Sediment-Hosted Deposits
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Podiform Chromite Deposits—Database and Grade and Tonnage Models
Podiform Chromite Deposits—Database and Grade and Tonnage Models Scientific Investigations Report 2012–5157 U.S. Department of the Interior U.S. Geological Survey COVER View of the abandoned Chrome Concentrating Company mill, opened in 1917, near the No. 5 chromite mine in Del Puerto Canyon, Stanislaus County, California (USGS photograph by Dan Mosier, 1972). Insets show (upper right) specimen of massive chromite ore from the Pillikin mine, El Dorado County, California, and (lower left) specimen showing disseminated layers of chromite in dunite from the No. 5 mine, Stanislaus County, California (USGS photographs by Dan Mosier, 2012). Podiform Chromite Deposits—Database and Grade and Tonnage Models By Dan L. Mosier, Donald A. Singer, Barry C. Moring, and John P. Galloway Scientific Investigations Report 2012-5157 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This report and any updates to it are available online at: http://pubs.usgs.gov/sir/2012/5157/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Mosier, D.L., Singer, D.A., Moring, B.C., and Galloway, J.P., 2012, Podiform chromite deposits—database and grade and tonnage models: U.S. -
Fundamental Flotation Behaviors of Chalcopyrite and Galena Using O-Isopropyl-N-Ethyl Thionocarbamate As a Collector
minerals Article Fundamental Flotation Behaviors of Chalcopyrite and Galena Using O-Isopropyl-N-Ethyl Thionocarbamate as a Collector Yongjie Bu ID , Yuehua Hu *, Wei Sun *, Zhiyong Gao ID and Runqing Liu School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, China; [email protected] (Y.B.); [email protected] (Z.G.); [email protected] (R.L.) * Correspondence: [email protected] (Y.H.); [email protected] (W.S.); Tel.: +86-731-8830-482 (Y.H.); +86-0731-8883-6873 (W.S.) Received: 31 January 2018; Accepted: 12 March 2018; Published: 13 March 2018 Abstract: Copper and lead are two important and widely used metals in industry. Chalcopyrite (CuFeS2) is associated with galena (PbS) in ore, and it has been a research hotspot in separating galena from chalcopyrite by flotation. In this study, the flotation behaviors of chalcopyrite and galena were studied through flotation tests, adsorption measurements, solution chemistry calculation, Fourier transform infrared spectroscopy (FTIR) and molecular dynamics (MD) simulations. The results show that the floatability of chalcopyrite is better than that of galena in the presence of O-isopropyl-N-ethyl thionocarbamate (IPETC), and the recovery difference between chalcopyrite and galena is about 20% when IPETC is 7 × 10−4 mol/L at pH 9.5, while the floatability difference between the two minerals is significant. Competitive adsorption of OH− and IPETC on mineral surfaces leads to lower floatability of galena than that of chalcopyrite. IPETC is able to remove the hydration layer on mineral surfaces and then adsorb on active sites. The floatability of minerals is enhanced with the increase of their hydrophobicity. -
Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes”
minerals Editorial Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes” Pavel A. Serov Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia; [email protected] Magmatism, ore genesis and metamorphism are commonly associated processes that define fundamental features of the Earth’s crustal evolution from the earliest Precambrian to Phanerozoic. Basically, the need and importance of studying the role of metamorphic processes in formation and transformation of deposits is of great value when discussing the origin of deposits confined to varied geological settings. In synthesis, the signatures imprinted by metamorphic episodes during the evolution largely indicate complicated and multistage patterns of ore-forming processes, as well as the polygenic nature of the mineralization generated by magmatic, postmagmatic, and metamorphic processes. Rapid industrialization and expanding demand for various types of mineral raw ma- terials require increasing rates of mining operations. The current Special Issue is dedicated to the latest achievements in geochemistry, mineralogy, and geochronology of ore and metamorphic complexes, their interrelation, and the potential for further prospecting. The issue contains six practical and theoretical studies that provide for a better understanding of the age and nature of metamorphic and metasomatic transformations, as well as their contribution to mineralization in various geological complexes. The first article, by Jiang et al. [1], reports results of the first mineralogical–geochemical Citation: Serov, P.A. Editorial for studies of gem-quality nephrite from the major Yinggelike deposit (Xinjiang, NW China). Special Issue “Ore Genesis and The authors used a set of advanced analytical techniques, that is, electron probe microanaly- Metamorphism: Geochemistry, sis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry Mineralogy, and Isotopes”. -
