Elliptic and Modular Curves Over Finite Fields and Related Computational
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Class Number One Problem for Imaginary Quadratic Fields
MODULAR CURVES AND THE CLASS NUMBER ONE PROBLEM JEREMY BOOHER Gauss found 9 imaginary quadratic fields with class number one, and in the early 19th century conjectured he had found all of them. It turns out he was correct, but it took until the mid 20th century to prove this. Theorem 1. Let K be an imaginary quadratic field whose ring of integers has class number one. Then K is one of p p p p p p p p Q(i); Q( −2); Q( −3); Q( −7); Q( −11); Q( −19); Q( −43); Q( −67); Q( −163): There are several approaches. Heegner [9] gave a proof in 1952 using the theory of modular functions and complex multiplication. It was dismissed since there were gaps in Heegner's paper and the work of Weber [18] on which it was based. In 1967 Stark gave a correct proof [16], and then noticed that Heegner's proof was essentially correct and in fact equiv- alent to his own. Also in 1967, Baker gave a proof using lower bounds for linear forms in logarithms [1]. Later, Serre [14] gave a new approach based on modular curve, reducing the class number + one problem to finding special points on the modular curve Xns(n). For certain values of n, it is feasible to find all of these points. He remarks that when \N = 24 An elliptic curve is obtained. This is the level considered in effect by Heegner." Serre says nothing more, and later writers only repeat this comment. This essay will present Heegner's argument, as modernized in Cox [7], then explain Serre's strategy. -
Arxiv:2003.01675V1 [Math.NT] 3 Mar 2020 of Their Locations
DIVISORS OF MODULAR PARAMETRIZATIONS OF ELLIPTIC CURVES MICHAEL GRIFFIN AND JONATHAN HALES Abstract. The modularity theorem implies that for every elliptic curve E=Q there exist rational maps from the modular curve X0(N) to E, where N is the conductor of E. These maps may be expressed in terms of pairs of modular functions X(z) and Y (z) where X(z) and Y (z) satisfy the Weierstrass equation for E as well as a certain differential equation. Using these two relations, a recursive algorithm can be used to calculate the q - expansions of these parametrizations at any cusp. Using these functions, we determine the divisor of the parametrization and the preimage of rational points on E. We give a sufficient condition for when these preimages correspond to CM points on X0(N). We also examine a connection between the al- gebras generated by these functions for related elliptic curves, and describe sufficient conditions to determine congruences in the q-expansions of these objects. 1. Introduction and statement of results The modularity theorem [2, 12] guarantees that for every elliptic curve E of con- ductor N there exists a weight 2 newform fE of level N with Fourier coefficients in Z. The Eichler integral of fE (see (3)) and the Weierstrass }-function together give a rational map from the modular curve X0(N) to the coordinates of some model of E: This parametrization has singularities wherever the value of the Eichler integral is in the period lattice. Kodgis [6] showed computationally that many of the zeros of the Eichler integral occur at CM points. -
Dessins D'enfants in N = 2 Generalised Quiver Theories Arxiv
Dessins d'Enfants in N = 2 Generalised Quiver Theories Yang-Hui He1 and James Read2 1Department of Mathematics, City University, London, Northampton Square, London EC1V 0HB, UK; School of Physics, NanKai University, Tianjin, 300071, P.R. China; Merton College, University of Oxford, OX1 4JD, UK [email protected] 2Merton College, University of Oxford, OX1 4JD, UK [email protected] Abstract We study Grothendieck's dessins d'enfants in the context of the N = 2 super- symmetric gauge theories in (3 + 1) dimensions with product SU (2) gauge groups arXiv:1503.06418v2 [hep-th] 15 Sep 2015 which have recently been considered by Gaiotto et al. We identify the precise con- text in which dessins arise in these theories: they are the so-called ribbon graphs of such theories at certain isolated points in the moduli space. With this point in mind, we highlight connections to other work on trivalent dessins, gauge theories, and the modular group. 1 Contents 1 Introduction3 2 Dramatis Personæ6 2.1 Skeleton Diagrams . .6 2.2 Moduli Spaces . .8 2.3 BPS Quivers . .9 2.4 Quadratic Differentials and Graphs on Gaiotto Curves . 11 2.5 Dessins d'Enfants and Belyi Maps . 12 2.6 The Modular Group and Congruence Subgroups . 14 3 A Web of Correspondences 15 3.1 Quadratic Differentials and Seiberg-Witten Curves . 16 3.2 Trajectories on Riemann Surfaces and Ideal Triangulations . 16 3.3 Constructing BPS Quivers . 20 3.4 Skeleton Diagrams and BPS Quivers . 21 3.5 Strebel Differentials and Ribbon Graphs . 23 3.5.1 Ribbon Graphs from Strebel Differentials . -
