Interspecific Amplexus Between Glandirana Tientaiensis (Chang, 1933) and Odorrana Schmackeri (Boettger, 1892) at the Fuchun River, Eastern China

Total Page:16

File Type:pdf, Size:1020Kb

Interspecific Amplexus Between Glandirana Tientaiensis (Chang, 1933) and Odorrana Schmackeri (Boettger, 1892) at the Fuchun River, Eastern China Herpetology Notes, volume 12: 41-42 (2019) (published online on 10 January 2019) Interspecific amplexus between Glandirana tientaiensis (Chang, 1933) and Odorrana schmackeri (Boettger, 1892) at the Fuchun River, eastern China Jordy Groffen1, Yi Yang2, Amaël Borzée1, and Yikweon Jang1,* During the breeding season, adult male anurans can have negative demographic consequences (Pearl et vocalize to attract females despite the risk of increased al., 2005; Amore et al., 2009). predation. Anurans usually distinguish mates through Herein we report, to the best of our knowledge, the visual, chemical, or acoustic signals (e.g., Bowcock first case of interspecific amplexus (Fig. 1) between et al., 2008; Belanger and Corkum, 2009). This is an adult male Tiantai frog, Glandirana tientaiensis important as egg fertilization is primarily external, (Chang, 1933), and an adult Kaochahien frog, and takes place during amplexus between a male Odorrana schmackeri (Boettger, 1892) of unknown sex. and a female (Wells, 2007). In anurans, interspecific This event was recorded on 7 July 2017 at 2007 h, in the amplexus is a relatively rare behaviour, with fewer than Xiekengkoucun area at a rocky, shallow side stream of 15 reports of interspecific combinations in 2016 and the Fuchun River in China (29.6747°N, 119.6848°E; 2017, in different locations and latitudes around the WGS84; 152 m a.s.l.). Odorrana schmackeri has a world (e.g., Müller, 2016; Beranek, 2017; Mudrek et broad distribution whereas G. tientaiensis is listed by the al., 2017). Some species have frequently been recorded IUCN as Near Threatened due to a small and declining with erroneous mates, for example Atelopus laetissimus, area of occupancy (Lau and Huiqing, 2004). However, with 20 observations of males in interspecies amplexus G. tientaiensis is generally more common near this during a two-day expedition in Colombia (González et al., 2017). Interspecific amplexus can occur in the absence of niche segregation between sympatric species (e.g., Hobel, 2005; Streicher et al., 2010). Explosive breeding includes a short, synchronous burst of breeding activity once or twice a year, and species following this type of reproduction are often susceptible to interspecific amplexus (Duellman and Trueb, 1994). This short time period combined with overlapping breeding habitats increases pressure to breed (Beranek, 2017), which may result in less accurate mate discrimination. Interspecific amplexus is a reproductive interference, as the outcome 1 Department of Life Sciences and Division of EcoScience, Ewha Womans University, 03760 Seoul, Republic of Korea. Figure 1. Interspecific amplexus between an adult 2 School of Microelectronics, Fudan University, Shanghai, male Glandirana tientaiensis (on top) and an adult China. Odorrana schmackeri of unknown sex, observed at the Fuchun * Corresponding author. E-mail: [email protected] river, China. Photo by Yi Yang. 42 Jordy Groffen et al. locality than O. schmackeri. The breeding periods are Müller, H. (2016): Heterospecific amplexus of a male Tomopterna June and July for G. tientaiensis and July and August delalandii with a dead Sclerophrys cf. capensis (Amphibia: for O. schmackeri. This was our only observation of Anura: Bufonidae et Pyxicephalidae). Herpetology Notes 9: 283–284 reproductive interaction between O. schmackeri and G. Pearl, C.A., Hayes, M.P., Haycock, R., Engler, J.D., Bowerman, J. tientaiensis at this location. (2005): Observation of interspecific amplexus between western Both frog species show sexual size dimorphism, North American ranid frogs and the introduced American which could explain why the somewhat smaller male bullfrog (Rana catesbeiana) and an hypothesis concerning G. tientaiensis was engaged in amplexus with the breeding interference. The American Midlands Naturalist 154: O. schmackeri. The average snout–vent length of G. 126–134. tientaiensis at the site was 38.0 mm ± SD 6.16 mm Streicher, J.W., Sheehy, C.M., Cox, C.L., Velasco, J.R., Weatherman, G.N. (2010): Natural history notes. Smilisca (n = 14), while female O. schmackeri can grow up baudinii and Pachymedusa danicolor. Reproduction. to 80 mm (Wu, 2014). For ethical reason, we did not Herpetological Review 41 (2): 208. interfere and could not determine the sex of the O. Wang, Y.Y., Lau, M.W.N., Yang, J.H., Chen, G.L., Lui, Z.Y., Lui, schmackeri. Notably, the frogs in the