Unmanned Autogyro for Mars Exploration: a Preliminary Study

Total Page:16

File Type:pdf, Size:1020Kb

Unmanned Autogyro for Mars Exploration: a Preliminary Study drones Article Unmanned Autogyro for Mars Exploration: A Preliminary Study Enrico Petritoli * and Fabio Leccese Dipartimento di Scienze, Università degli Studi “Roma Tre”, Via della Vasca Navale n. 84, 00146 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-5733-7347 Abstract: Starting from the Martian environment, we examine all the necessary requirements for a UAV and outline the architecture of a gyroplane optimized for scientific research and support for (future) Mars explorers, highlighting its advantages and criticalities. After a careful trade-off between different vehicles suitable for a typical mission, some parameters are established to optimize the size and performance. In the second part, the project of the Spider gyroplane and the methodology used to balance the longitudinal masses are presented; in the third part, the parameters of the aerodynamic forces acting on the aircraft are highlighted to be able to focus them during the fluid dynamics simulations. Keywords: Mars; UAV; autogyro; gyroplane 1. Introduction “A journey of a thousand [miles] starts with a single step.” (Lao-Tsu) Citation: Petritoli, E.; Leccese, F. Man has always turned his gaze to the sky: while the stars took the shape of the Unmanned Autogyro for Mars constellations and gave rise to myths, the planets soon became the abode of the gods. Their Exploration: A Preliminary Study. movement independent of the Earth’s rotation suggested a completely different nature Drones 2021, 5, 53. https://doi.org/ than the stars: they were soon considered places such as our planet and, therefore, either 10.3390/drones5020053 inhabited or habitable. The first successful landing on another planet was made by the Soviet Venera 7 probe Academic Editors: Diego on Venus on 15 December 1970, while Mars, after a partial landing of Mars 3, was conquered González-Aguilera and only in 1976 by two NASA Viking landers. Only recently, thanks to advances in technology, Pablo Rodriguez-Gonzalvez has it been possible to send the Ingenuity helicopter to wander around the Perseverance Received: 28 April 2021 rover. Now the road to the Martian atmosphere is opened to UAVs: these vehicles allow a Accepted: 17 June 2021 greater panoramic view than a rover while maintaining the possibility of examining, in Published: 18 June 2021 detail and closely, details of Mars that could be of extreme scientific interest. 1.1. State of Exploration of Mars Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in The exploration of planets is currently entrusted to probes and automatic machines published maps and institutional affil- that have the task of leading the way to human colonization. Automatic exploration iations. systems have reached all the inner planets and several outer planets: in the last two decades, the attention has been focused on Mars. The continuous progress of aerospace and electronic technology has put the colonization of the “red planet” among the works of human ingenuity that can be completed in a few years and no longer a science fiction Copyright: © 2021 by the authors. dream. Precursors of this last step are the probes and the rovers: multi-wheel robots that Licensee MDPI, Basel, Switzerland. can make simple decisions and perform a series of tests: due to the harsh Martian soil, their This article is an open access article movements are very cautious and, for some activities, dependent on the day-night cycle. distributed under the terms and In Figure1, we can see the tortuous path taken by the Curiosity Mars rover: a journey of a conditions of the Creative Commons few kilometers. Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Drones 2021, 5, 53. https://doi.org/10.3390/drones5020053 https://www.mdpi.com/journal/drones Drones 2021, 5, 53 2 of 18 Figure 1. This map shows the route driven by NASA’s Curiosity Mars rover, from the location where it landed in August 2012 to its location in July 2017 (Sol 1750), and its planned path to additional geological layers of lower Mount Sharp (image and caption: © NASA). This type of vehicle is, therefore, very suitable for close-up exploration of the land, as it can capture every detail of the terrain but is unable to have a panoramic view of the landscape. On the other side, there are the observation satellites in Martian orbit: the Mars Reconnaissance Orbiter (with the HiRISE—High-Resolution Camera—onboard) is in orbit 450 km from the surface; although it is able to map the ground with great precision (HiRISE can produce images from which topography can be calculated to an accuracy of 0.25 m). It is absolutely evident there is a lack of a vehicle that is able to place itself reasonably far from the ground to be able to see a wider horizon but, at the same time, capable of grasping details and, if necessary, overlooking points that could be of extreme interest. Finally, the speed factor is important to quickly reach the points of greatest interest with respect to the point of arrival on the Planet. 