Tracking Submarine Volcanic Activity at Monowai: Constraints from Long‐Range Hydroacoustic Measurements

Total Page:16

File Type:pdf, Size:1020Kb

Tracking Submarine Volcanic Activity at Monowai: Constraints from Long‐Range Hydroacoustic Measurements University of South Florida Scholar Commons School of Geosciences Faculty and Staff Publications School of Geosciences 9-2018 Tracking Submarine Volcanic Activity at Monowai: Constraints From Long‐Range Hydroacoustic Measurements D. Metz University of Oxford A. B. Watts University of Oxford I. Grevemeyer GEOMAR Helmholtz Centre for Ocean Research Kiel Mel Rodgers University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/geo_facpub Part of the Earth Sciences Commons Scholar Commons Citation Metz, D.; Watts, A. B.; Grevemeyer, I.; and Rodgers, Mel, "Tracking Submarine Volcanic Activity at Monowai: Constraints From Long‐Range Hydroacoustic Measurements" (2018). School of Geosciences Faculty and Staff Publications. 2144. https://scholarcommons.usf.edu/geo_facpub/2144 This Article is brought to you for free and open access by the School of Geosciences at Scholar Commons. It has been accepted for inclusion in School of Geosciences Faculty and Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Tracking Submarine Volcanic Activity at Monowai: Constraints 10.1029/2018JB015888 From Long-Range Hydroacoustic Measurements Key Points: D. Metz1,2 , A. B. Watts1 , I. Grevemeyer3 , and M. Rodgers4 • Volcanic activity at Monowai is detected by an IMS hydrophone 1Department of Earth Sciences, University of Oxford, Oxford, UK, 2Research and Development Center for Earthquake and array at Juan Fernández Islands, 3 Southeast Pacific Ocean Tsunami, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan, GEOMAR Helmholtz Centre for 4 • Eighty-two discrete episodes of activity Ocean Research Kiel, Kiel, Germany, School of Geosciences, University of South Florida, Tampa, FL, USA have been identified in a 3.5-year record • Monowai is one of the most active Abstract Monowai is a submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. In the submarine arc volcanoes currently past, activity at the volcano had been intermittently observed in the form of fallout at the sea surface, known discolored water, changes in seafloor topography, and T phase seismicity, but there is no continuous record for more recent years. In this study, we investigated 3.5 years of recordings at a hydrophone array Supporting Information: • Supporting Information S1 of the International Monitoring System, located near Juan Fernández Islands, for long-range underwater sound waves from Monowai. Results from direction-of-arrival calculations and density-based spatial clustering indicate that 82 discrete episodes of activity occurred between July 2003 and March 2004 and Correspondence to: from April 2014 to January 2017. Volcanic episodes are typically spaced days to weeks apart, range D. Metz, from hours to days in length, and amount to a cumulative sum of 137 days of arrivals in total, making [email protected] Monowai one of the most active submarine arc volcanoes on Earth. The resolution of the hydrophone recordings surpasses broadband network data by at least 1 order of magnitude, identifying seismic events Citation: as low as 2.2 mb in the Kermadec Arc region. Further observations suggest volcanic activity at a Metz, D., Watts, A. B., Grevemeyer, I., & Rodgers, M. (2018). Tracking submarine location approximately 400 km north of Monowai in the Tonga Arc and at Healy or Brothers volcano in the volcanic activity at Monowai: southern Kermadec Arc. Our findings are consistent with previous studies and highlight the exceptional Constraints from long-range capabilities of the International Monitoring System network for the scientific study of active volcanism hydroacoustic measurements. Journal of Geophysical Research: Solid Earth, 123, in the global ocean. 