United States Patent (19) 11, 3,927,177 Okabe Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11, 3,927,177 Okabe Et Al United States Patent (19) 11, 3,927,177 Okabe et al. (45) Dec. 16, 1975 54 REMOVAL OF NITROGEN OXDES FROM 2,940,821 7/1960 Carus et al.......................... 423/599 GASEOUS MIXTURES USENG AOUEOUS 2,940,822 7/1960 Carus et al.......................... 423/599 ALKALINE MANGANATE OR 3,780, 158 121 1973 Welsh ................................... 423/49 PERMANGANATESOLUTIONS 3,780, 159 12/1973 Welsh ................................... 423149 (75) Inventors: Taijiro Okabe; Akitsugu Okuwaki, FOREIGN PATENTS OR APPLICATIONS both of Sendai; Shigetoshi 131,460 1919 United Kingdom................. 423/599 Nakabayashi, Shinminato, all of 219,461 1968 U.S.S.R............................... 423/239 Japan 226,568 1968 U.S.S.R............................... 423/239 (73) Assignees: Mitsubishi Kinzoku Kogyo Kabushiki Kaisha, Ote; Nippon Primary Examiner-Herbert T. Carter Chemical Industrial Co., Ltd., Assistant Examiner-Eugene T. Wheelock Tokyo, both of Japan Attorney, Agent, or Firm-Wenderoth, Lind & Ponack (22) Filed: Oct. 5, 1973 (21) Appl. No.: 403,974 57) ABSTRACT Nitrogen oxides in a gaseous mixture are removed 30 Foreign Application Priority Data therefrom by a removal method which comprises Oct. 6, 1972 Japan.............................. 47-100512 causing the gaseous mixture to contact an absorbent comprising a manganate or a permanganate or a man (52) U.S. Cl. ................ 423/235; 423/385; 423/395 ganese-containing substance, which forms a manga 51) Int. Cl’.......................................... C01B 21/00 nate or a permanganate at the time of use, oxidizing 58) Field of Search....... 4231235, 239, 49, 50, 385, manganese oxides formed at the treatment by the re 423/395, 599 duction of the manganate or permanganate with the nitrogen oxides, thereby to generate the oxy-acid salt 56 References Cited of manganese, and circulating the same. UNITED STATES PATENTS 4 Claims, 1 Drawing Figure 2,793, 112 5/1957 Mancke................................ 423150 U.S. Patent Dec. 16, 1975 3,927,177 3,927, 177 1 K.MnO, + 2NO, = 2KNO, MnO, (5) KMnO, + NO =KNO -- MnO + 4 O, (6) REMOVAL OF NITROGEN OXDES FROM KMnO, +3NO + 2KOH = 3KNO -- MnO, + HO (6)" GASEOUS MIXTURES USING AQUEOUS ALKALINE MANGANATE OR PERMANGANATE 5 (In an aqueous solution or in the presence of moisture.) SOLUTIONS In the case where the nitrogen oxide is only NO, BACKGROUND OF THE INVENTION there is no necessity of using the above mentioned This invention relates to a process for economically high-priced salts possessing oxidizing property in addi removing nitrogen oxides in gaseous mixtures through tion to alkalinity for removing only this NO, since NO, the use of manganates (V and VI valence salts of man 10 can be readily reacted and absorbed by contact with an ganese are known and the former may also be called alkaline compound. hypomanganate) or permanganates. The expression Accordingly, in the removal of nitrogen oxides, "(per)manganate' used herein means “a salt of oxy which is an object of this invention, on the basis of an acid of manganese'. absorption reaction as described above, the removal of The nitrogen oxides in gaseous mixtures discharged 15 NO only becomes a problem economically and techni from machines and facilities such as internal combus cally. As a method of carrying this out in an effective tion engines, chemical or metallurgical plants, power manner, we have previously conceived the use of alkali generation plants and buildings, gives rise to pollution (per)manganates, of the previous application. such as photochemical smog and is thereby a serious However, as long as the above-mentioned oxy-acid social problem. 