genus Odorrana Y. (2015): A new species of the genus Odorrana (Amphibia: usually produce strong, foul-smelling, defensive skin Ranidae) and the first record of Odorrana bacboensis from secretions when attacked or stressed (Zhou et al., 2006). China. Zootaxa 3999 (2): 235–254. No secretions or odour were detected during the cross- Wells, K.D. (2007): The ecology and behaviour of amphibians. Chicago, Illinois, USA, University of Chicago Press. species amplexus, and no release calls were given, and Wu, Q. (2014): Diet and influencing factors of the piebald odorous thus it does not appear that the O. schmackeri individual frog Odorrana schmackeri in a fragmented habitat in the was stressed. If it had, the G. tientaiensis male might Thousand Island Lake. Unpublished MSc Thesis, Zhejiang have recognized the O. schmackeri as an unfit mate. University, Hangzhou, China. Zhou, M., Chen, T., Walker, B., Shaw, C. (2006): Lividins: Acknowledgment. This work was supported by a research novel antimicrobial peptide homologs from the skin secretion grant from the National Research Foundation of Korea of the Chinese Large Odorous frog, Rana (Odorrana) livida. (2017R1A2B2003579) to YJ. Identification by ‘‘shotgun’’ cDNA cloning and sequence analysis. Peptides 27: 2118–2123. References Amore, A.D., Kirby, E., Hemingway, V. (2009): Reproductive interference by an invasive species: an evolutionary trap? Herpetological Conservation and Biology 4 (3): 325–330. Belanger, R.M., Corkum, L.D. (2009): Review of aquatic sex pheromones and chemical communication in anurans. Journal of Herpetology 43 (2): 184–191. Beranek, C. (2017): Natural history notes. Litoria dentata and Litoria peronii. Interspecific amplexus. Herpetological Review 48 (2): 411. Bowcock, H., Brown, G.P., Shine, R. (2008): Sexual communication in cane toads, Chaunus marinus: what cues influence the duration of amplexus? Animal Behaviour 75: 1571–1579. Duellman, W.E., Trueb, L. (1994): Biology of Amphibians. Baltimore, Maryland, USA, Johns Hopkins University Press. González, J.L.P., Roach, N., Solano, L.A.R. (2017): Natural history notes. Atelopus carrikeri and Atelopus laetissimus. Interspecific amplexus. Herpetological Review 48 (3): 602–603. Hobel, G. (2005): Natural history notes. Rana clamitans and Rana catesbeiana. Reproduction. Herpetological Review 36 (4): 439–440. Lau, M.W.N., Huiqing. G. (2004): Glandirana tientaiensis. The IUCN Red List of Threatened Species 2004. Available at: http://www.iucnredlist.org/details/58738/0. Accessed on 14 November 2017. Mudrek, R.M., Pansonato, A., Strüssmann, C. (2017): Natural history notes. Scinax fuscovarius. Interspecific amplexus. Accepted by Kanto Nishikawa Herpetological Review 48 (2): 417–418. .
Recommended publications
  • Linearized Esculentin-2EM Shows Ph Dependent Antibacterial Activity With
    Molecular and Cellular Biochemistry https://doi.org/10.1007/s11010-021-04181-7 Linearized esculentin‑2EM shows pH dependent antibacterial activity with an alkaline optimum Erum Malik1 · David A. Phoenix2 · Timothy J. Snape3 · Frederick Harris4 · Jaipaul Singh4 · Leslie H. G. Morton4 · Sarah R. Dennison5 Received: 5 November 2020 / Accepted: 12 May 2021 © The Author(s) 2021 Abstract Here the hypothesis that linearized esculentin 2EM (E2EM-lin) from Glandirana emeljanovi possesses pH dependent activ- ity is investigated. The peptide showed weak activity against Gram-negative bacteria (MLCs ≥ 75.0 μM) but potent efcacy towards Gram-positive bacteria (MLCs ≤ 6.25 μM). E2EM-lin adopted an α-helical structure in the presence of bacterial membranes that increased as pH was increased from 6 to 8 (↑ 15.5–26.9%), whilst similar increases in pH enhanced the ability of the peptide to penetrate (↑ 2.3–5.1 mN m−1) and lyse (↑ 15.1–32.5%) these membranes. Theoretical analysis predicted that this membranolytic mechanism involved a tilted segment, that increased along the α-helical long axis of E2EM-lin (1–23) in the N → C direction, with − < µH > increasing overall from circa − 0.8 to − 0.3. In combination, these data showed that E2EM-lin killed bacteria via novel mechanisms that were enhanced by alkaline conditions and involved the formation of tilted and membranolytic, α-helical structure. The preference of E2EM-lin for Gram-positive bacteria over Gram-negative organisms was primarily driven by the superior ability of phosphatidylglycerol to induce α-helical structure in the peptide as compared to phosphatidylethanolamine. These data were used to generate a novel pore-forming model for the membranolytic activity of E2EM-lin, which would appear to be the frst, major reported instance of pH dependent AMPs with alkaline optima using tilted structure to drive a pore-forming process.