1.2. Mission Concept The operating conditions of a possible automatic flying vehicle (UAV: Unmanned Aerial Vehicle) on Mars are quite complex and, in some cases, they collide with each other. Mainly they are: • The UAV must be rather simple and robust as it will first have to withstand the stresses due to launch, space flight, entry into the Martian atmosphere, and then, it will have to be deployed as more parts will surely have traveled folded. • The vehicle must be extremely reliable as there is no maintenance required: many electronic systems and all critical mechanical systems must be redundant. • The vehicle has a limited life span thus, it will be necessary to optimize his work to have specific and scheduled tasks. DronesDronesDrones 2021 20212021, 5, ,5 x, 5 xFOR FOR PEER PEER REVIEW REVIEW 3 3of of 19 19 , , 53 3 of 18 •• ItsIts work work is is mainly mainly carried carried out out during during the the day, day, as as it it is is equipped equipped with with solar solar cells cells to to • Its work is mainly carried out during the day, as it is equipped with solar cells to rechargerecharge the the batteries. batteries. It It is is also also equipped equipped with with multispectral multispectral sensors sensors optimized optimized for for recharge the batteries. It is also equipped with multispectral sensors optimized for MartiMartianan light. light. Martian light. •• • TheTheThe vehicle vehicle vehicle is is meant ismeant meant to to work to work work with with with a a rover, arover, rover, which which which,, ,of of ofcourse, course, course, will will will arrive arrive arrive at at atthe the the same same same time.time.time. However, However, However, the the the two two two vehicles vehicles are areare not notnot in in symbiosis:symbiosis: symbiosis: thethe the UAV UAV UAV will will will be be ablebe able able to flyto to fly away fly awayawayfrom from from the the roverthe rover rover even even even for afor for considerable a a considerable considerable distance distance distance and and forand severalfor for several several days. days. days. •• • DronDronDroneseses must must must,, ,therefore therefore therefore,, ,be be beable able able to to store to store store the the the large large large mass mass mass of of scientific of scientific scientific data data data it it is itis intended isintended intended toto collect.to collect. collect. Later Later Later,, ,it it will itwill will reach reach reach the the the rover rover rover and and and will will will download download download the the the data: data: data: it it will itwill will then then then be be bethe the the tasktasktask of of the of the the land land land vehicle vehicle vehicle to to act to act act as as asa a relay. arelay. relay. FromFromFrom these these these first first first considerations considerations considerations,, ,it it can can it be canbe deduced deduced be deduced that that the the that vehicle vehicle the vehicle must must be be must a a fair fair be com- com- a fair promisepromisecompromise between between between gross gross weight grossweight weightand and payload. payload. and payload. 1.3.1.3.1.3. Why Why Why an an anAutogyro Autogyro Autogyro??? AnAnAn autogyro autogyroautogyro (from (from(from Greek Greek Greek α α αὐ ὐτόςτ τόςóV andand and γγ γύρος,ύρ ρoος,V, “self-turning”), ““selfself--turningturning””),), also alsoalso known known known as as as a a gyroplanea gyro- gyro- planeplaneor orgyrocopter or gyrocopter gyrocopter, is, , ais is typea a type type of of rotorcraftof rotorcraft rotorcraft that that that uses uses uses an an an unpowered unpow unpoweredered rotor rotor rotor inin in freefree free autorotationautorotation autorotation to toto developdevelop develop lift liftlift [ [1[11]]..] .Forward Forward thrust thrust thrust is is is provided provided provided independently, independently, independently, usually usually usually by by by an an an engine engine engine-driven-driven-driven propeller.propeller.propeller. While While While like like like a a helicopter ahelicopter helicopter rotor rotor rotor in in appearance, in appearance, appearance, the the the autogyro autogyro autogyro’s’s’ srotor rotor rotor must must must have have have air air air flowingflowingflowing across across across the the the rotor rotor rotor disc disc disc to to togenerate generate generate rotation rotation rotation and and and the the the air air airflows flows flows upwards upwards upwards through through through the the the rotorrotorrotor disc disc disc rather rather rather than than than down down [ [2[22]]..] .These TheseThese types types ofof of flyingflying flying machines machines machines were were were successful successful successful in thein in the 1920sthe 1920s1920sand and and 1930s 1930s 1930s when when when the the performancethe performance performance of fixed-wing of of fixed fixed-wing-wing aircraft aircraft aircraft was was farwas fromfar far from from flattering.