20 salts of manganese are dependent on the present pro We have carried out continuous research, from the duction methods, they are of high price. In a method standpoint of eliminating pollution, on treatment of such as that, wherein new lots of these oxy-acid salts of gaseous mixtures containing these nitrogen oxides manganese are used each time in the treatment of gase (which, in actual practice, are principally NO and NO, ous mixtures containing nitrogen oxides, and the oxides and hereinafter referred to collectively as NO). As a 25 of manganese thus formed are discarded, the high cost result, we have discovered that (per)manganates, of the process materials gives rise to an increase in the which have a powerful oxidizing property, are very treatment cost. Furthermore, the discarding of the effective for this purpose as demonstrated in Japanese manganese oxides gives rise to new pollution. These Pat. application No. 17556/1972 (U.S. Pat. Applin. Ser. have been the principal difficulties restricting the use of No. 332,792). 30 (per)manganates. The reactions for absorbing NO and NO, through the Accordingly, it occurred to us that if it were possible use of (per)manganates, which are to be the basis of to oxidize and regenerate at low cost as (per)manga this invention, may be divided into the following three nates the manganese oxide (mostly in the form of man types. ganese dioxide) formed by the reduction of the (per)- 1. NO absorption reaction with a permanganate 35 manganates by the NO in the reactions of Eqs. (1) While this reaction is known with respect to aqueous through (6), it would be possible, by combining this solutions, we have previously disclosed in Japanese regeneration reaction with the above-mentioned NO. Patent Application No. 17556/1972 that an alkali absorption reactions, to provide a process for removing permanganate absorbs NO even in anhydrous NO, which is highly economical. With this possibility solid state. The absorption reaction of NO in the 40 and principle in view, we have carried out various stud case of potassium permanganate, for example, can ies on reactions for regenerating manganese oxides in be represented by the following Eq. (1) or (2), relation to No absorption reactions, and as a result, (2). have arrived at this invention. 45 KMnO, + NO = KNO -- MnO, (I) KMnO, + NO = KNO + MnO, + 4 O, (2) KMnO+ 3NO + 2KOH = 3KNO, + MnO, + HO (2) SUMMARY OF THE INVENTION (In an aqueous solution or in the presence of moisture.) 50 According to this invention, briefly summarized, 2. NO absorption reaction with a manganate there is provided a process for removal of nitrogen This reaction was made clear for the first time by us oxides in a gaseous mixture containing the same, char as mentioned hereinabove. In the case where acterized by the steps of causing the gaseous mixture potassium manganate (VI) is used as a manga containing a nitrogen oxide to contact an absorbent nate, the reaction can be represented by the 55 comprising a manganate or a permanganate, whereby following Eq. (3), (3)' or (4). the nitrogen oxide is converted into a nitrate or a nitrite KMnO, + 2NO -- O = 2KNOa - MnO, (3) and the manganate or permanganate is converted into (3)' . a manganese oxide, causing the manganese oxide to be (4) oxidized into a manganate or permanganate and circu KMnO, -2NO = 2KNO -- MnO, 60 lating the manganate or permanganate thus regener 3. NO, absorption reaction with a manganate or a ated to the absorption step. permanganate The nature, principle, and utility of the invention, as When potassium manganate (VI), for example, is well as further features thereof, will be apparent from used as a manganate, or potassium permanga the following detailed description beginning with a nate, for example, is used as a permanganate, the 65 consideratien, of general features of the invention and reaction can be represented by the following Eq. concluding with specific examples of practice consti (5) or (6), (6)'. tuting preferred embodiments of the invention. 