    [Show full text]
  • A New Species of Odorrana Inhabiting Complete Darkness in a Karst Cave in Guangxi, China
    Asian Herpetological Research 2015, 6(1): 11–17 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.140054 A New Species of Odorrana Inhabiting Complete Darkness in a Karst Cave in Guangxi, China Yunming MO1, Weicai CHEN1*, Huaying WU1, Wei ZHANG2 and Shichu ZHOU1 1 Natural History Museum of Guangxi, Nanning 530012, Guangxi, China 2 School of Life Sciences, East China Normal University, Shanghai 200062, China Abstract A new species of the genus Odorrana is described from a completely dark karst cave of northeastern Guangxi, southern China. The new species, Odorrana lipuensis sp. nov., can be distinguished from its congeners by a combination of the following characters: medium size (SVL: 40.7–47.7 mm in males, 51.1–55.4 mm in females); tips of all but first finger expanded with circummarginal grooves; smooth, grass-green dorsum with irregular brown mottling; pineal body invisible; throat to upper abdomen with gray mottling; dorsal surfaces of limbs with brown bands; dorsolateral fold absent; tiny spinules on lateral body, temporal region, and anterior and posterior edge of tympanum; white nuptial pad present on finger I; males lacking vocal sacs; females having creamy yellow eggs, without black poles. Uncorrected sequence divergences between O. lipuensis sp. nov. and all homologous 16S rRNA sequences of Odorrana available on GenBank is equal to or greater than 4.9%. Currently, the new species is only known from the type locality. Keywords Odorrana lipuensis sp. nov., karst cave, Guangxi, southern China 1. Introduction monophyletic group (Chen et al., 2013). All are known to be associated with mountain streams except O.
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]
  • Host Defense Peptides from Asian Frogs As Potential Clinical Therapies
    Host Defense Peptides from Asian Frogs as Potential Clinical Therapies. Vineeth T.V. Kumar, Rajiv Gandhi Centre for Biotechnology (RGCB) David Holthausen, Emory University Joshy Jacob, Emory University Sanil George, Rajiv Gandhi Centre for Biotechnology (RGCB) Journal Title: Antibiotics Volume: Volume 4, Number 2 Publisher: MDPI | 2015, Pages 136-159 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.3390/antibiotics4020136 Permanent URL: https://pid.emory.edu/ark:/25593/rmwpf Final published version: http://dx.doi.org/10.3390/antibiotics4020136 Copyright information: © 2015 by the authors; licensee MDPI, Basel, Switzerland. This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). Accessed September 24, 2021 11:23 PM EDT Antibiotics 2015, 4, 136-159; doi:10.3390/antibiotics4020136 OPEN ACCESS antibiotics ISSN 2079-6382 www.mdpi.com/journal/antibiotics Review Host Defense Peptides from Asian Frogs as Potential Clinical Therapies Vineeth T.V. Kumar 1, David Holthausen 2, Joshy Jacob 2,* and Sanil George 1,* 1 Molecular Ecology Lab, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India; E-Mail: [email protected] 2 Emory Vaccine Center, Department of Microbiology and Immunology, Emory University, Yerkes National Primate Research Center, 954 Gatewood Rd, Atlanta, GA 30329, USA; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (J.J.); [email protected] (S.G.); Tel.: +1-404-727-7919 (J.J.); +91-471-252-9520 (S.G.). Academic Editor: William M. Shafer Received: 10 November 2014 / Accepted: 4 March 2015 / Published: 30 March 2015 Abstract: Host defense peptides (HDPs) are currently major focal points of medical research as infectious microbes are gaining resistance to existing drugs.