Recommended publications
  • Future Battlefield Rotorcraft Capability (FBRC) – Anno 2035 and Beyond
    November 2018 Future Battle eld Rotorcraft Capability Anno 2035 and Beyond Joint Air Power Competence Centre Cover picture © Airbus © This work is copyrighted. No part may be reproduced by any process without prior written permission. Inquiries should be made to: The Editor, Joint Air Power Competence Centre (JAPCC), [email protected] Disclaimer This document is a product of the Joint Air Power Competence Centre (JAPCC). It does not represent the opinions or policies of the North Atlantic Treaty Organization (NATO) and is designed to provide an independent overview, analysis and food for thought regarding possible ways ahead on this subject. Comments and queries on this document should be directed to the Air Operations Support Branch, JAPCC, von-Seydlitz-Kaserne, Römerstraße 140, D-47546 Kalkar. Please visit our website www.japcc.org for the latest information on JAPCC, or e-mail us at [email protected]. Author Cdr Maurizio Modesto (ITA Navy) Release This paper is releasable to the Public. Portions of the document may be quoted without permission, provided a standard source credit is included. Published and distributed by The Joint Air Power Competence Centre von-Seydlitz-Kaserne Römerstraße 140 47546 Kalkar Germany Telephone: +49 (0) 2824 90 2201 Facsimile: +49 (0) 2824 90 2208 E-Mail: [email protected] Website: www.japcc.org Denotes images digitally manipulated JAPCC |Future BattlefieldRotorcraft Capability and – AnnoBeyond 2035 | November 2018 Executive Director, JAPCC Director, Executive DEUAF General, Lieutenant Klaus Habersetzer port Branchviae-mail [email protected]. AirOperationsSup contact to theJAPCC’s free feel thisdocument.Please to withregard have you may comments welcome any We thisstudy.
    [Show full text]
  • NASA Mars Helicopter Team Striving for a “Kitty Hawk” Moment
    NASA Mars Helicopter Team Striving for a “Kitty Hawk” Moment NASA’s next Mars exploration ground vehicle, Mars 2020 Rover, will carry along what could become the first aircraft to fly on another planet. By Richard Whittle he world altitude record for a helicopter was set on June 12, 1972, when Aérospatiale chief test pilot Jean Boulet coaxed T his company’s first SA 315 Lama to a hair-raising 12,442 m (40,820 ft) above sea level at Aérodrome d’Istres, northwest of Marseille, France. Roughly a year from now, NASA hopes to fly an electric helicopter at altitudes equivalent to two and a half times Boulet’s enduring record. But NASA’s small, unmanned machine actually will fly only about five meters above the surface where it is to take off and land — the planet Mars. Members of NASA’s Mars Helicopter team prepare the flight model (the actual vehicle going to Mars) for a test in the JPL The NASA Mars Helicopter is to make a seven-month trip to its Space Simulator on Jan. 18, 2019. (NASA photo) destination folded up and attached to the underbelly of the Mars 2020 Rover, “Perseverance,” a 10-foot-long (3 m), 9-foot-wide (2.7 The atmosphere of Mars — 95% carbon dioxide — is about one m), 7-foot-tall (2.13 m), 2,260-lb (1,025-kg) ground exploration percent as dense as the atmosphere of Earth. That makes flying at vehicle. The Rover is scheduled for launch from Cape Canaveral five meters on Mars “equal to about 100,000 feet [30,480 m] above this July on a United Launch Alliance Atlas V rocket and targeted sea level here on Earth,” noted Balaram.
    [Show full text]
  • Design, Modelling and Control of a Space UAV for Mars Exploration
    Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Space Engineering, master's level (120 credits) 2021 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Department of Computer Science, Electrical and Space Engineering Faculty of Space Science and Technology Luleå University of Technology Submitted in partial satisfaction of the requirements for the Degree of Masters in Space Science and Technology Supervisor Dr George Nikolakopoulos January 2021 Acknowledgements I would like to take this opportunity to thank my thesis supervisor Dr. George Nikolakopoulos who has laid a concrete foundation for me to learn and apply the concepts of robotics and automation for this project. I would be forever grateful to George Nikolakopoulos for believing in me and for supporting me in making this master thesis a success through tough times. I am thankful to him for putting me in loop with different personnel from the robotics group of LTU to get guidance on various topics. I would like to thank Christoforos Kanellakis for guiding me in the control part of this thesis. I would also like to thank Björn Lindquist for providing me with additional research material and for explaining low level and high level controllers for UAV. I am grateful to have been a part of the robotics group at Luleå University of Technology and I thank the members of the robotics group for their time, support and considerations for my master thesis. I would also like to thank Professor Lars-Göran Westerberg from LTU for his guidance in develop- ment of fluid simulations for this master thesis project.
