Biological Evaluation, NPDES General Permit #WAG130000 (Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Biological Evaluation, NPDES General Permit #WAG130000 (Pdf) NPDES General Permit WAG130000 Federal Aquaculture Facilities and Aquaculture Facilities Located in Indian Country within the Boundaries of Washington State Biological Evaluation For Endangered Species Act Section 7 Consultation with the National Marine Fisheries Service and the U.S. Fish and Wildlife Service December 23, 2015 Prepared by: Burt Shephard, EPA Region 10 Risk Assessor Andrea LaTier, EPA Region 10 Ecotoxicologist Catherine Gockel, EPA Region 10 NPDES Permit Writer 1 Biological Evaluation - EPA Washington Hatchery NPDES General Permit Table of Contents 1 Introduction ........................................................................................................................................... 4 2 The Action: Reissue NPDES General Permit WAG130000 ..................................................................... 5 2.1 This General Permit: Scope and Eligibility .................................................................................... 5 2.2 Effluent Limitations and Monitoring Requirements ..................................................................... 7 2.3 Quality Assurance and Best Management Practices Plans ......................................................... 15 3 The Action Area: Washington State ..................................................................................................... 19 4 Threatened and Endangered Species .................................................................................................. 21 4.1 Species Descriptions ................................................................................................................... 22 5 Risk Assessment ................................................................................................................................... 38 5.1 Ecological Risk Assessment Methodology .................................................................................. 38 5.2 Chlorine ....................................................................................................................................... 69 5.3 Chloramine-T ............................................................................................................................... 91 5.4 Formalin .................................................................................................................................... 107 5.5 Hydrogen peroxide ................................................................................................................... 133 5.6 Potassium Permanganate ......................................................................................................... 145 5.7 Povidone-iodine (PVP-I) ............................................................................................................ 161 6 Conclusion: Effects Determination .................................................................................................... 176 7 Bibliography for Washington Hatcheries Biological Evaluation ........................................................ 177 8 Essential Fish Habitat ......................................................................................................................... 189 9 Appendices (via electronic transmission to NMFS and USFWS)........................................................ 191 2 Biological Evaluation - EPA Washington Hatchery NPDES General Permit List of Appendices Note: These are large files and do not fit within a printed page. The EPA has submitted electronic versions of these files directly to NOAA Fisheries and to the USFWS to provide the necessary data for this Endangered Species Act (Section 7) consultation. Appendix A: Chlorine ECOTOX Results Appendix B: Chloramide and Hypochlorous Acid Na Salt ECOTOX Results Appendix C: Chlorine ICE Toxicity Predictions Appendix D: Chloramine-T ECOTOX Results and ICE Toxicity Predictions Appendix E: Formalin to Formaldehyde Calculations Appendix F: Formalin EIC (no pond) USGS Appendix G: Formalin ECOTOX Results Appendix H: Formalin ICE Toxicity Predictions Appendix I: Hydrogen Peroxide ECOTOX Results Appendix J: Hydrogen Peroxide ICE Toxicity Predictions Appendix K: Potassium Permanganate ECOTOX Results Appendix L: Potassium Permanganate ICE Toxicity Predictions Appendix M: Povidone Iodine ECOTOX Results Appendix N: Elemental Iodine ICE Toxicity Predictions Appendix O: Povidone Iodine ICE Toxicity Predictions 3 Biological Evaluation - EPA Washington Hatchery NPDES General Permit 1 INTRODUCTION The United States Environmental Protection Agency (EPA) EPA, Region 10 is proposing to reissue the National Pollutant Discharge Elimination System (NPDES) General Permit (GP) for federal aquaculture facilities and aquaculture facilities located in Indian Country within the boundaries of the State of Washington (WAG130000). The permit will authorize discharge from approximately 25 facilities throughout the state (see Figure 1 for a map for facility locations; see Table 8 for a list of covered facilities and their locations). The current permit became effective August 1, 2009 and expired July 31, 2014. Since the permit was not reissued by the expiration date, the conditions of the General Permit will continue in force and effect until a new general permit is issued. The Endangered Species Act (ESA) requires federal agencies to consult with the U. S. Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS) if the federal agency’s actions could beneficially or adversely affect any threatened and endangered species or their designated critical habitat. In this case, the federal agency is EPA, and the discretionary action is the issuance of a NPDES general permit (GP) for federal aquaculture facilities and aquaculture facilities located in Indian Country within the boundaries of the State of Washington. 