7877–7895. https://doi.org/10.1029/ 2018JB015888 Received 2 APR 2018 1. Introduction Accepted 26 AUG 2018 Little is known about the rates of submarine arc volcanism. Continuous surveys of known volcanoes are Accepted article online 31 AUG 2018 Published online 22 SEP 2018 hindered by their remoteness and the inherent inaccessibility of the ocean environment for conventional monitoring techniques, for example, satellite altimetry, thermal imaging, or measuring atmospheric gas fluxes (e.g., Calkins et al., 2008; Mather et al., 2012). Hence, the location and timing of eruptions remain poorly constrained, and few active sites along submarine arcs have been studied over longer timescales (Embley et al., 2006; Schnur et al., 2017). Here we attempt to overcome these observational limitations by using long-range underwater sound waves to study volcanic activity at Monowai, a submarine volcano in the Tonga-Kermadec Arc. Located at 25.89°S, 177.18°W in the northern Kermadec Arc, Southwest Pacific Ocean, Monowai is a known example of ongoing submarine volcanic activity. The edifice consists of an active stratovolcanic cone, ris- ing from approximately 1,200 to 100 m below sea level, and a flanking caldera of approximately 10 km in diameter (Paulatto et al., 2014; Wormald et al., 2012). There is a diverse record of activity at Monowai, including direct observations of discolored surface water, gas emissions, and pumice rafts (Davey, 1980). In one instance, activity was inferred from changes in sea surface chlorophyll and particulate matter con- tent, as nutrient-rich fallout from the volcano had significantly increased local phytoplankton concentra- tion (O’Malley et al., 2014). Further observations include onsite recordings of acoustic shockwaves (Werner et al., 2013) as well as hour to day-long swarms of T phases registered by seismometers in the Southwest Pacific region (Talandier & Okal, 1987). Swath bathymetric mapping has revealed the dynamic topography of the stratocone, which has undergone repeated phases of growth and collapse, thus leading to changes in seafloor depth on the order of tens of meters over the past two decades (Chadwick, Wright, et al., 2008; Wright et al., 2008). During the most recent documented eruption in May 2011, a five-day-long ©2018. American Geophysical Union. burst of T phases, recorded at broadband seismometers at Rarotonga (Cook Islands), Papeete (Tahiti), and All Rights Reserved. Nuku Hiva (Marquesas Islands), could be linked to the growth of a 72-m summit cone and a flanking sector METZ ET AL. 7877 Journal of Geophysical Research: Solid Earth 10.1029/2018JB015888 Figure 1. (a) Overview map of the Monowai Volcanic Centre (red triangle), International Monitoring System station H03 (orange star) and the three broadband seismic stations (blue diamonds) at Rarotonga (RAR), Tahiti (PPTF), and Marquesas Islands (TAOE). The stations are located at 1,847, 2,991, and 4,340 km, respectively, from the volcano. Taravao station (TVO) of the Polynesian Seismic Network (yellow diamond) is also located at Tahiti. The white lines mark the two main source-receiver paths referred to in the methodology of this study (Sections 2 and 3). (b) Position map of the two hydrophone arrays at Juan Fernández Islands, moored approximately 15 km offshore to the north (H03N) and south (H03S). (c) Configuration of the southern H03 hydrophone array. The geodesic distance between Monowai and the triplet is 9,165 km. collapse of 18 m (Watts et al., 2012). Furthermore, long-range underwater sound waves associated with the same volcanic episode have been remotely detected by a hydrophone array near Ascension Island in the southern Equatorial Atlantic Ocean, over a geodesic range of 15,800 km (Metz et al., 2016). Activity at Monowai may have occurred as recently as October 2014 and May 2016, when seismic amplitudes at Rarotonga station rose for multiple days and discolored water was reported during flyovers conducted by the Royal New Zealand Air Force (Global Volcanism Program, 2017). Low-frequency underwater sound travels in the Sound Fixing and Ranging (SOFAR) channel, a distinct layer of minimum acoustic velocity in the oceanic water column (Ewing et al., 1951; Tolstoy et al., 1949). Earthquakes along active plate boundaries, that is, mid-ocean ridges and subduction zones, are frequent sources of underwater sound signals that can be detected over hundreds to thousands of kilometers (Graeber & Piserchia, 2004; Smith et al., 2002). Hydroacoustic observations also include recordings of vol- canic activity, in particular along the submarine arcs of the western Pacific region, for example, at Fukutoku-Okanoba in the Volcano Islands (Dziak & Fox, 2002), South Sarigan in the Mariana Arc (Green et al., 2013), or Hunga Ha’apai-Hunga Tonga volcano in the Tonga-Kermadec Arc (Bohnenstiehl et al., 2013). Acoustic