upper bounds on the vertex-connectivity of the direct product of graphs are also obtained. 1 Introduction Let G and H be undirected graphs without loops or multiple edges. The direct product G × H of graphs G and H is the graph with the vertex set V (G) × V (H), two vertices (x, y) and (v,w) being adjacent in G × H if and only if xv ∈ E(G) and yw ∈ E(H). The direct product is clearly commutative and associative. Weichsel observed almost half a century ago that the direct product of two graphs G and H is connected if and only if both G and H are connected and not both are bipartite graphs [15]. Many different properties of direct product of graphs have been studied since (unfortunately it appears under various different names, such as cardinal product, tensor product, Kronecker product, categorical product, conjunction etc.).