3 3,927, 177 4 alkaline earth metal salts such as calcium salts, stron BRIEF DESCRIPTION OF THE DRAWING tium salts, and barium salts; Zinc salts and cadmium In the drawing: salts; and ammonium salts. Of these salts, the most FIG. 1 is a schematic flowsheet diagram indicating an representative are alkali metal salts, particularly So example of an absorption-regeneration system accord dium salts and potassium salts. ing to this invention in a state for producing nitrates as The oxides of nitrogen with which this invention is a by-product; and concerned are nitrogen monoxide (NO), dinitrogen FIG. 2 is a similar diagram indicating the system in a trioxide (NO), nitrogen dioxide (NO2), dinitrogen state for system of nitrates. pentoxide (NO), and nitrogen trioxide. Of these ox O ides, NO and NO are the most representative, and the DETAILED DESCRIPTION process of this invention is most effective with respect When the combination of the NO, absorption pro to NO and nitrogen oxide mixtures containing NO. cess step and the step for regeneration of manganese A gaseous mixture containing such oxides of nitrogen oxides is broadly divided, depending on the form of to be disposed of according to this invention has a utilization of the nitrates or nitrites formed as by-pro 5 composition containing nitrogen oxides of from trace ducts in the NO, absorption step, a system for produc to 100 mole percent, preferably from 30 to 50,000 ing nitrates as a by-product as indicated in FIG. 1 and parts per million (ppm) as NO or NO. The composi a nitrate decomposition system as indicated in FIG. 2 tion other than nitrogen oxides, within a gaseous mix result, for example, in the case of salt of an alkali metal. ture of this character, differs with the source of the The invention, however, is not limited to these two gaseous mixture, For example, in the exhaust gas of a systems. gasoline (petrol) engine, there are of the order of from The absorption step and the regeneration step in 100 to 3,000 ppm percent of NO, from 10 to 500 ppm, these nitrate by-product production sytem and nitrate SO, and about 12 mole percent of CO., and CO, hy decomposition system will now be considered in detail.
Recommended publications
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Exactly As Received Mic 61-929 MERRYMAN, Earl L Ew Is. THE
    This dissertation has been microfilmed exactly as received Mic 61-929 MERRYMAN, Earl Lewis. THE ISOTOPIC EXCHANGE REACTION BETWEEN Mn AND MnO” . 4 The Ohio State University, Ph.D, 1960 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan THE ISOTOPIC EXCHANGE REACTION BETTAIEEN Mn** AND ItaO ^ DISSERTATION Presented in P&rtial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of The Ohio S tate U niversity By Earl Lewis Ferryman, B.Sc* The Ohio State University I960 Approved by Department oy Chenletry 1C mnriEDGiBiT The author wlshea to e:qpr«as his approoiation to Profoaaor Alfred B. Garrett for hie superrieion and enocur- agement during the oouree of this research* and for his sincere interest in mj eelfare both as an undergraduate and graduate student at Ohio State University. I also wish to thank the Ohio State University Cheidstry Depsurtnent for the Assistant ships granted me during the 1 9 5 6* 7 "^ aeademlo years. The author also gratefully acknowledges the Fellowships granted me by the American Cyansuald Company during the 1959*60 academic year and by the National Science Foundation during the Summer Q u a rte r of I960* i i TABI£ OP CONTEHTS PAOE INTRODUCTION ............................................................................................................... 1 Àpplloationa of Radloaotirlty in Chomiatry 1 The Problem and Its H latory ....................................................... .. 1 The Problem Reeulting from Early Work 5 Statement of the Problem ..........................