phases can be converted effectively during the transition from ocean to land, thus becom- ing detectable by both hydrophones and land-based seismometers (Stevens et al., 2001). Due to the effi- cient propagation of low-frequency underwater sound even over megameter distances, such seismoacoustic arrivals, also known as seismic tertiary waves or “T phases,” can be used to improve earth- quake detection and relocation, especially where monitoring by conventional methods is not feasible (Helffrich et al., 2006). Long-range propagation of low-frequency underwater sound phases is a key feature of the hydroacoustic waveform component of the International Monitoring System (IMS). As part of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) of 1996, the objective of the IMS hydrophone network is to globally
Recommended publications
  • Bathymetry of the New Zealand Region
    ISSN 2538-1016; 11 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 161 BATHYMETRY OF THE NEW ZEALAND REGION by J. W. BRODIE New Zealand Oceanographic Institute Wellington New Zealand Oceanographic Institute Memoir No. 11 1964 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Fromispiece: The survey ship HMS Penguin from which many soundings were obtained around the New Zealand coast and in the south-west Pacific in the decade around 1900. (Photograph by courtesy of the Trustees, National Maritime Museum, Greenwich.) This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 161 BATHYMETRY OF THE NEW ZEALAND REGION by J. W. BRODIE New Zealand Oceanographic Institute Wellington New Zealand Oceanographic Institute Memoir No. 11 1964 Price: 15s. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page No. ABSTRACT 7 INTRODUCTION 7 Sources of Data 7 Compilation of Charts 8 EARLIER BATHYMETRIC INTERPRETATIONS 10 Carte Gen�rale Bathymetrique des Oceans 17 Discussion 19 NAMES OF OCEAN FLOOR FEATURES 22 Synonymy of Existing Names 22 Newly Named Features .. 23 FEATURES ON THE CHARTS 25 Major Morphological Units 25 Offshore Banks and Seamounts 33 STRUCTURAL POSITION OF NEW ZEALAND 35 The New Zealand Plateau 35 Rocks of the New Zealand Plateau 37 Crustal Thickness Beneath the New Zealand Plateau 38 Chatham Province Features 41 The Alpine Fault 41 Minor Irregularities on the Sea Floor 41 SEDIMENTATION IN THE NEW ZEALAND REGION .
    [Show full text]
  • A Submarine Magmatic-Hydrothermal System at Brothers Volcano, Kermadecs
    Proceedings 26th NZ Geothermal Workshop 2004 A SUBMARINE MAGMATIC-HYDROTHERMAL SYSTEM AT BROTHERS VOLCANO, KERMADECS A. G. REYES, C.E.J. DE RONDE, AND C. W. R. SOONG Institute of Geological and Nuclear sciences, Lower Hutt, New Zealand SUMMARY –Secondary minerals in dredge samples from the Brothers Volcano include silicates, silica polymorphs; Na-Al, Ca, Ba and Ba-Sr sulphates; Fe, Cu, Zn, As and Pb sulphides; Fe and Mn oxide/oxyhydroxides and native S. The variety and range of mineral compositions indicate deposition in different parts of a submarine hydrothermal system characterised by differences in temperature (ambient seawater to >300oC), fluid compositions, degree of magmatic-hydrothermal water-rock interaction and degree of seawater influence. Secondary minerals originate from a partly exhumed waning hydrothermal system/s (NW caldera); the main upflow of a relatively well-established active magmatic-hydrothermal system on the seafloor where sulphide-rich chimneys are extant (SE caldera) and a nascent magmatic- hydrothermal system where crack zones localise upwelling acid waters from depth (cone). 1. INTRODUCTION possibly two more) of 13 volcanoes (Massoth et al, 2003). The unusually high concentrations of Active seafloor hydrothermal venting and CO2, sulphur gases and Fe in the seafloor vent sulphide deposits were first reported in two discharges are believed to be hybrid mixtures of southern Kermadec frontal arc caldera volcanoes, hydrothermal and magmatic fluids (Massoth et al, Brothers and Rumble II (West), of the Kermadec- 2003). Of the seven hydrothermally active Havre arc-back arc system (Fig. 1) by Wright et al volcanoes, the Brothers volcano is the most (1998). In 1999 a systematic reconnaissance for active, (de Ronde et al, 2003) having two separate submarine hydrothermal activity in the southern vent sites including high-temperature black Kermadec arc found hydrothermal chemical smoker venting (Stoffers et al, 1999).