4 Biological Evaluation - EPA Washington Hatchery NPDES General Permit 2 THE ACTION: REISSUE NPDES GENERAL PERMIT WAG130000 EPA proposes to reissue the NPDES general permit to establish conditions for the discharge of pollutants in wastewaters from federal fish hatcheries and from aquaculture facilities in Indian Country, as defined in 18 USC §1151, to waters of the United States within the boundaries of the State of Washington. Receiving waters for permittees under this general permit are waters of the U.S. located in Indian Country and waters of the State of Washington (which are also waters of the U.S.) where federal facilities discharge directly to state waters. Surface waters include lakes, rivers, ponds, streams, inland waters, marine waters, and all other surface waters and water courses (for the purposes of this permit, surface waters do not include hatchery ponds, raceways, pollution abatement ponds, settling basins, or wetlands constructed solely for wastewater treatment. Concentrated Aquatic Animal Production Facilities At 40 CFR 122.24, EPA defines a concentrated aquatic animal production (CAAP) facility as a point source subject to the NPDES permit program. A hatchery, fish farm, or other facility is a CAAP facility if it grows, contains, or holds, aquatic animals in either of two categories: cold water species or warm water species. The cold water species category includes facilities where animals are produced in ponds, raceways, or other similar structures that discharge at least 30 days per year but does not include facilities that produce less than approximately 9,090 harvest weight kg (approximately 20,000 lbs) of aquatic animals per year. It also does not include facilities that feed less than 2,272 kg (approximately 5,000 lbs) of food during the calendar month of maximum feeding. Cold water aquatic animals include, but are not limited to, the Salmonidae family of fish, such as trout and salmon; and warm water aquatic animals include, but are not limited to, catfish, sunfish, and minnows. Hatcheries use several production systems, including ponds, flow through systems, recirculating systems, and open water systems. 2.1 THIS GENERAL PERMIT: SCOPE AND ELIGIBILITY Aquaculture facilities will be eligible for coverage under the General Permit regardless of the type of cold water species being reared, type of production system, or whether discharges are to fresh or marine waters provided that the facility operates for at least 30 days per year, holds at least 20,000 pounds of fish at their maximum, and feeds at least 5,000 pounds of feed in the maximum month of feeding. Acclimation ponds need permit coverage if they meet or exceed these thresholds. Facilities that the EPA has designated as significant contributors of pollution will also be authorized to discharge under this General Permit. This General Permit applies only to cold water facilities. Facilities and Discharges Excluded from Coverage A facility with any of the following types of discharges cannot be covered under this permit and must apply for an individual NPDES permit: 5 Biological Evaluation - EPA Washington Hatchery NPDES General Permit Discharges from aquaculture facilities that hold less than 20,000 pounds of fish at their maximum or whose month of maximum feeding is less than 5,000 pounds, unless they are designated significant contributors of pollution by the EPA. Discharges that do not consist solely of effluent from aquaculture facilities. If a discharge from an aquaculture facility mixes with other wastewater (e.g., domestic wastewater) prior to being discharged, the combined discharge is not covered; Discharges from facilities where an NPDES permit has been terminated or denied
Recommended publications
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Huchen (Hucho Hucho) ERSS
    Huchen (Hucho hucho) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2011 Revised, January 2019, February 2019 Web Version, 4/30/2019 Photo: Liquid Art. Licensed under CC-SA 4.0 International. Available: https://commons.wikimedia.org/wiki/File:Danube_Salmon_-_Huchen_(Hucho_hucho).jpg. (January 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019): “Europe: Danube drainage [Austria, Bosnia and Herzegovina, Bulgaria, Croatia, Germany, Hungary, Italy, Romania, Serbia, Slovakia, Slovenia, Switzerland, and Ukraine].” “Population has declined [in Slovenia] due to pollution and river regulation. Conservation measures include artificial propagation and stocking [Povz 1996]. Status of threat: Regionally extinct [Bianco and Ketmaier 2016].” 1 “Considered locally extinct (extirpated) in 1990 [in Switzerland] [Vilcinskas 1993].” “Extinct in the wild in 2000 [in Czech Republic] [Lusk and Hanel 2000]. This species is a native species in the basin of the Black Sea (the rivers Morava and Dyje). At present, its local and time- limited occurrence depends on the stocking material from artificial culture. Conditions that will facilitate the formation of a permanent population under natural conditions are not available [Lusk et al. 2004]. […] Status of threat: extinct in the wild [Lusk et al. 2011].” From Freyhof and Kottelat (2008): “The species is severely fragmented within the Danube drainage, where most populations exclusively depend on stocking and natural reproduction is very limited due to habitat alterations and flow regime changes.” From Grabowska et al. (2010): “The exceptional case is huchen (or Danubian salmon), Hucho hucho. The huchen’s native range in Poland was restricted to two small rivers (Czarna Orawa and Czadeczka) of the Danube River basin, […]” Status in the United States Froese and Pauly (2019) report an introduction to the United States between 1870 and 1874 that did not result in an established population.