    [Show full text]
  • Manufacturing of Potassium Permanganate Kmno4  This Is the Most Important and Well Known Salt of Permanganic Acid
    Manufacturing of Potassium Permanganate KMnO4 This is the most important and well known salt of permanganic acid. It is prepared from the pyrolusite ore. It is prepared by fusing pyrolusite ore either with KOH or K2CO3 in presence of atmospheric oxygen or any other oxidising agent such as KNO3. The mass turns green with the formation of potassium manganate, K2MnO4. 2MnO2 + 4KOH + O2 →2K2MnO4 + 2H2O 2MnO2 + 2K2CO3 + O2 →2K2MnO4 + 2CO2 The fused mass is extracted with water. The solution is now treated with a current of chlorine or ozone or carbon dioxide to convert manganate into permanganate. 2K2MnO4 + Cl2 → 2KMnO4 + 2KCl 2K2MnO4 + H2O + O3 → 2KMnO4 + 2KOH + O2 3K2MnO4 + 2CO2 → 2KMnO4 + MnO2 + 2K2CO3 Now-a-days, the conversion is done electrolytically. It is electrolysed between iron cathode and nickel anode. Dilute alkali solution is taken in the cathodic compartment and potassium manganate solution is taken in the anodic compartment. Both the compartments are separated by a diaphragm. On passing current, the oxygen evolved at anode oxidises manganate into permanganate. At anode: 2K2MnO4 + H2O + O → 2KMnO4 + 2KOH 2- - - MnO4 → MnO4 + e + - At cathode: 2H + 2e → H2 Properties: It is purple coloured crystalline compound. It is fairly soluble in water. When heated alone or with an alkali, it decomposes evolving oxygen. 2KMnO4 → K2MnO4 + MnO2 + O2 4KMnO4 + 4KOH → 4K2MnO4 + 2H2O + O2 On treatment with conc. H2SO4, it forms manganese heptoxide via permanganyl sulphate which decomposes explosively on heating. 2KMnO4+3H2SO4 → 2KHSO4 + (MnO3)2SO4 + 2H2O (MnO3)2SO4 + H2O → Mn2O7 + H2SO4 Mn2O7 → 2MnO2 + 3/2O2 Potassium permanganate is a powerful oxidising agent. A mixture of sulphur, charcoal and KMnO4 forms an explosive powder.
    [Show full text]
  • Revision Guide
    Revision Guide Chemistry - Unit 3 Physical and Inorganic Chemistry GCE A Level WJEC These notes have been authored by experienced teachers and are provided as support to students revising for their GCE A level exams. Though the resources are comprehensive, they may not cover every aspect of the specification and do not represent the depth of knowledge required for each unit of work. 1 Content Page Section 2 3.1 – Redox and standard electrode potential 13 3.2 - Redox reactions 20 3.3 - Chemistry of the p-block 30 3.4 - Chemistry of the d-block transition metals 35 3.5 - Chemical kinetics 44 3.6 - Enthalpy changes for solids and solutions 50 3.7 - Entropy and feasibility of reactions 53 3.8 - Equilibrium constants 57 3.9 - Acid-base equilibria 66 Acknowledgements 2 3.1 – Redox and standard electrode potential Redox reactions In AS, we saw that in redox reactions, something is oxidised and something else is reduced (remember OILRIG – this deals with loss and gain of electrons). Another way that we can determine if a redox reaction has happened is by using oxidation states or numbers (see AS revision guide pages 2 and 44). You need to know that: - • oxidation is loss of electrons • reduction is gain of electrons • an oxidising agent is a species that accepts electrons, thereby helping oxidation. It becomes reduced itself in the process. • a reducing agent is a species that donates electrons, thereby helping reduction. It becomes oxidised itself in the process. You also should remember these rules for assigning oxidation numbers in a compound: - 1 All elements have an oxidation number of zero (including diatomic molecules like H2) 2 Hydrogen is 1 unless it’s with a Group 1 metal, then it’s -1 3 Oxygen is -2 (unless it’s a peroxide when it’s -1, or reacted with fluorine, when it’s +2).