Generalization of a Theorem of Hurwitz
J. Ramanujan Math. Soc. 31, No.3 (2016) 215–226 Generalization of a theorem of Hurwitz Jung-Jo Lee1,∗ ,M.RamMurty2,† and Donghoon Park3,‡ 1Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea e-mail: [email protected] 2Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada e-mail: [email protected] 3Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, South Korea e-mail: [email protected] Communicated by: R. Sujatha Received: February 10, 2015 Abstract. This paper is an exposition of several classical results formulated and unified using more modern terminology. We generalize a classical theorem of Hurwitz and prove the following: let 1 G (z) = k (mz + n)k m,n be the Eisenstein series of weight k attached to the full modular group. Let z be a CM point in the upper half-plane. Then there is a transcendental number z such that ( ) = 2k · ( ). G2k z z an algebraic number Moreover, z can be viewed as a fundamental period of a CM elliptic curve defined over the field of algebraic numbers. More generally, given any modular form f of weight k for the full modular group, and with ( )π k /k algebraic Fourier coefficients, we prove that f z z is algebraic for any CM point z lying in the upper half-plane. We also prove that for any σ Q Q ( ( )π k /k)σ = σ ( )π k /k automorphism of Gal( / ), f z z f z z . 2010 Mathematics Subject Classification: 11J81, 11G15, 11R42. -
Lectures on Modular Forms. Fall 1997/98
Lectures on Modular Forms. Fall 1997/98 Igor V. Dolgachev October 26, 2017 ii Contents 1 Binary Quadratic Forms1 2 Complex Tori 13 3 Theta Functions 25 4 Theta Constants 43 5 Transformations of Theta Functions 53 6 Modular Forms 63 7 The Algebra of Modular Forms 83 8 The Modular Curve 97 9 Absolute Invariant and Cross-Ratio 115 10 The Modular Equation 121 11 Hecke Operators 133 12 Dirichlet Series 147 13 The Shimura-Tanyama-Weil Conjecture 159 iii iv CONTENTS Lecture 1 Binary Quadratic Forms 1.1 The theory of modular form originates from the work of Carl Friedrich Gauss of 1831 in which he gave a geometrical interpretation of some basic no- tions of number theory. Let us start with choosing two non-proportional vectors v = (v1; v2) and w = 2 (w1; w2) in R The set of vectors 2 Λ = Zv + Zw := fm1v + m2w 2 R j m1; m2 2 Zg forms a lattice in R2, i.e., a free subgroup of rank 2 of the additive group of the vector space R2. We picture it as follows: • • • • • • •Gv • ••• •• • w • • • • • • • • Figure 1.1: Lattice in R2 1 2 LECTURE 1. BINARY QUADRATIC FORMS Let v v B(v; w) = 1 2 w1 w2 and v · v v · w G(v; w) = = B(v; w) · tB(v; w): v · w w · w be the Gram matrix of (v; w). The area A(v; w) of the parallelogram formed by the vectors v and w is given by the formula v · v v · w A(v; w)2 = det G(v; w) = (det B(v; w))2 = det : v · w w · w Let x = mv + nw 2 Λ. -
Supersingular Zeros of Divisor Polynomials of Elliptic Curves of Prime Conductor
Kazalicki and Kohen Res Math Sci(2017) 4:10 DOI 10.1186/s40687-017-0099-8 R E S E A R C H Open Access Supersingular zeros of divisor polynomials of elliptic curves of prime conductor Matija Kazalicki1* and Daniel Kohen2,3 *Correspondence: [email protected] Abstract 1Department of Mathematics, p p University of Zagreb, Bijeniˇcka For a prime number , we study the zeros modulo of divisor polynomials of rational cesta 30, 10000 Zagreb, Croatia elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, Full list of author information is 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of available at the end of the article supersingular elliptic curves over Fp. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE .This allows us to prove that if the root number of E is −1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest. -
A Glimpse of the Laureate's Work