    [Show full text]
  • Exactly As Received Mic 61-929 MERRYMAN, Earl L Ew Is. THE
    This dissertation has been microfilmed exactly as received Mic 61-929 MERRYMAN, Earl Lewis. THE ISOTOPIC EXCHANGE REACTION BETWEEN Mn AND MnO” . 4 The Ohio State University, Ph.D, 1960 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan THE ISOTOPIC EXCHANGE REACTION BETTAIEEN Mn** AND ItaO ^ DISSERTATION Presented in P&rtial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of The Ohio S tate U niversity By Earl Lewis Ferryman, B.Sc* The Ohio State University I960 Approved by Department oy Chenletry 1C mnriEDGiBiT The author wlshea to e:qpr«as his approoiation to Profoaaor Alfred B. Garrett for hie superrieion and enocur- agement during the oouree of this research* and for his sincere interest in mj eelfare both as an undergraduate and graduate student at Ohio State University. I also wish to thank the Ohio State University Cheidstry Depsurtnent for the Assistant ships granted me during the 1 9 5 6* 7 "^ aeademlo years. The author also gratefully acknowledges the Fellowships granted me by the American Cyansuald Company during the 1959*60 academic year and by the National Science Foundation during the Summer Q u a rte r of I960* i i TABI£ OP CONTEHTS PAOE INTRODUCTION ............................................................................................................... 1 Àpplloationa of Radloaotirlty in Chomiatry 1 The Problem and Its H latory ....................................................... .. 1 The Problem Reeulting from Early Work 5 Statement of the Problem ..........................
    [Show full text]
  • Manufacturing of Potassium Permanganate Kmno4  This Is the Most Important and Well Known Salt of Permanganic Acid
    Manufacturing of Potassium Permanganate KMnO4 This is the most important and well known salt of permanganic acid. It is prepared from the pyrolusite ore. It is prepared by fusing pyrolusite ore either with KOH or K2CO3 in presence of atmospheric oxygen or any other oxidising agent such as KNO3. The mass turns green with the formation of potassium manganate, K2MnO4. 2MnO2 + 4KOH + O2 →2K2MnO4 + 2H2O 2MnO2 + 2K2CO3 + O2 →2K2MnO4 + 2CO2 The fused mass is extracted with water. The solution is now treated with a current of chlorine or ozone or carbon dioxide to convert manganate into permanganate. 2K2MnO4 + Cl2 → 2KMnO4 + 2KCl 2K2MnO4 + H2O + O3 → 2KMnO4 + 2KOH + O2 3K2MnO4 + 2CO2 → 2KMnO4 + MnO2 + 2K2CO3 Now-a-days, the conversion is done electrolytically. It is electrolysed between iron cathode and nickel anode. Dilute alkali solution is taken in the cathodic compartment and potassium manganate solution is taken in the anodic compartment. Both the compartments are separated by a diaphragm. On passing current, the oxygen evolved at anode oxidises manganate into permanganate. At anode: 2K2MnO4 + H2O + O → 2KMnO4 + 2KOH 2- - - MnO4 → MnO4 + e + - At cathode: 2H + 2e → H2 Properties: It is purple coloured crystalline compound. It is fairly soluble in water. When heated alone or with an alkali, it decomposes evolving oxygen. 2KMnO4 → K2MnO4 + MnO2 + O2 4KMnO4 + 4KOH → 4K2MnO4 + 2H2O + O2 On treatment with conc. H2SO4, it forms manganese heptoxide via permanganyl sulphate which decomposes explosively on heating. 2KMnO4+3H2SO4 → 2KHSO4 + (MnO3)2SO4 + 2H2O (MnO3)2SO4 + H2O → Mn2O7 + H2SO4 Mn2O7 → 2MnO2 + 3/2O2 Potassium permanganate is a powerful oxidising agent. A mixture of sulphur, charcoal and KMnO4 forms an explosive powder.