    [Show full text]
  • Justification for the Selection of a Corap Substance
    JUSTIFICATION DOCUMENT FOR THE SELECTION OF A CORAP SUBSTANCE _________________________________________________________________ Justification Document for the Selection of a CoRAP Substance Substance Name (public name): Potassium permanganate EC Number: 231-760-3 CAS Number: 7722-64-7 Authority: France Date: 21/03/2017 Cover Note This document has been prepared by the evaluating Member State given in the CoRAP update. JUSTIFICATION DOCUMENT FOR THE SELECTION OF A CORAP SUBSTANCE _______________________________________________________________ Table of Contents 1 IDENTITY OF THE SUBSTANCE 3 1.1 Other identifiers of the substance 3 1.2 Similar substances/grouping possibilities 4 2 OVERVIEW OF OTHER PROCESSES / EU LEGISLATION 4 3 HAZARD INFORMATION (INCLUDING CLASSIFICATION) 5 3.1 Classification 5 3.1.1 Harmonised Classification in Annex VI of the CLP 5 3.1.2 Self classification 5 3.1.3 Proposal for Harmonised Classification in Annex VI of the CLP 5 4 INFORMATION ON (AGGREGATED) TONNAGE AND USES 6 4.1 Tonnage and registration status 6 4.2 Overview of uses 6 5. JUSTIFICATION FOR THE SELECTION OF THE CANDIDATE CORAP SUBSTANCE 8 5.1. Legal basis for the proposal 8 5.2. Selection criteria met (why the substance qualifies for being in CoRAP) 8 5.3. Initial grounds for concern to be clarified under Substance Evaluation 8 5.4. Preliminary indication of information that may need to be requested to clarify the concern 9 5.5. Potential follow-up and link to risk management 10 EC no 231-760-3 MSCA - France Page 2 of 10 JUSTIFICATION DOCUMENT FOR THE
    [Show full text]
  • Electrochemical Control of Organic Reactions Involving Phase Transfer
    University College London Department of Chemistry Electrochemical Control of Organic Reactions Involving Phase Transfer by Camilla Forssten Ph.D. 2002 ProQuest Number: U643499 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643499 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Phase transfer catalysis reactions are reactions where the reactants are soluble in different solvents. The phase transfer catalyst facilitates the transfer of a reactant from one phase to another, hence enabling the reaction. This can be explained electrochemically: By partitioning between the phases, the catalyst establishes a potential difference across the interface, which drives the transfer of reagent into the other phase (usually an inorganic anion is being transferred into the organic phase), or controls the reaction at the interface. A similar potential difference can also be applied with electrochemical instrumentation and the reactions can be investigated in electrochemical systems. Electrochemistry at ITIES (Interface between Two Immiscible Electrolyte Solutions) provides a fast, convenient and simple way of investigating the electrochemistry of a synthetic phase transfer reaction. The organic syntheses were also carried out to confirm the electrochemical results.
    [Show full text]
  • CHM 4 Naming Compounds Extra Practice: Version C When You Are
    CHM 4 Naming Compounds Extra Practice: Version C When you are done, grade yourself using the answer key on the next page. To be well prepared for Exam #1, you should be scoring ≥85% on your naming practice. Converting from name to formula 1) What is the formula for sulfurous acid? A) H3SO3(aq) B) H2S(aq) C) H2SO3(aq) D) H3SO4(aq) E) H2SO4(aq) 2) What is the formula for rubidium arsenate? A) Rb2AsO4 B) Rb2AsO3 C) Rb3AsO3 D) Rb3AsO4 E) RbAsO3 3) What is the formula for aluminum sulfide? A) Al(SO3)2 B) Al(SO2)2 C) Al3S2 D) AlSO2 E) Al2S3 4) What is the formula for oxalic acid? A) H2C4O2 (aq) B) HC2H2O3 (aq) C) H2C2O4 (aq) D) HC2H3O2 (aq) E) HC2O4 (aq) 5) What is the formula for zinc borate? A) ZnBO4 B) Zn3(BO3)2 