    [Show full text]
  • Chapter 36D. South Pacific Ocean
    Chapter 36D. South Pacific Ocean Contributors: Karen Evans (lead author), Nic Bax (convener), Patricio Bernal (Lead member), Marilú Bouchon Corrales, Martin Cryer, Günter Försterra, Carlos F. Gaymer, Vreni Häussermann, and Jake Rice (Co-Lead member and Editor Part VI Biodiversity) 1. Introduction The Pacific Ocean is the Earth’s largest ocean, covering one-third of the world’s surface. This huge expanse of ocean supports the most extensive and diverse coral reefs in the world (Burke et al., 2011), the largest commercial fishery (FAO, 2014), the most and deepest oceanic trenches (General Bathymetric Chart of the Oceans, available at www.gebco.net), the largest upwelling system (Spalding et al., 2012), the healthiest and, in some cases, largest remaining populations of many globally rare and threatened species, including marine mammals, seabirds and marine reptiles (Tittensor et al., 2010). The South Pacific Ocean surrounds and is bordered by 23 countries and territories (for the purpose of this chapter, countries west of Papua New Guinea are not considered to be part of the South Pacific), which range in size from small atolls (e.g., Nauru) to continents (South America, Australia). Associated populations of each of the countries and territories range from less than 10,000 (Tokelau, Nauru, Tuvalu) to nearly 30.5 million (Peru; Population Estimates and Projections, World Bank Group, accessed at http://data.worldbank.org/data-catalog/population-projection-tables, August 2014). Most of the tropical and sub-tropical western and central South Pacific Ocean is contained within exclusive economic zones (EEZs), whereas vast expanses of temperate waters are associated with high seas areas (Figure 1).
    [Show full text]
  • Morphology and History of the Kermadec Trench–Arc–Backarc
    Marine Geology 159Ž. 1999 35±62 www.elsevier.nlrlocatermargeo Morphology and history of the Kermadec trench±arc±backarc basin±remnant arc system at 30 to 328S: geophysical profile, microfossil and K±Ar data Peter F. Ballance a,), Albert G. Ablaev b, Igor K. Pushchin b, Sergei P. Pletnev b, Maria G. Birylina b, Tetsumaru Itaya c, Harry A. Follas a,1, Graham W. Gibson a,2 a UniÕersity of Auckland, PriÕate Bag 92019, Auckland, New Zealand b Pacific Oceanological Institute, 43 Baltiyskaya Street, VladiÕostok 690041, Russian Federation c Research Institute of Natural Sciences, Okayama UniÕersity of Science, 1-1 Ridai-cho, Okayama 700, Japan Received 8 January 1998; accepted 27 November 1998 Abstract Knowledge of the time span of arc activity, essential for correct tectonic reconstructions, has been lacking for the Kermadec arc system, but is supplied in this paper through study of microfossils contained in dredge samples, and K±Ar ages on dredged basalt clasts. The Kermadec system at south latitudes 30 to 328 in the southwest Pacific comprises from west to east the Colville RidgeŽ. remnant arc , Havre Trough Ž backarc basin . , Kermadec Ridge Ž. active arc and Kermadec TrenchŽ site of west-dipping subduction of Pacific plate lithosphere beneath the Australian plate. Data are presented from two traversesŽ. dredge, magnetic, single-channel seismic across the whole system. An important transverse tectonic boundary, the 328S Boundary, lies between the two traverse lines and separates distinct northernŽ. 32±258S and southern Ž.32±368S sectors. The northern sector is shallower and well sedimented with broad ridges and a diffuse backarc basin.