    [Show full text]
  • Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks
    Purdue University Purdue e-Pubs Department of Electrical and Computer Department of Electrical and Computer Engineering Technical Reports Engineering August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Purdue University School of Electrical Engineering Shaheen Ahmad Purdue University School of Electrical Engineering Follow this and additional works at: https://docs.lib.purdue.edu/ecetr Pallett, Tobias J. and Ahmad, Shaheen, "Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks" (1991). Department of Electrical and Computer Engineering Technical Reports. Paper 317. https://docs.lib.purdue.edu/ecetr/317 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Shaheen Ahmad TR-EE 91-35 August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Lineal-ization and Neural Networks Tobias J. Pallett and Shaheen Ahmad Real-Time Robot Control Laboratory, School of Electrical Engineering, Purdue University West Lafayette, IN 47907 USA ABSTRACT In this report we determine the dynamic model of a miniature helicopter in hovering flight. Identification procedures for the nonlinear terms are also described. The model is then used to design several linearized control laws and a neural network controller. The controllers were then flight tested on a miniature helicopter flight control test bed the details of which are also presented in this report. Experimental performance of the linearized and neural network controllers are discussed.
    [Show full text]
  • Montgomerie-Bensen B8MR, G-BXDC
    Montgomerie-Bensen B8MR, G-BXDC AAIB Bulletin No: 1/2001 Ref: EW/C2000/04/03 - Category: 2.3 Aircraft Type and Registration: Montgomerie-Bensen B8MR, G-BXDC No & Type of Engines: 1 Rotax 582 piston engine Year of Manufacture: 1999 Date & Time (UTC): 16 April 2000 at 1411 hrs Location: Carlisle Airport, Cumbria Type of Flight: Private Persons on Board: Crew - 1 - Passengers - None Injuries: Crew - 1 - Passengers - N/A Nature of Damage: Aircraft destroyed Commander's Licence: Private Pilot's Licence (gyroplanes) Commander's Age: 51 years Commander's Flying Experience: 67 hours (of which 30 were on type) Last 90 days - 44 hours Last 28 days - 43 hours Information Source: AAIB Field Investigation Background information The pilot first showed an active interest in autogyros when in March 1999 he visited Carlisle Airport for a trial lesson. He had not flown before and enjoyed the experience so much that he flew again the same day and agreed to embark on a formal training programme with an instructor who was authorised by the CAA to conduct dual and single seat autogyro training as well as flight examinations. The instructor reported that his student approached all matters to do with his flying 'with a great deal of enthusiasm and a fair degree of ability'. From the start of his course until January 2000 the pilot undertook dual instruction, mainly at weekends, on a two seater VPM M16 autogyro. By March 2000 he was sufficiently experienced to transfer to the 'open frame' single-seat Benson autogyro. He flew this for approximately 20 hours, carrying out mainly short 'hops' along the length of the runway and practising balancing on the main wheels before progressing to flying the aircraft in the visual circuit and carrying out general handling exercises.
    [Show full text]
  • National Rappel Operations Guide
    National Rappel Operations Guide 2019 NATIONAL RAPPEL OPERATIONS GUIDE USDA FOREST SERVICE National Rappel Operations Guide i Page Intentionally Left Blank National Rappel Operations Guide ii Table of Contents Table of Contents ..........................................................................................................................ii USDA Forest Service - National Rappel Operations Guide Approval .............................................. iv USDA Forest Service - National Rappel Operations Guide Overview ............................................... vi USDA Forest Service Helicopter Rappel Mission Statement ........................................................ viii NROG Revision Summary ............................................................................................................... x Introduction ...................................................................................................... 1—1 Administration .................................................................................................. 2—1 Rappel Position Standards ................................................................................. 2—6 Rappel and Cargo Letdown Equipment .............................................................. 4—1 Rappel and Cargo Letdown Operations .............................................................. 5—1 Rappel and Cargo Operations Emergency Procedures ........................................ 6—1 Documentation ................................................................................................