A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite)
minerals Review A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite) Darius G. Wonyen 1,†, Varney Kromah 1,†, Borbor Gibson 1,† ID , Solomon Nah 1,† and Saeed Chehreh Chelgani 1,2,* ID 1 Department of Geology and Mining Engineering, Faculty of Engineering, University of Liberia, P.O. Box 9020 Monrovia, Liberia; [email protected] (D.G.W.); [email protected] (Y.K.); [email protected] (B.G.); [email protected] (S.N.) 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected]; Tel.: +1-41-6830-9356 † These authors contributed equally to the study. Received: 24 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation. Keywords: dolomite; magnesite; flotation; bio-flotation 1. Introduction Magnesium (Mg) carbonates (salt-type minerals) are typical gangue phases associated with several valuable minerals, and have complicated processing [1,2]. -
A Column Leaching Model of Low-Grade Chalcopyrite Ore: Mineral Preferences and Chemical Reactivity
minerals Article A Column Leaching Model of Low-Grade Chalcopyrite Ore: Mineral Preferences and Chemical Reactivity Heike Bostelmann and Gordon Southam * School of Earth and Environmental Sciences, The University of Queensland, St Lucia 4072, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-07-3365-8505 Received: 16 November 2020; Accepted: 8 December 2020; Published: 17 December 2020 Abstract: Bioleaching models to examine copper extraction from low-grade chalcopyrite ores were set up to identify the influence of pyrite on leaching efficacy. A combination of scanning electron microscopy and geochemical analysis showed that extraction was marginally enhanced by the addition of pyrite when using a combination of Leptospirillum ferrooxidans, an iron oxidiser, Acidithiobacillus thiooxidans, a sulphur oxidising species and Acidithiobacillus ferrooxidans, an iron and sulphur oxidiser. Extensive biofilms formed on the pyrite surfaces (>106 cells/mm2) but were severely limited on chalcopyrite, possessing approximately the same number of cells as quartz grains, an internal non-nutrient control “substrate” (with ca. 2 103 cells/mm2). The presence of dissolved copper did × not inhibit the growth of this consortium. Indirect “bioleaching” of chalcopyrite appears to be limited by proton activity at the chalcopyrite surface. Keywords: bioleaching; chalcopyrite; pyrite; low-grade ore 1. Introduction Economic processing of chalcopyrite ores through bioleaching, i.e., the mobilisation of metals from ore by microorganisms, has not been as successful as secondary copper sulphide leaching operations [1]. This chalcopyrite “problem” needs to be solved, as it is the dominant copper mineral in many low-grade copper deposits. This has resulted in large quantities of low-grade waste material being stockpiled or discarded in mining operations, as they are not economic to process, though they do contain massive quantities of metals (i.e., copper) simply due to their combined volume [1–3]. -
Abstract in PDF Format
PGM Associations in Copper-Rich Sulphide Ore of the Oktyabr Deposit, Talnakh Deposit Group, Russia Olga A. Yakovleva1, Sergey M. Kozyrev1 and Oleg I. Oleshkevich2 1Institute Gipronickel JS, St. Petersburg, Russia 2Mining and Metallurgical Company “Noril’sk Nickel” JS, Noril’sk, Russia e-mail: [email protected] The PGM assemblages of the Cu-rich 6%; the Ni content ranges 0.8 to 1.3%, and the ratio sulphide ores occurring in the western exocontact Cu/S = 0.1-0.2. zone of the Talnakh intrusion and the Kharaelakh Pyrrhotite-chalcopyrite ore occurs at the massive orebody have been studied. Eleven ore top of ore horizons. The ore-mineral content ranges samples, weighing 20 to 200 kg, were processed 50 to 60%, and pyrrhotite amount is <15%. The ore using gravity and flotation-gravity techniques. As a grades 1.1 to 1.3% Ni, and the ratio Cu/S = 0.35- result, the gravity concentrates were obtained from 0.7. the ores and flotation products. In the gravity Chalcopyrite ore occurs at the top and on concentrates, more than 20,000 PGM grains were the flanks of the orebodies. The concentration of found and identified, using light microscopy and sulphides ranges 50 to 60%, and pyrrhotite amount EPMA. The textural and chemical characteristics of is <1%; the Ni content ranges 1.3 to 3.4%, and the PGM were documented, as well as the PGM ratio Cu/S = 0.8-0.9. distribution in different size fractions. Also, the The ore types are distinctly distinguished balance of Pt, Pd and Au distribution in ores and by the PGE content which directly depends on the process products and the PGM mass portions in chalcopyrite quantity, but not on the total sulphide various ore types were calculated. -
LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges. -
Sedimentary Exhalative Deposits (SEDEX)
Sedimentary Exhalative Deposits (SEDEX) Main charactersitcs:SEDEX deposits are stratiform, massive sulphide lenses formed in local basins on the sea floor. This is usually as a result of hydrothermal activity in areas of continental rifting. They represent major sources of lead and zinc with minor amounts of gold, barium and copper. Alteration is common especially in the form of silicification. Sedex deposits have many similarities with VMS deposits. Idealised SEDEX Deposit Model e.g. Mount Isa, Broken Hill (Australia), Sullivan (Canada), Silvermines (Ireland) Adapted from Evans 1997: Ore Geology and Industrial Minerals The stratiform lenses formed in Sedex deposits can be up to 40km thick and have a lateral extent of 100km's. Stockwork or vein mineralisation may occur beneath this. Host rock lithology varies from shales, siltstones and carbonates (low energy environment) to debris flows, conglomerates and breccias (high energy environments). Sedex deposits have been categorised in terms of a sedimentary basin hierachy. First order basins have lateral extents of hundreds of km's and maybe represented by epicratonic embayments ot intracratonic basins. Second order basins which can be up to tens of km's in size occur within the first order basins and contain third order basins, less than 10km in diameter, where the stratiform sulphide lenses tend to develop. There are several ideas for the formation of these deposits but one contention is that they were formed by the convection of sea water as shown above. As the sea water traverses through the crust it would dissolve base metals from the host rock, which would eventually lead to their collection and precipitation near the surface. -
Minerals and Mineral Products in Our Bedroom Bed Hematite
Minerals and Mineral Products in our Bedroom Make-Up Kit Muscovite Bed Talc Hematite: hinges, handles, Mica mattress springs Hematite: for color Chromite: chrome plating Bismuth Radio Barite Copper: wiring Plastic Pail Quartz: clock Mica Gold: connections Cassiterite: solder Toilet Bowl / Tub Closet Feldspar: porcelain Chromite: chrome plating Pyrolusite: coloring Hematite: hinges, handles (steel) Chromite: plumbing fixtures Quartz : mirror on door Copper: tubing Desk Toothpaste Hematite: hinges, handles (steel) Apatite: teeth Chromite: chrome plating Fluorite: toothpaste Mirror Rutile: to color false Hematite: handle, frame teeth yellow Chromite: plating Gold: fillings Gold: plating Cinnabar: fillings Quartz: mirror Towels Table Lamp Sphalerite: dyes Brass (an alloy of copper and Chromite: dyes zinc): base Quartz: bulb Water Pipe/Faucet/Shower bulb Wolframite: lamp filament Brass Copper: wiring Iron Nickel Minerals and Mineral Products in our Bedroom Chrome: stainless steel Bathroom Cleaner Department of Environment and Natural Resources Borax: abrasive, cleaner, and antiseptic MINES AND GEOSCIENCES BUREAU Deodorant Spray Can Cassiterite Chromite Copper Carpet Quartz Sphalerite: dyes Telephone Chromite: dyes Drinking Glasses Copper: wiring Sulfur: foam padding Quartz Chromite: plating Gold: red color Clock Silver: electronics Pentlandite: spring Graphite: batteries Refrigerator Quartz: glass, time keeper Hematite Television Chromite: stainless steel Chromite: plating Computer Galena Wolframite: monitor Wolframite: monitor Copper Copper: -
Key to Rocks & Minerals Collections