    [Show full text]
  • Revision Guide
    Revision Guide Chemistry - Unit 3 Physical and Inorganic Chemistry GCE A Level WJEC These notes have been authored by experienced teachers and are provided as support to students revising for their GCE A level exams. Though the resources are comprehensive, they may not cover every aspect of the specification and do not represent the depth of knowledge required for each unit of work. 1 Content Page Section 2 3.1 – Redox and standard electrode potential 13 3.2 - Redox reactions 20 3.3 - Chemistry of the p-block 30 3.4 - Chemistry of the d-block transition metals 35 3.5 - Chemical kinetics 44 3.6 - Enthalpy changes for solids and solutions 50 3.7 - Entropy and feasibility of reactions 53 3.8 - Equilibrium constants 57 3.9 - Acid-base equilibria 66 Acknowledgements 2 3.1 – Redox and standard electrode potential Redox reactions In AS, we saw that in redox reactions, something is oxidised and something else is reduced (remember OILRIG – this deals with loss and gain of electrons). Another way that we can determine if a redox reaction has happened is by using oxidation states or numbers (see AS revision guide pages 2 and 44). You need to know that: - • oxidation is loss of electrons • reduction is gain of electrons • an oxidising agent is a species that accepts electrons, thereby helping oxidation. It becomes reduced itself in the process. • a reducing agent is a species that donates electrons, thereby helping reduction. It becomes oxidised itself in the process. You also should remember these rules for assigning oxidation numbers in a compound: - 1 All elements have an oxidation number of zero (including diatomic molecules like H2) 2 Hydrogen is 1 unless it’s with a Group 1 metal, then it’s -1 3 Oxygen is -2 (unless it’s a peroxide when it’s -1, or reacted with fluorine, when it’s +2).
    [Show full text]
  • Justification for the Selection of a Corap Substance
    JUSTIFICATION DOCUMENT FOR THE SELECTION OF A CORAP SUBSTANCE _________________________________________________________________ Justification Document for the Selection of a CoRAP Substance Substance Name (public name): Potassium permanganate EC Number: 231-760-3 CAS Number: 7722-64-7 Authority: France Date: 21/03/2017 Cover Note This document has been prepared by the evaluating Member State given in the CoRAP update. JUSTIFICATION DOCUMENT FOR THE SELECTION OF A CORAP SUBSTANCE _______________________________________________________________ Table of Contents 1 IDENTITY OF THE SUBSTANCE 3 1.1 Other identifiers of the substance 3 1.2 Similar substances/grouping possibilities 4 2 OVERVIEW OF OTHER PROCESSES / EU LEGISLATION 4 3 HAZARD INFORMATION (INCLUDING CLASSIFICATION) 5 3.1 Classification 5 3.1.1 Harmonised Classification in Annex VI of the CLP 5 3.1.2 Self classification 5 3.1.3 Proposal for Harmonised Classification in Annex VI of the CLP 5 4 INFORMATION ON (AGGREGATED) TONNAGE AND USES 6 4.1 Tonnage and registration status 6 4.2 Overview of uses 6 5. JUSTIFICATION FOR THE SELECTION OF THE CANDIDATE CORAP SUBSTANCE 8 5.1. Legal basis for the proposal 8 5.2. Selection criteria met (why the substance qualifies for being in CoRAP) 8 5.3. Initial grounds for concern to be clarified under Substance Evaluation 8 5.4. Preliminary indication of information that may need to be requested to clarify the concern 9 5.5. Potential follow-up and link to risk management 10 EC no 231-760-3 MSCA - France Page 2 of 10 JUSTIFICATION DOCUMENT FOR THE