    [Show full text]
  • Table 7: Species Changing IUCN Red List Status (2018-2020)
    IUCN Red List version 2020-1: Table 7 Last Updated: 19 March 2020 Table 7: Species changing IUCN Red List Status (2018-2020) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2019 (IUCN Red List version 2019-3) and 2020 (IUCN Red List version 2020-1) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered [CR(PE) - Critically Endangered (Possibly Extinct), CR(PEW) - Critically Endangered (Possibly Extinct in the Wild)], EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2019) List (2020) change version Category
    [Show full text]
  • Sex Reversal Induced by Steroid Hormones in Glandirana Rugosa Frogs
    Central JSM Sexual Medicine Mini Review *Corresponding author Masahisa Nakamura, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Waseda University, Tokyo, 169-8555, Japan, Email: Sex Reversal Induced by Steroid [email protected] Submitted: 01 September 2020 Hormones in Glandirana rugosa Accepted: 15 September 2020 Published: 17 September 2020 ISSN: 2578-3718 Frogs Copyright © 2020 Nakamura M, et al. 1,2 2 2 Masahisa Nakamura *, Akira Oike , and Etsuro Ito OPEN ACCESS 1Waseda Research Institute for Science and Engineering, Waseda University, Japan 2Department of Biology, Waseda University, Japan Abstract In general, sex is determined at fertilization of zygotes by sex chromosome composition; this is known as genotypic sex determination in many vertebrate species. Interestingly, steroid hormones can reverse sex of many species in fish, amphibians and reptiles; androgens induce the female-to-male sex reversal, whereas estrogens cause the male-to-female one. For such sex reversal, a functioning sex-determining gene on the sex chromosome is not required. However, little is known about the mechanisms involved in the sex-reversal at histological and molecular levels. To clarify the mechanism of sex reversal, it is very important to detect the first signs of histological changes in the sex-reversing gonads. For this purpose, we have determined a threshold dosage of steroid hormones to induce sex reversal. When tadpoles of Glandirana (G.) rugosa are reared in water containing a threshold dosage of steroid hormones, genetic females and males form a mixture of testis and ovary, the so-called ovotestis during the transit period of sex reversal.
    [Show full text]
  • Predatory Ecology of the Invasive Wrinkled Frog (Glandirana Rugosa) in Hawai´I
    Gut check: predatory ecology of the invasive wrinkled frog (Glandirana rugosa) in Hawai´i By Melissa J. Van Kleeck and Brenden S. Holland* Abstract Invertebrates constitute the most diverse Pacific island animal lineages, and have correspondingly suffered the most significant extinction rates. Losses of native invertebrate lineages have been driven largely by ecosystem changes brought about by loss of habitat and direct predation by introduced species. Although Hawaii notably lacks native terrestrial reptiles and amphibians, both intentional and unintentional anthropogenic releases of herpetofauna have resulted in the establishment of more than two dozen species of frogs, toads, turtles, lizards, and a snake. Despite well-known presence of nonnative predatory species in Hawaii, ecological impacts remain unstudied for a majority of these species. In this study, we evaluated the diet of the Japanese wrinkled frog, Glandirana rugosa, an intentional biocontrol release in the Hawaiian Islands in the late 19th century. We collected live frogs on Oahu and used museum collections from both Oahu and Maui to determine exploited diet composition. These data were then compared to a published dietary analysis from the native range in Japan. We compiled and summarized field and museum distribution data from Oahu, Maui, and Kauai to document the current range of this species. Gut content analyses suggest that diet composition in the Hawaiian Islands is significantly different from that that in its native Japan. In the native range, the dominant taxonomic groups by volume were Coleoptera (beetles), Lepidoptera (moths, butterflies) and Formicidae (ants). Invasive frogs in Hawaii exploited mostly Dermaptera (earwigs), Amphipoda (landhoppers) and Hemiptera (true bugs).