STATE OF MICHIGAN MINERALS DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION A mineral is a rock substance occurring in nature that has a definite chemical composition, crystal form, and KEY TO ROCKS & MINERALS COLLECTIONS other distinct physical properties. A few of the minerals, such as gold and silver, occur as "free" elements, but by most minerals are chemical combinations of two or Harry O. Sorensen several elements just as plants and animals are Reprinted 1968 chemical combinations. Nearly all of the 90 or more Lansing, Michigan known elements are found in the earth's crust, but only 8 are present in proportions greater than one percent. In order of abundance the 8 most important elements Contents are: INTRODUCTION............................................................... 1 Percent composition Element Symbol MINERALS........................................................................ 1 of the earth’s crust ROCKS ............................................................................. 1 Oxygen O 46.46 IGNEOUS ROCKS ........................................................ 2 Silicon Si 27.61 SEDIMENTARY ROCKS............................................... 2 Aluminum Al 8.07 METAMORPHIC ROCKS.............................................. 2 Iron Fe 5.06 IDENTIFICATION ............................................................. 2 Calcium Ca 3.64 COLOR AND STREAK.................................................. 2 Sodium Na 2.75 LUSTER......................................................................... 2 Potassium -
Contrasting Styles of Lead-Zinc-Barium Mineralization in the Lower Benue Trough, Southeastern Nigeria
EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 21, No. 1 (March, 2017): 7 - 16 ORE DEPOSITS Contrasting styles of lead-zinc-barium mineralization in the Lower Benue Trough, Southeastern Nigeria Ifeanyi Andrew Oha*,1, Kalu Mosto Onuoha1, Silas Sunday Dada2 1Department of Geology, University of Nigeria, Nsukka. 2Kwara State University Malete *[email protected] ABSTRACT Keywords: Lead-Zinc-Barium mineralization, In the Lower Benue Trough of Southeastern Nigeria, lead-zinc-barium mineralization occurs as widely distributed Benue Trough, epigenetic, vein deposits. epigenetic fracture-controlled vein deposits which are restricted to Albian – Turonian sediments. Detailed field studies carried out in Ishiagu, Enyigba-Ameki-Ameri, Wanikande-Wanakom, and Gabu-Oshina which together constitute the four main areas of mineralization in the Lower Benue Trough, show that mineralization appears restricted to NW-SE and N-S fractures while the more common NE-SW fractures are barren. Apart from the Enyigba area, igneous bodies are found in the vicinity of the ore deposits while in the Wanikande area, barite veins and veinlets were observed to be closely interwoven with intrusive bodies. The host lithologies are highly varied, ranging from shales to siltstones, sandstones and occasionally igneous bodies. The ore assemblage also varies remarkably, with lead:zinc:barium ratios ranging from approximately 3:1:0 at Ishiagu, to 2:1:0 at Enyigba, 1:0:2 at Wanikande and nearly 100% barite at Gabu-Oshina. Thus, there is a remarkable increase in barite content from the southwest (Ishiagu) to the northeast (Gabu). The characteristics of the ore deposits roughly fit the base metal type mineralization known as clastic dominated lead-zinc-barium deposits. -
Structure and Mineralization of Precambrian Rocks in the Galena-Roub Aix District, Black Hills, South Dakota
Structure and Mineralization of Precambrian Rocks in the \ Galena-Roubaix District, Black Hills, South Dakota ( By R. W. BAYLEY » CONTRIBUTIONS TO ECONOMIC GEOLOGY V ' GEOLOGICAL SURVEY BULLETIN 1312-E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 55 cents (paper cover) CONTENTS Page Abstract_ ____-_-_----_-----__--_-----_--_--.. El Introduction _________________________________ 1 Field methods_______-_____-_____-_____-__--_ 2 General geology.___-__--__-_--__-_--___._-_--_. 3 Stratigraphy. ___________________---__--__-__-.. 4 Metabasalt and chert.______-__-__-_____-_. 4 Graphitic schist and cherty ferruginous schist. 5 Metagraywacke, schist, and slate_ ___________ 6 Structure. ___________.-______-_-__-_-_-_-___-. 6 Distribution of gold. 7 Diamond drilling. __ 9 Magnetic survey. __ 10 Summary________ 14 References. -. ______ 15 ILLUSTEATIONS Page PLATE 1. Geologic map of the Galena-Roubaix district, Lawrence County, Black Hills, South Dakota.________________ In pocket FIGURE 1. Generalized geologic map of the northern Black Hills____-___ E2 2. Magnetic survey in the vicinity of U.S. Geological Survey diamond-drill hole 1__________________________________ 13 TABLE Page TABLIS 1. Results of core-sample analyses, U.S. Geological Survey diamond-drill hole 1, Galena-Roubaix district.____________ Ell ra CONTRIBUTIONS TO ECONOMIC GEOLOGY STRUCTURE AND MINERALIZATION OF PRECAMBRIAN ROCKS IN THE GALENA-ROUB AIX DISTRICT, BLACK HILLS, SOUTH DAKOTA ByK.W.BAYLEY ABSTRACT The Galena-Roubaix district is underlain chiefly by tightly folded and mod erately metamorphosed sedimentary and volcanic rocks of Precambrian age.