A glimpse of the Laureate’s work Alex Bellos Fermat’s Last Theorem – the problem that captured planets moved along their elliptical paths. By the beginning Andrew Wiles’ imagination as a boy, and that he proved of the nineteenth century, however, they were of interest three decades later – states that: for their own properties, and the subject of work by Niels Henrik Abel among others. There are no whole number solutions to the Modular forms are a much more abstract kind of equation xn + yn = zn when n is greater than 2. mathematical object. They are a certain type of mapping on a certain type of graph that exhibit an extremely high The theorem got its name because the French amateur number of symmetries. mathematician Pierre de Fermat wrote these words in Elliptic curves and modular forms had no apparent the margin of a book around 1637, together with the connection with each other. They were different fields, words: “I have a truly marvelous demonstration of this arising from different questions, studied by different people proposition which this margin is too narrow to contain.” who used different terminology and techniques. Yet in the The tantalizing suggestion of a proof was fantastic bait to 1950s two Japanese mathematicians, Yutaka Taniyama the many generations of mathematicians who tried and and Goro Shimura, had an idea that seemed to come out failed to find one. By the time Wiles was a boy Fermat’s of the blue: that on a deep level the fields were equivalent. Last Theorem had become the most famous unsolved The Japanese suggested that every elliptic curve could be problem in mathematics, and proving it was considered, associated with its own modular form, a claim known as by consensus, well beyond the reaches of available the Taniyama-Shimura conjecture, a surprising and radical conceptual tools. -
Arxiv:2009.05223V1 [Math.NT] 11 Sep 2020 Fdegree of Eaeitrse Nfidn Function a finding in Interested Are We Hoe 1.1
COUNTING ELLIPTIC CURVES WITH A RATIONAL N-ISOGENY FOR SMALL N BRANDON BOGGESS AND SOUMYA SANKAR Abstract. We count the number of rational elliptic curves of bounded naive height that have a rational N-isogeny, for N ∈ {2, 3, 4, 5, 6, 8, 9, 12, 16, 18}. For some N, this is done by generalizing a method of Harron and Snowden. For the remaining cases, we use the framework of Ellenberg, Satriano and Zureick-Brown, in which the naive height of an elliptic curve is the height of the corresponding point on a moduli stack. 1. Introduction ′ Let E be an elliptic curve over Q. An isogeny φ : E E between two elliptic curves is said to be cyclic ¯ → of degree N if Ker(φ)(Q) ∼= Z/NZ. Further, it is said to be rational if Ker(φ) is stable under the action of the absolute Galois group, GQ. A natural question one can ask is, how many elliptic curves over Q have a rational cyclic N-isogeny? Henceforth, we will omit the adjective ‘cyclic’, since these are the only types of isogenies we will consider. It is classically known that for N 10 and N = 12, 13, 16, 18, 25, there are infinitely many such elliptic curves. Thus we order them by naive≤ height. An elliptic curve E over Q has a unique minimal Weierstrass equation y2 = x3 + Ax + B where A, B Z and gcd(A3,B2) is not divisible by any 12th power. Define the naive height of E to be ht(E) = max A∈3, B 2 . -
Remarks on Codes from Modular Curves: MAGMA Applications
Remarks on codes from modular curves: MAGMA applications∗ David Joyner and Salahoddin Shokranian 3-30-2004 Contents 1 Introduction 2 2 Shimura curves 3 2.1 Arithmeticsubgroups....................... 3 2.2 Riemannsurfacesasalgebraiccurves . 4 2.3 An adelic view of arithmetic quotients . 5 2.4 Hecke operators and arithmetic on X0(N) ........... 8 2.5 Eichler-Selbergtraceformula. 10 2.6 The curves X0(N)ofgenus1 .................. 12 3 Codes 14 3.1 Basicsonlinearcodes....................... 14 3.2 SomebasicsonAGcodes. 16 arXiv:math/0403548v1 [math.NT] 31 Mar 2004 3.3 SomeestimatesonAGcodes. 17 4 Examples 19 4.1 Weight enumerators of some elliptic codes . 20 4.2 Thegeneratormatrix(apr´esdesGoppa) . 22 5 Concluding comments 24 ∗This paper is a modification of the paper [JS]. Here we use [MAGMA], version 2.10, instead of MAPLE. Some examples have been changed and minor corrections made. MSC 2000: 14H37, 94B27,20C20,11T71,14G50,05E20,14Q05 1 1 INTRODUCTION 2 1 Introduction Suppose that V is a smooth projective variety over a finite field k. An important problem in arithmetical algebraic geometry is the calculation of the number of k-rational points of V , V (k) . The work of Goppa [G] and others have shown its importance in geometric| | coding theory as well. We refer to this problem as the counting problem. In most cases it is very hard to find an explicit formula for the number of points of a variety over a finite field. When the variety is a “Shimura variety” defined by certain group theoret- ical conditions (see 2 below), methods from non-abelian harmonic analysis on groups can be used§ to find an explicit solution for the counting problem. -
Hyperelliptic Curves with Many Automorphisms