    [Show full text]
  • Larval Systematics of the Peninsular Malaysian Ranidae (Amphibia: Anura)
    LARVAL SYSTEMATICS OF THE PENINSULAR MALAYSIAN RANIDAE (AMPHIBIA: ANURA) LEONG TZI MING NATIONAL UNIVERSITY OF SINGAPORE 2005 LARVAL SYSTEMATICS OF THE PENINSULAR MALAYSIAN RANIDAE (AMPHIBIA: ANURA) LEONG TZI MING B.Sc. (Hons.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES THE NATIONAL UNIVERSITY OF SINGAPORE 2005 This is dedicated to my dad, mum and brothers. i ACKNOWLEDGEMENTS I am grateful to the many individuals and teams from various institutions who have contributed to the completion of this thesis in various avenues, of which encouragement was the most appreciated. They are, not in any order of preference, from the National University of Singapore (NUS): A/P Peter Ng, Tan Heok Hui, Kelvin K. P. Lim, Darren C. J. Yeo, Tan Swee Hee, Daisy Wowor, Lim Cheng Puay, Malcolm Soh, Greasi Simon, C. M. Yang, H. K. Lua, Wang Luan Keng, C. F. Lim, Yong Ann Nee; from the National Parks Board (Singapore): Lena Chan, Sharon Chan; from the Nature Society (Singapore): Subaraj Rajathurai, Andrew Tay, Vilma D’Rozario, Celine Low, David Teo, Rachel Teo, Sutari Supari, Leong Kwok Peng, Nick Baker, Tony O’Dempsey, Linda Chan; from the Wildlife Department (Malaysia): Lim Boo Liat, Sahir bin Othman; from the Forest Research Institute of Malaysia (FRIM): Norsham Yaakob, Terry Ong, Gary Lim; from WWF (Malaysia): Jeet Sukumaran; from the Economic Planning Unit, Malaysia (EPU): Puan Munirah; from the University of Sarawak (UNIMAS): Indraneil Das; from the National Science Museum, Thailand: Jairujin Nabhitabhata, Tanya Chan-ard, Yodchaiy Chuaynkern; from the University of Kyoto: Masafumi Matsui; from the University of the Ryukyus: Hidetoshi Ota; from my Indonesian friends: Frank Bambang Yuwono, Ibu Mumpuni (MZB), Djoko Iskandar (ITB); from the Philippine National Museum (PNM): Arvin C.
    [Show full text]
  • Amphibian Population Declines and Chytridiomycosis in South Korea by Mi-Sook Min, Hang Lee, & Bruce Waldman
    Regional Insight Amphibian Population Declines and Chytridiomycosis in South Korea By Mi-Sook Min, Hang Lee, & Bruce Waldman orea has a diverse, but understudied, amphibian fauna the spread of the amphibian chytrid fungus, Batrachochytrium comprising 18 species of which only two are considered dendrobatidis (Bd). Kto be of concern on the IUCN Red List. The systematics of the four species of hynobiid salamanders species have been Prevalence of amphibian chytrid fungus in South Korea well studied (Baek et al. 2011), but little is known about their We are studying how the amphibian chytrid fungus affects Korean ecology. Two endemic species, the Jeju salamander, Hynobius species and its possible contribution to population declines. quelpaertensis, confined to Jeju Island and southern regions, Although no mass mortality events have been reported, nor have and the Kori salamander, H. yangi , found in the southeast of the any individuals from the wild been observed demonstrating country, resemble the more widely distributed Korean salamander clinical signs of chytridiomycosis among the Korean amphibians, H. leechii and previously were classified as subspecies. Further population sizes have declined and ranges have contracted in work may reveal at least several species. Habitat three additional species degradation and destruction in this group. A lungless may be primary causes, as salamander, Karsenia well as harvesting for food koreana, was discovered or medicine especially in recently and represents an rural areas, but disease enigma as the only known also may play a role. Since plethodontid in Asia, but it is 2007, we have surveyed not genetically close to North amphibians throughout the American Plethodon (Min et Korean peninsula and Jeju al.