    [Show full text]
  • Phylogeny of the Plesiopidae (Pisces: Perciformes) with Evidence for the Inclusion of the Acanthoclinidae
    BULLETIN OF MARINE SCIENCE, 52(1): 284-326,1993 PHYLOGENY OF THE PLESIOPIDAE (PISCES: PERCIFORMES) WITH EVIDENCE FOR THE INCLUSION OF THE ACANTHOCLINIDAE Randall D. Mooi ABSTRACT Cladistic methods are used to investigate phylogenetic relationships of the Indo-Pacific marine fish family Plesiopidae. Using multiple outgroups, osteological and myological char- acters indicate that plesiopids are monophyletic only with the inclusion of the Acanthoclinidae as the sister group to the genus Plesiops. A new classification lowers the Acanthoclinidae to subfamilial rank, and other monophyletic units are recognized at this same rank to produce the following phylogenctically sequenced classification (included genera in parentheses): Tra- chinopinae (Trachinops), Assessorinae (Assessor), Paraplesiopinae (Paraplesiops, Callople- siops, Steeneichthys), Fraudellinae (Fraudella), Plesiopinae (Plesiops), Acanthoclininae (Acan- thaclinus. Belaneplerygian. Behaps, Acanthoplesiops). This phylogeny suggests that egg mass guarding is plesiomorphic for the family, and that oral incubation in Assessor is autapo- morphic. A diagnosis for the newly defined family is provided. The family Plesiopidae, commonly called longfins, prettyfins, devilfishes, or roundheads, comprises a morphologically diverse group of percoid fishes found in the Indo-Pacific region. There are about 30 species in the family as currently recognized. Adult size ranges from 30 to 300 mm in standard length, and body form varies from narrow and elongate to bulky and heavy bodied. The species also vary considerably in behavior, from diurnal schooling to nocturnal solitary habits. Most are found in relatively shallow water (to 30 m) on coral or rocky reefs. The group is unusual among marine percoids in having demersal eggs with adhesive filaments, characteristic of only four other percoid families: Acantho- clinidae, Grammatidae, Opistognathidae, Pseudochromidae.
    [Show full text]
  • Safe Handling and Disposal of Chemicals Used in the Illicit Manufacture of Drugs
    Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Safe handling and disposal of chemicals used in the illicit manufacture of drugs United Nations publication USD 26 Printed in Austria ISBN 978-92-1-148266-9 Sales No. E.11.XI.14 ST/NAR/36/Rev.1 V.11-83777—September*1183777* 2011—300 Guidelines for the Safe handling and disposal of chemicals used in the illlicit manufacture of drugs UNITED NATIONS New York, 2011 Symbols of United Nations documents are composed of letters combined with figures. Mention of such symbols indicates a reference to a United Nations document. ST/NAR/36/Rev.1 UNITED NATIONS PUBLICATION Sales No. E.11.XI.14 ISBN 978-92-1-148266-9 eISBN 978-92-1-055160-1 © United Nations, September 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Requests for permission to reproduce this work are welcomed and should be sent to the Secretary of the Publications Board, United Nations Headquarters, New York, N.Y. 10017, U.S.A. or also see the website of the Board: https://unp.un.org/Rights.aspx. Governments and their institutions may reproduce this work without prior authoriza- tion but are requested to mention the source and inform the United Nations of such reproduction.