    [Show full text]
  • Telepresence-Enabled Exploration of The
    ! ! ! ! 2014 WORKSHOP TELEPRESENCE-ENABLED EXPLORATION OF THE !EASTERN PACIFIC OCEAN WHITE PAPER SUBMISSIONS ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TABLE OF CONTENTS ! ! NORTHERN PACIFIC! Deep Hawaiian Slopes 7 Amy Baco-Taylor (Florida State University) USS Stickleback (SS-415) 9 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Sunken Battlefield of Midway 10 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Systematic Mapping of the California Continental Borderland from the Northern Channel Islands to Ensenada, Mexico 11 Jason Chaytor (USGS) Southern California Borderland 16 Marie-Helene Cormier (University of Rhode Island) Expanded Exploration of Approaches to Pearl Harbor and Seabed Impacts Off Oahu, Hawaii 20 James Delgado (NOAA ONMS Maritime Heritage Program) Gulf of the Farallones NMS Shipwrecks and Submerged Prehistoric Landscape 22 James Delgado (NOAA ONMS Maritime Heritage Program) USS Independence 24 James Delgado (NOAA ONMS Maritime Heritage Program) Battle of Midway Survey and Characterization of USS Yorktown 26 James Delgado (NOAA ONMS Maritime Heritage Program) Deep Oases: Seamounts and Food-Falls (Monterey Bay National Marine Sanctuary) 28 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Lost Shipping Containers in the Deep: Trash, Time Capsules, Artificial Reefs, or Stepping Stones for Invasive Species? 31 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Channel Islands Early Sites and Unmapped Wrecks 33 Lynn Dodd (University of Southern
    [Show full text]
  • INTERNATIONAL HYDROGRAPHIC ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (Of UNESCO) UNDERSEA FEATURE NAME PROPOSAL
    INTERNATIONAL HYDROGRAPHIC INTERGOVERNMENTAL OCEANOGRAPHIC ORGANIZATION COMMISSION (of UNESCO) UNDERSEA FEATURE NAME PROPOSAL (See IHO-IOC Publication B-6 and NOTE overleaf) Name Proposed: Monowai Caldera Ocean or Sea: South Pacific Ocean Geometry that best defines the feature (Yes/No) : Point Line Polygon Multiple points Multiple lines* Multiple Combination of polygons* geometries* x * Geometry should be clearly distinguished when providing the coordinates below. Lat. (e.g. 63°32.6’N) Long. (e.g. 046°21.3’W) Point Coordinates**: 25°48’S 177°08.4’W 25°45.63’S 177°08.83’W 25°47.16’S 177°06.29’W 25°49.48’S 177°05.70’W 25°50.90’S 177°07.04’W 25°51.00’S 177°08.29’W Coordinates: 25°50.25’S 177°10.23’W 25°49.19’S 177°11.48’W 25°48.39’S 177°11.63’W 25°47.34’S 177°12.91’W 25°46.68’S 177°12.79’W 25°46.35’S 177°11.24’W Maximum Depth: 1627m Steepness : Feature Minimum Depth : 620m Shape : Roughly circular Description: Total Relief : 1007m Dimension/Size : ~9x8 km Associated Features: Monowai Seamount (NOTE: SCUFN to confirm that on the basis of the polygon that Dr Stagpoole resubmitted to SCUFN in June 2017 that it has altered Monowai Seamounts to Monowai Seamount. Monowai Caldera had originally been included in the larger polygon). Shown Named on Map/Chart: Wright, Ian C, William W Chadwick Jr, Cornel EJ de Named in internationally peer reviewed Ronde, Dominique Reymond, Oliver Hyvernaud, Hans- journals Hermann Gennerich, Peter Stoffers, Kevin Mackay, Miles A Dunkin, and Stephen C Bannister.
    [Show full text]
  • 1 – Published Music by Date
    1 – Published music by date The dating of sheet music is notoriously difficult. The dates supplied here have been determined by a combination of: • Publication date on the item • Copyright date on the item • Additional information on the item e.g. an event or reference to earlier works • Address information on the publishers/printer • 3rd part information, e.g. review by a newspaper • Biographical information • Estimate based on style This listing is not intended to follow full descriptive bibliographic conventions. Thus where the date has any sort of collaboration (e.g. advertisement of publication or copyright registration) it is considered to be confirmed. Where no collaboration has been able to be found and an estimate is given, this is indicated by comment “estimated date” in the notes column. First editions only are included, except where a later edition involved a change of publisher. Any queries or comments should be addressed to: Elizabeth Nichol ([email protected]) Abbreviations used: AS Auckland Star BH Bruce Herald DSC Daily Southern Cross (Auckland) EP Evening Post (Wellington) ES Evening Star (Dunedin) ODT Otago Daily Times OW Otago Witness SMH Sydney Morning Herald TH Thames Herald NZ-OW – New Zealand edition of overseas work, published by license or otherwise. No known New Zealand connection to composer or subject. Nichol_NZ published music 1850-1913 by date 1 Date Place of Last name First name Title Publisher Notes published publication Davis Daniel A gallop to the Diggins Robert Cocks London 1852 Davis Daniel Auckland Waltz Robert Cocks London Composed and arranged for the pianoforte. Composed and arranged for the pianoforte on the Davis Daniel Governor Wynyard Polka Robert Cocks London occasion of the inauguration of His Excellency to the government of New Ulster in New Zealand.