C) Zn(BO4)2 D) Zn3BO3 E) Zn2BO3 6) What is the formula for tin(II) chromate? A) SnCrO4 B) Sn2Cr2O7 C) SnCr2O4 D) Sn2CrO4 E) SnCr2O7 7) What is the formula for hydrobromic acid? A) H2BrO3 (aq) B) HBrO (aq) C) HBrO2 (aq) D) HBrO3 (aq) E) HBr (aq) 8) What is the formula for tetraphosphorous pentachloride? A) P3Cl6 B) P3(ClO)6 C) P4Cl5 D) P6(ClO)3 E) P3(ClO)5 9) What is the formula for barium dihydrogen phosphate? A) BaH2PO4 B) Ba2(HPO4)3 C) Ba(HPO3)2 D) Ba3(HPO3)2 E) Ba(H2PO4)2 10) What is the formula for potassium hydroxide? A) KOH B) K3O2 C) K3OH D) K2OH E) K2O2 Converting from formula to name 11) What is the name for LiHCO3? A) lithium carbonate B) lithium hydrogen carbonate C) lithium hydrocarbide D) lithium monohydrogen monocarbide E) lithium hydrocarbonic acid 12) What is the name for HIO(aq)? A) hydroiodic acid B) periodic acid
    [Show full text]
  • (III)-Catalysed Oxidation of Atenolol by Alkaline Permanganate (Sto
    J. Chem. Sci., Vol. 117, No. 1, January 2005, pp. 33–42. © Indian Academy of Sciences. Kinetic, mechanistic and spectral investigation of ruthenium (III)- catalysed oxidation of atenolol by alkaline permanganate (stopped-flow technique) RAHAMATALLA M MULLA, GURUBASAVARAJ C HIREMATH and SHARANAPPA T NANDIBEWOOR* PG Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India e-mail: [email protected] MS received 10 October 2003; revised 26 December 2003 Abstract. Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0×30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry (atenolol : KMnO4). The reaction shows first-order dependence on [permanganate] and [ruthenium (III)] and apparently less than unit order on both atenolol and alkali concentrations. Reaction rate decreases with increase in ionic strength and increases with decreasing dielectric constant of the medium. Initial addition of reaction products does not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The active species of ruthenium (III) is 2+ understood as [Ru(H2O)5OH] . The reaction constants involved in the different steps of mechanism are calculated. Activation parameters with respect to the slow step of the mechanism are computed and dis- cussed and thermodynamic quantities are also calculated. Keywords. Kinetics; permanganate; stopped-flow technique; oxidation of atenolol; ruthenium(III) catalysis. 1. Introduction (scheme 1) and one in which a hypomanganate is formed in a two-electron step followed by rapid re- Permanganates ions oxidize a greater variety of sub- action12 (scheme 2).
    [Show full text]
  • Safe Handling and Disposal of Chemicals Used in the Illicit Manufacture of Drugs
    Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Safe handling and disposal of chemicals used in the illicit manufacture of drugs United Nations publication USD 26 Printed in Austria ISBN 978-92-1-148266-9 Sales No. E.11.XI.14 ST/NAR/36/Rev.1 V.11-83777—September*1183777* 2011—300 Guidelines for the Safe handling and disposal of chemicals used in the illlicit manufacture of drugs UNITED NATIONS New York, 2011 Symbols of United Nations documents are composed of letters combined with figures. Mention of such symbols indicates a reference to a United Nations document. ST/NAR/36/Rev.1 UNITED NATIONS PUBLICATION Sales No. E.11.XI.14 ISBN 978-92-1-148266-9 eISBN 978-92-1-055160-1 © United Nations, September 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Requests for permission to reproduce this work are welcomed and should be sent to the Secretary of the Publications Board, United Nations Headquarters, New York, N.Y. 10017, U.S.A. or also see the website of the Board: https://unp.un.org/Rights.aspx. Governments and their institutions may reproduce this work without prior authoriza- tion but are requested to mention the source and inform the United Nations of such reproduction.