    [Show full text]
  • FAMILY Plesiopidae Günther, 1861 - Roundheads, Longfins
    FAMILY Plesiopidae Günther, 1861 - roundheads, longfins SUBFAMILY Acanthoclininae Günther, 1861 - spiny basslets GENUS Acanthoclinus Jenyns, 1841 - spiny basslets [=Acanthoclinus Jenyns [L.], 1841:91, Taumakoides (subgenus of Acanthoclinus) Whitley [G. P.], 1955:111] Notes: [The zoology of the voyage of H. M. S. Beagle; ref. 2344] Masc. Acanthoclinus fuscus Jenyns, 1842. Type by original designation. Mooi 1993 [ref. 21801] places the Acanthoclinidae as a subfamily of the Plesiopidae. Type by original designation (also monotypic, second species questionably included). •Valid as Acanthoclinus Jenyns, 1841 -- (Hardy 1985:360 [ref. 5184], Smith-Vaniz & Johnson 1990:223 [ref. 16561], Mooi 1993:322 [ref. 21801], Yerman & Leis 2011:79 [ref. 31400], Stewart 2015:1208 [ref. 34196]). Current status: Valid as Acanthoclinus Jenyns, 1841. Plesiopidae: Acanthoclininae. (Taumakoides) [Australian Zoologist v. 12 (pt 2); ref. 4722] Masc. Acanthoclinus trilineatus Griffin, 1933. Type by original designation (also monotypic). •Valid as Taumakoides Whitley, 1955 -- (Hardy 1985:364 [ref. 5184]). •Synonym of Acanthoclinus Jenyns, 1841 -- (Smith-Vaniz & Johnson 1990:223 [ref. 16561]). Current status: Synonym of Acanthoclinus Jenyns, 1841. Plesiopidae: Acanthoclininae. Species Acanthoclinus fuscus Jenyns, 1841 - olive rockfish [=Acanthoclinus fuscus Jenyns [L.], 1841:92, Pl. 18 (fig. 2), Acanthoclinus taumaka Clarke [F. E.], 1879:293, Pl. 15 (upper right)] Notes: [The zoology of the voyage of H. M. S. Beagle; ref. 2344] Bay of Islands, New Zealand. Current status: Valid as Acanthoclinus fuscus Jenyns, 1841. Plesiopidae: Acanthoclininae. Distribution: New Zealand. Habitat: marine. (taumaka) [Transactions and Proceedings of the New Zealand Institute v. 11 (art. 25) (for 1878); ref. 18006] Jackson's Bay, New Zealand. Current status: Synonym of Acanthoclinus fuscus Jenyns, 1841.
    [Show full text]
  • Risk Assessment Addendum Report – Sodium Thiosulphate (Final) Fraccing Chemicals Assessment Risk Assessment Addendum Report—Sodium Thiosulphate
    Appendix W.3 Fraccing Chemicals Assessment – Risk Assessment Addendum Report – Sodium Thiosulphate (Final) Fraccing Chemicals Assessment Risk Assessment Addendum Report—Sodium Thiosulphate CONFIDENTIAL For QGC LNG May 2011 0123263RP01_Addendum_Final www.erm.com Fraccing Chemicals Assessment Approved by: Wijnand Germs Risk Assessment Addendum Report – Sodium Thiosulphate CONFIDENTIAL Position: Project Manager Signed: QGC LNG Date: 11 May 2011 Approved by: Sophie Wood Position: Partner Signed: 11 May 2011 Date: 11May 2011 Environmental Resources Management Australia Pty Ltd Quality System 0123263RP01_ Addendum Final www.erm.com Quality-ISO-9001-PMS302 This disclaimer, together with any limitations specified in the report, apply to use of this report. This report was prepared in accordance with the contracted scope of services for the specific purpose stated and subject to the applicable cost, time and other constraints. In preparing this report, ERM relied on: (a) client/third party information which was not verified by ERM except to the extent required by the scope of services, and ERM does not accept responsibility for omissions or inaccuracies in the client/third party information; and (b) information taken at or under the particular times and conditions specified, and ERM does not accept responsibility for any subsequent changes. This report has been prepared solely for use by, and is confidential to, the client and ERM accepts no responsibility for its use by other persons. This report is subject to copyright protection and the copyright