Hyperelliptic Curves with Many Automorphisms Nicolas M¨uller Richard Pink Department of Mathematics Department of Mathematics ETH Z¨urich ETH Z¨urich 8092 Z¨urich 8092 Z¨urich Switzerland Switzerland [email protected] [email protected] November 17, 2017 To Frans Oort Abstract We determine all complex hyperelliptic curves with many automorphisms and decide which of their jacobians have complex multiplication. arXiv:1711.06599v1 [math.AG] 17 Nov 2017 MSC classification: 14H45 (14H37, 14K22) 1 1 Introduction Let X be a smooth connected projective algebraic curve of genus g > 2 over the field of complex numbers. Following Rauch [17] and Wolfart [21] we say that X has many automorphisms if it cannot be deformed non-trivially together with its automorphism group. Given his life-long interest in special points on moduli spaces, Frans Oort [15, Question 5.18.(1)] asked whether the point in the moduli space of curves associated to a curve X with many automorphisms is special, i.e., whether the jacobian of X has complex multiplication. Here we say that an abelian variety A has complex multiplication over a field K if ◦ EndK(A) contains a commutative, semisimple Q-subalgebra of dimension 2 dim A. (This property is called “sufficiently many complex multiplications” in Chai, Conrad and Oort [6, Def. 1.3.1.2].) Wolfart [22] observed that the jacobian of a curve with many automorphisms does not generally have complex multiplication and answered Oort’s question for all g 6 4. In the present paper we answer Oort’s question for all hyperelliptic curves with many automorphisms. -
Diophantine Problems in Polynomial Theory
Diophantine Problems in Polynomial Theory by Paul David Lee B.Sc. Mathematics, The University of British Columbia, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The College of Graduate Studies (Mathematics) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) August 2011 c Paul David Lee 2011 Abstract Algebraic curves and surfaces are playing an increasing role in mod- ern mathematics. From the well known applications to cryptography, to computer vision and manufacturing, studying these curves is a prevalent problem that is appearing more often. With the advancement of computers, dramatic progress has been made in all branches of algebraic computation. In particular, computer algebra software has made it much easier to find rational or integral points on algebraic curves. Computers have also made it easier to obtain rational parametrizations of certain curves and surfaces. Each algebraic curve has an associated genus, essentially a classification, that determines its topological structure. Advancements on methods and theory on curves of genus 0, 1 and 2 have been made in recent years. Curves of genus 0 are the only algebraic curves that you can obtain a rational parametrization for. Curves of genus 1 (also known as elliptic curves) have the property that their rational points have a group structure and thus one can call upon the massive field of group theory to help with their study. Curves of higher genus (such as genus 2) do not have the background and theory that genus 0 and 1 do but recent advancements in theory have rapidly expanded advancements on the topic. -
Congruences Between Modular Forms
CONGRUENCES BETWEEN MODULAR FORMS FRANK CALEGARI Contents 1. Basics 1 1.1. Introduction 1 1.2. What is a modular form? 4 1.3. The q-expansion priniciple 14 1.4. Hecke operators 14 1.5. The Frobenius morphism 18 1.6. The Hasse invariant 18 1.7. The Cartier operator on curves 19 1.8. Lifting the Hasse invariant 20 2. p-adic modular forms 20 2.1. p-adic modular forms: The Serre approach 20 2.2. The ordinary projection 24 2.3. Why p-adic modular forms are not good enough 25 3. The canonical subgroup 26 3.1. Canonical subgroups for general p 28 3.2. The curves Xrig[r] 29 3.3. The reason everything works 31 3.4. Overconvergent p-adic modular forms 33 3.5. Compact operators and spectral expansions 33 3.6. Classical Forms 35 3.7. The characteristic power series 36 3.8. The Spectral conjecture 36 3.9. The invariant pairing 38 3.10. A special case of the spectral conjecture 39 3.11. Some heuristics 40 4. Examples 41 4.1. An example: N = 1 and p = 2; the Watson approach 41 4.2. An example: N = 1 and p = 2; the Coleman approach 42 4.3. An example: the coefficients of c(n) modulo powers of p 43 4.4. An example: convergence slower than O(pn) 44 4.5. Forms of half integral weight 45 4.6. An example: congruences for p(n) modulo powers of p 45 4.7. An example: congruences for the partition function modulo powers of 5 47 4.8.