    [Show full text]
  • Kinetics and Mechanistic Study of the Ruthenium(III) Catalysed Oxidative Decarboxylation of L-Proline by Alkaline Heptavalent Manganese (Stopped Flow Technique)
    CODEN ECJHAO E-Journal of Chemistry http://www.e-journals.net Vol. 2, No. 1, pp 91 -100, January 2005 Kinetics and Mechanistic Study of the Ruthenium(III) Catalysed Oxidative Decarboxylation of L-Proline by Alkaline Heptavalent Manganese (Stopped flow technique) R.S.SHETTAR, M.I.HIREMATH and S.T. NANDIBEWOOR* P.G. Department of Studies in Chemistry, Karnatak University, Dharwad-580003, India. Received 7 October 2004; Accepted 14 December 2004 Abstract The kinetics of ruthenium(III) catalysed oxidation of L-Proline by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically using a rapid kinetic accessory. The reaction between permanganate and L-Proline in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-Proline). The reaction shows first order dependence on [permanganate] and [ruthenium(III)] and apparent less than unit order dependence each in L-Proline and alkali concentrations. Reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Initial addition of reaction products did not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The activation parameters were computed with respect to the slow step of the mechanism and discussed. Key words: Kinetics; Potassium permanganate Ruthenium; Oxidation; L-proline Introduction Potassium permanganate is widely used as an oxidising agent in synthetic as well as in analytical chemistry and also as a disinfectant. The reactions with permanganate are governed by pH of the medium. Among six oxidation states of manganese from 2+ to 7+, permanganate, Mn(VII) is the most potent oxidation state in acid as well as in alkaline medium.
    [Show full text]
  • Oxidation Kinetics
    FINAL REPORT Improved Understanding of In Situ Chemical Oxidation Contaminant Oxidation Kinetics SERDP Project ER-1289 December 2007 Paul Tratnyek Oregon Health & Science University Jamie Powell Oregon Health & Science University Rachel Waldemer Oregon Health & Science University Distribution Statement A: Approved for Public Release, Distribution is Unlimited This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. IMPROVED UNDERSTANDING OF IN SITU CHEMICAL OXIDATION Technical Objective I: Contaminant Oxidation Kinetics SERDP Project Number ER-1289 Principal Investigator: Paul G. Tratnyek Graduate Students and Staff: Rachel Waldemer and Jamie Powell Department of Environmental and Biomolecular Systems Oregon Health & Science University 20000 NW Walker Rd., Beaverton, OR 97006-8921 *Email: [email protected] Web: http://cgr.ebs.ogi.edu Phone: 503-748-1023, Fax: 503-748-1273 FINAL REPORT—OBJECTIVE I May 2009 Revision 1 TABLE OF CONTENTS Page 1. Acknowledgements .....................................................................................................
    [Show full text]
  • Chapter-17 Antimicrobials
    CHAPTER-17 ANTIMICROBIALS Hydrogen peroxide Hydrogen peroxide (H2O2) is the simplest peroxide (a compound with an oxygen-oxygen single bond). It is also a strong oxidizer. Hydrogen peroxide is a clear liquid, slightly more viscous than water. In dilute solution, it appears colorless. Due to its oxidizing properties, hydrogen peroxide is often used as a bleach or cleaning agent. The oxidizing capacity of hydrogen peroxide is so strong that it is considered a highly reactive oxygen species. Hydrogen peroxide is therefore used as a propellant in rocketry. Organisms also naturally produce hydrogen peroxide as a by-product of oxidative metabolism. Consequently, nearly all living things (specifically, all obligate and facultative aerobes) possess enzymes known as catalase peroxidases, which harmlessly and catalytically decompose low concentrations of hydrogen peroxide. Reactions Manganese dioxide decomposing a very dilute solution of hydrogen peroxide Hydrogen peroxide decomposes (disproportionates) exothermically into water and oxygen gas spontaneously: 2 H2O2 → 2 H2O + O2 Redox reactions In acidic solutions, H2O2 is one of the most powerful oxidizers known—stronger than chlorine, chlorine dioxide, and potassium permanganate. Also, through catalysis, H2O2 can be converted into hydroxyl radicals (•OH), which are highly reactive. Therapeutic use Hydrogen peroxide is generally recognized as safe (GRAS) as an antimicrobial agent, an oxidizing agent and for other purposes by the U.S. FDA. For example, 35% hydrogen peroxide is used to prevent infection transmission in the hospital environment, and hydrogen peroxide vapor is registered with the US EPA as a sporicidal sterilant. It is a common misconception that hydrogen peroxide is a disinfectant or antiseptic for treating wounds.
    [Show full text]