    [Show full text]
  • Chapter-17 Antimicrobials
    CHAPTER-17 ANTIMICROBIALS Hydrogen peroxide Hydrogen peroxide (H2O2) is the simplest peroxide (a compound with an oxygen-oxygen single bond). It is also a strong oxidizer. Hydrogen peroxide is a clear liquid, slightly more viscous than water. In dilute solution, it appears colorless. Due to its oxidizing properties, hydrogen peroxide is often used as a bleach or cleaning agent. The oxidizing capacity of hydrogen peroxide is so strong that it is considered a highly reactive oxygen species. Hydrogen peroxide is therefore used as a propellant in rocketry. Organisms also naturally produce hydrogen peroxide as a by-product of oxidative metabolism. Consequently, nearly all living things (specifically, all obligate and facultative aerobes) possess enzymes known as catalase peroxidases, which harmlessly and catalytically decompose low concentrations of hydrogen peroxide. Reactions Manganese dioxide decomposing a very dilute solution of hydrogen peroxide Hydrogen peroxide decomposes (disproportionates) exothermically into water and oxygen gas spontaneously: 2 H2O2 → 2 H2O + O2 Redox reactions In acidic solutions, H2O2 is one of the most powerful oxidizers known—stronger than chlorine, chlorine dioxide, and potassium permanganate. Also, through catalysis, H2O2 can be converted into hydroxyl radicals (•OH), which are highly reactive. Therapeutic use Hydrogen peroxide is generally recognized as safe (GRAS) as an antimicrobial agent, an oxidizing agent and for other purposes by the U.S. FDA. For example, 35% hydrogen peroxide is used to prevent infection transmission in the hospital environment, and hydrogen peroxide vapor is registered with the US EPA as a sporicidal sterilant. It is a common misconception that hydrogen peroxide is a disinfectant or antiseptic for treating wounds.
    [Show full text]
  • Supporting Online Material For
    www.sciencemag.org/cgi/content/full/science.1194442/DC1 Supporting Online Material for The Impact of Conservation on the Status of the World’s Vertebrates Michael Hoffmann,* Craig Hilton-Taylor, Ariadne Angulo, Monika Böhm, Thomas M. Brooks, Stuart H. M. Butchart, Kent E. Carpenter, Janice Chanson, Ben Collen, Neil A. Cox, William R. T. Darwall, Nicholas K. Dulvy, Lucy R. Harrison, Vineet Katariya, Caroline M. Pollock, Suhel Quader, Nadia I. Richman, Ana S. L. Rodrigues, Marcelo F. Tognelli, Jean-Christophe Vié, John M. Aguiar, David J. Allen, Gerald R. Allen, Giovanni Amori, Natalia B. Ananjeva, Franco Andreone, Paul Andrew, Aida Luz Aquino Ortiz, Jonathan E. M. Baillie, Ricardo Baldi, Ben D. Bell, S. D. Biju, Jeremy P. Bird, Patricia Black-Decima, J. Julian Blanc, Federico Bolaños, Wilmar Bolivar-G., Ian J. Burfield, James A. Burton, David R. Capper, Fernando Castro, Gianluca Catullo, Rachel D. Cavanagh, Alan Channing, Ning Labbish Chao, Anna M. Chenery, Federica Chiozza, Viola Clausnitzer, Nigel J. Collar, Leah C. Collett, Bruce B. Collette, Claudia F. Cortez Fernandez, Matthew T. Craig, Michael J. Crosby, Neil Cumberlidge, Annabelle Cuttelod, Andrew E. Derocher, Arvin C. Diesmos, John S. Donaldson, J. W. Duckworth, Guy Dutson, S. K. Dutta, Richard H. Emslie, Aljos Farjon, Sarah Fowler, Jörg Freyhof, David L. Garshelis, Justin Gerlach, David J. Gower, Tandora D. Grant, Geoffrey A. Hammerson, Richard B. Harris, Lawrence R. Heaney, S. Blair Hedges, Jean- Marc Hero, Baz Hughes, Syed Ainul Hussain, Javier Icochea M., Robert F. Inger, Nobuo Ishii, Djoko T. Iskandar, Richard K. B. Jenkins, Yoshio Kaneko, Maurice Kottelat, Kit M. Kovacs, Sergius L.
    [Show full text]