    [Show full text]
  • A New Species of Odorrana (Anura, Ranidae) from Hunan Province, China
    ZooKeys 1024: 91–115 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1024.56399 RESEarch arTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Odorrana (Anura, Ranidae) from Hunan Province, China Bing Zhang1, Yuan Li1, Ke Hu1, Pipeng Li2, Zhirong Gu3, Nengwen Xiao4, Daode Yang1 1 Institute of Wildlife Conservation, Central South University of Forestry and Technology, Changsha 410004, China 2 Institute of Herpetology, Shenyang Normal University, Shenyang 110034, China 3 Bureau of Hunan Badagongshan National Nature Reserve, Sangzhi 427100, China 4 State Environmental Protection Key Labo- ratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China Corresponding author: Daode Yang ([email protected]) Academic editor: A. Crottini | Received 12 July 2020 | Accepted 30 December 2020 | Published 15 March 2021 http://zoobank.org/756CA7F5-A4C1-4759-AB64-8C147F6C9A6A Citation: Zhang B, Li Y, Hu K, Li P, Gu Z, Xiao N, Yang D (2021) A new species of Odorrana (Anura, Ranidae) from Hunan Province, China. ZooKeys 1024: 91–115. https://doi.org/10.3897/zookeys.1024.56399 Abstract A new species, Odorrana sangzhiensis sp. nov., is described, based on five specimens from Sangzhi County, Zhangjiajie City, Hunan Province, China. Molecular phylogenetic analyses, based on mitochondrial 12S rRNA and 16S rRNA gene sequences, strongly support the new species as a monophyletic group nested into the O. schmackeri species complex. The new
    [Show full text]
  • July to December 2019 (Pdf)
    2019 Journal Publications July Adelizzi, R. Portmann, J. van Meter, R. (2019). Effect of Individual and Combined Treatments of Pesticide, Fertilizer, and Salt on Growth and Corticosterone Levels of Larval Southern Leopard Frogs (Lithobates sphenocephala). Archives of Environmental Contamination and Toxicology, 77(1), pp.29-39. https://www.ncbi.nlm.nih.gov/pubmed/31020372 Albecker, M. A. McCoy, M. W. (2019). Local adaptation for enhanced salt tolerance reduces non‐ adaptive plasticity caused by osmotic stress. Evolution, Early View. https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.13798 Alvarez, M. D. V. Fernandez, C. Cove, M. V. (2019). Assessing the role of habitat and species interactions in the population decline and detection bias of Neotropical leaf litter frogs in and around La Selva Biological Station, Costa Rica. Neotropical Biology and Conservation 14(2), pp.143– 156, e37526. https://neotropical.pensoft.net/article/37526/list/11/ Amat, F. Rivera, X. Romano, A. Sotgiu, G. (2019). Sexual dimorphism in the endemic Sardinian cave salamander (Atylodes genei). Folia Zoologica, 68(2), p.61-65. https://bioone.org/journals/Folia-Zoologica/volume-68/issue-2/fozo.047.2019/Sexual-dimorphism- in-the-endemic-Sardinian-cave-salamander-Atylodes-genei/10.25225/fozo.047.2019.short Amézquita, A, Suárez, G. Palacios-Rodríguez, P. Beltrán, I. Rodríguez, C. Barrientos, L. S. Daza, J. M. Mazariegos, L. (2019). A new species of Pristimantis (Anura: Craugastoridae) from the cloud forests of Colombian western Andes. Zootaxa, 4648(3). https://www.biotaxa.org/Zootaxa/article/view/zootaxa.4648.3.8 Arrivillaga, C. Oakley, J. Ebiner, S. (2019). Predation of Scinax ruber (Anura: Hylidae) tadpoles by a fishing spider of the genus Thaumisia (Araneae: Pisauridae) in south-east Peru.
    [Show full text]
  • Distribution and Genetic Diversity of the Amphibian Chytrid in Japan
    Journal of Fungi Article Distribution and Genetic Diversity of the Amphibian Chytrid in Japan Koichi Goka 1,*, Jun Yokoyama 2 and Atsushi Tominaga 3 1 National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan 2 Department of Biology, Faculty of Sciences, Yamagata University, 1-4-12 Kojirakawa, Yamagata-shi, Yamagata 990-8560, Japan; [email protected] 3 Department of Natural Sciences, Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 901-0213, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-29-850-2480; Fax: +81-29-850-2582 Abstract: While research on frog chytrid fungus Batrachochytrium dendrobatidis (Bd), an infectious disease that threatens amphibian diversity, continues to advance worldwide, little progress has been made in Japan since around 2010. The reason for this is, which we pointed out in 2009, that the origin of frog chytrid fungus may be in the East Asian region, including Japan based on the Bd ITS-DNA variation, and as few cases of mass mortality caused by this fungus have been observed in wild amphibian populations in Japan, the interest of the Japanese government and the general public in Bd has waned. However, we believe that organizing the data obtained so far in Japan and distributing the status of frog chytrid fungus in Japan to the world will provide useful insight for future risk management of this pathogen. We collected more than 5500 swab samples from wild amphibians throughout Japan from 2009 to 2010. Then, we investigated the infection status using the Nested-PCR method.
    [Show full text]