    [Show full text]
  • Book Reviews the SYCAMORE SEEDS
    Afterburner Book Reviews THE SYCAMORE SEEDS Early British Helicopter only to be smashed the following night in a gale. The book then covers the Cierva story in some detail, the Development chapter including, out of context, two paragraphs on By C E MacKay the Brennan propeller-driven rotor driven helicopter [helicogyro] fl own in 1924 at Farnborough but Distributed by A MacKay, 87 Knightscliffe Avenue, aborted by the Air Ministry the next year, stating that Netherton, Glasgow G13 2RX, UK (E charlese87@ there was no future for the helicopter and backing btinternet.com). 2014. 218pp. Illustrated. £12.95. Cierva’s autogyro programme contracting Avro to build ISBN 978-0-9573443-3-4. the fi rst British machines. Good coverage is given to the range of Cierva autogyros culminating in the Avro Given the paucity of coverage of British helicopter C30 Rota and its service use by the RAF. development I approached this slim (218 A5 pp) The heart of the book begins with a quotation: publication with interest. While autogyros have been “Morris, I want you to make me blades, helicopter well documented, Charnov and Ord-Hume giving blades,” with which William Weir, the fi rst Air Minister, exhaustive and well documented treatments of the founder of the RAF and supporter of Cierva, brought helicopter’s predecessor, the transition to the directly furniture maker H Morris & Co into the history of driven rotor of the helicopter is somewhat lacking. rotorcraft pulling in designers Bennett, Watson, Unfortunately MacKay’s book only contributes a Nisbet and Pullin with test pilots Marsh and Brie fi nal and short chapter to the ‘British Helicopter’ to form his team.
    [Show full text]
  • Adventures in Low Disk Loading VTOL Design
    NASA/TP—2018–219981 Adventures in Low Disk Loading VTOL Design Mike Scully Ames Research Center Moffett Field, California Click here: Press F1 key (Windows) or Help key (Mac) for help September 2018 This page is required and contains approved text that cannot be changed. NASA STI Program ... in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or co- helping NASA maintain this important role. sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for NASA programs, projects, and missions, archiving, and disseminates NASA’s STI. The often concerned with subjects having NASA STI program provides access to the NTRS substantial public interest. Registered and its public interface, the NASA Technical Reports Server, thus providing one of • TECHNICAL TRANSLATION. the largest collections of aeronautical and space English-language translations of foreign science STI in the world. Results are published in scientific and technical material pertinent to both non-NASA channels and by NASA in the NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing • TECHNICAL PUBLICATION. Reports of specialized research announcements and feeds, completed research or a major significant providing information desk and personal search phase of research that present the results of support, and enabling data exchange services.
    [Show full text]
  • Helicopter Physics by Harm Frederik Althuisius López
    Helicopter Physics By Harm Frederik Althuisius López Lift Happens Lift Formula Torque % & Lift is a mechanical aerodynamic force produced by the Lift is calculated using the following formula: 2 = *4 '56 Torque is a measure of how much a force acting on an motion of an aircraft through the air, it generally opposes & object causes that object to rotate. As the blades of a Where * is the air density, 4 is the velocity, '5 is the lift coefficient and 6 is gravity as a means to fly. Lift is generated mainly by the the surface area of the wing. Even though most of these components are helicopter rotate against the air, the air pushes back on the rd wings due to their shape. An Airfoil is a cross-section of a relatively easy to measure, the lift coefficient is highly dependable on the blades following Newtons 3 Law of Motion: “To every wing, it is a streamlined shape that is capable of generating shape of the airfoil. Therefore it is usually calculated through the angle of action there is an equal and opposite reaction”. This significantly more lift than drag. Drag is the air resistance attack of a specific airfoil as portrayed in charts much like the following: reaction force is translated into the fuselage of the acting as a force opposing the motion of the aircraft. helicopter via torque, and can be measured for individual % & -/ 0 blades as follows: ! = #$ = '()*+ ∫ # 1# , where $ is the & -. Drag Force. As a result the fuselage tends to rotate in the Example of a Lift opposite direction of its main rotor spin.
    [Show full text]
  • Micro Coaxial Helicopter Controller Design
    Micro Coaxial Helicopter Controller Design A Thesis Submitted to the Faculty of Drexel University by Zelimir Husnic in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2014 c Copyright 2014 Zelimir Husnic. All Rights Reserved. ii Dedications To my parents and family. iii Acknowledgments There are many people who need to be acknowledged for their involvement in this research and their support for many years. I would like to dedicate my thankfulness to Dr. Bor-Chin Chang, without whom this work would not have started. As an excellent academic advisor, he has always been a helpful and inspiring mentor. Dr. B. C. Chang provided me with guidance and direction. Special thanks goes to Dr. Mishah Salman and Dr. Humayun Kabir for their mentorship and help. I would like to convey thanks to my entire thesis committee: Dr. Chang, Dr. Kwatny, Dr. Yousuff, Dr. Zhou and Dr. Kabir. Above all, I express my sincere thanks to my family for their unconditional love and support. iv v Table of Contents List of Tables ........................................... viii List of Figures .......................................... ix Abstract .............................................. xiii 1. Introduction .......................................... 1 1.1 Vehicles to be Discussed................................... 1 1.2 Coaxial Benefits ....................................... 2 1.3 Motivation .......................................... 3 2. Helicopter Flight Dynamics ................................ 4 2.1 Introduction ........................................
    [Show full text]
  • Helicopter Flying Handbook (FAA-H-8083-21B) Chapter 8
    Chapter 8 Ground Procedures and Flight Preparations Introduction Once a pilot takes off, it is up to him or her to make sound, safe decisions throughout the flight. It is equally important for the pilot to use the same diligence when conducting a preflight inspection, making maintenance decisions, refueling, and conducting ground operations. This chapter discusses the responsibility of the pilot regarding ground safety in and around the helicopter and when preparing to fly. 8-1 Preflight There are two primary methods of deferring maintenance on rotorcraft operating under part 91. They are the deferral Before any flight, ensure the helicopter is airworthy by provision of 14 CFR part 91, section 91.213(d) and an FAA- inspecting it according to the rotorcraft flight manual (RFM), approved MEL. pilot’s operating handbook (POH), or other information supplied either by the operator or the manufacturer. The deferral provision of 14 CFR section 91.213(d) is Remember that it is the responsibility of the pilot in command widely used by most pilot/operators. Its popularity is due (PIC) to ensure the aircraft is in an airworthy condition. to simplicity and minimal paperwork. When inoperative equipment is found during preflight or prior to departure, the In preparation for flight, the use of a checklist is important decision should be to cancel the flight, obtain maintenance so that no item is overlooked. [Figure 8-1] Follow the prior to flight, determine if the flight can be made under the manufacturer’s suggested outline for both the inside and limitations imposed by the defective equipment, or to defer outside inspection.
    [Show full text]
  • Paper Helicopters Preparation
    Paper Helicopters Preparation CLASS LEVEL First – sixth class OBJECTIVES Content Strand and Strand Unit Energy & forces, Forces Through investigation the child should be enabled to come to appreciate that gravity is a force, SESE: Science Curriculum page 87. In this activity children explore how some things fall and how varying the size of the rotor blades, the shape of the rotor blades and the weight of a paper helicopter affect the way a helicopter spins. Skill development Through completing the strand units of the science curriculum the child should be enabled to design, plan and carry out simple experiments, having regard to one or two variables and the need to sequence tasks and tests, SESE: Science Curriculum page 79. This activity helps them understand fair testing by changing only one variable (i.e. shape only or length only) at a time. Investigating; experimenting; observing; analysing; measuring/timing; recording and communicating. CURRICULUM LINKS Mathematics Data / representing and interpreting data SESE: History Continuity and change over time/ technological and scientific developments over long periods BACKGROUND A previous activity on how things fall (i.e. the weight of the object is not a factor – Galileo and the Leaning Tower of Pisa) would help understanding of this activity, but not essential. MATERIALS/EQUIPMENT Paper, Ruler, Paper Clips, Scissors Templates of different sizes PREPARATION Test out a few thicknesses of paper/cardboard first to see that some of them spin. BACKGROUND The shape of the helicopter rotor blades make it spin INFORMATION when dropped from a height. Gravity pulls the helicopter down. The air resists the movement and pushes up each rotor separately, causing the helicopter to spin.
    [Show full text]