    [Show full text]
  • “SEAMOUNT” Database: Recent Updates and Its Potential Use for Ecological Risk Assessment
    New Zealand Aquatic Environment and Biodiversity Report No. 27 2008 ISSN 1176-9440 New Zealand’s “SEAMOUNT” database: recent updates and its potential use for ecological risk assessment A. A. Rowden M. Oliver M. R. Clark K. Mackay New Zealand's "SEAMOUNT" database: recent updates and its potential use for ecological risk assessment A. A. Rowden M. Oliver M. R. Clark K. Mackay NIWA Private Bag 14901 Wellington 6241 New Zealand Aquatic Environment and Biodiversity Report No. 27 2008 Published by Ministry of Fisheries Wellington 2008 ISSN 1176-9440 © Ministry of Fisheries 2008 Citation: Rowden, A.A.; Oliver, M.; Clark, M.R.; Mackay, K. (2008). New Zealand's "SEAMOUNT" database: recent updates and its potential use for ecological risk assessment. New Zealand Aquatic Environment and Biodiversity Report No. 27. 49 p. This series continues the Marine Biodiversity Biosecurity Report series which ceased with No.7 in February 2005. EXECUTIVE SUMMARY Rowden, A.A.; Oliver, M.; Clark, M.R.; Mackay, K (2008). New Zealand's "SEAMOUNT" database: recent updates and its potential use for ecological risk assessment. New Zealand Aquatic Environment and Biodiversity Report No. 27. 49 p. I) NIWA's SEAMOUNT database was enhanced in order to improve its utility for fisheries managers addressing issues around the effects of bottom trawling on "seamounts". 2) Forty-one additional data fields were erected and populated to create a second version of the database (now with a total of 72 data fields). 3) Access to the updated database is restricted at present to NIW A and MFish. Broader public access is planned by 2010.
    [Show full text]
  • THE HAWAIIAN STAR. L Ly SI'k
    n m i n fill AI'TKKNOON W n BHTi A MONTH KXCK1T SUNDAY. THE HAWAIIAN STAR. l lY SI'K. VOL. 111. HONOLULU, HAWAIIAN ISLANDS, SATi RUAY EVENING, SEPTEMBER g 194 NO. 1G1 THE For Sale, OFFICIAL DIRECTORY. BISHOP & CO., Tour- Hawaiian Star. ELITE ICE CREAM PARLORS lot PanshoulOO by BOO BWaatillatiafl UM, Ths The porniT at feet. House in j oonUalns parlor ii liming room, thme Factory, Cake hil rcKini", Imtfi room hut tun! cold water Candy "V"" Bakery, etc. Btftbti una csrrtse noose, etc. BANKERS. ist knows PUBLISH11U EVKKY AFTERNOON Tlie Rnmiids arc well laid out in fruit and riNE Vhonolulu hot ornaniciiial trees. HonoUTLO, Hawaiian Islands. EXCEPT SUNDAY ror jtarticiilftr, ;iddrf A. H., thin iifflct1. OF THE REPUBLIC lOE OREAM8, COFFEE, 3W t how to en- BY THE HAWAIIAN STAR NEWSPA- DRAW EXCHANGE ON CAKES, f TEA, CHOCOLATE CANDIES. PER ASSOCIATION, Ltd. C'tjNSOl.ll) THE BUNK OF CALIFORNIA, SUN FRANCISCO. ISLAND CURIOS. aTEU joy life. He OF HAWAII. AND THEIR AUENTH IN - - - BDITOR. Our is the Finest Resort tn the MtTIlt ll .I'lllNHToNK, Establishment SODA WATER WORKS New City. Call unci see us. Open till it p. m. York, Chicago, Boston, Paris, COMPANY, LTD. takes it easy HI'nsrilllTION HATBH. MESSRS. N, M. ROTHIMD & SONS, LONDON, Esplanade, corner Allen ami Fort Pet Vi'itr In A.lvancc, - street. FR AKKfORT-ON-THJ- M A 1 N , V VI I'TI t HTNCIl.. Thi mmercial Bskins1 Co. of Sydney, land La - W drinks I'ot Montli Ailvaueo, .S CASTLE & COOKE, HOLLISTER & CO.. Agents. N. s W, - - BurelRn, pet Yratr In Advance.
    [Show full text]
  • Louisville Seamount Subduction: Tracking Mantle Flow Beneath the Central Tonga-Kermadec Arc
    Louisville seamount subduction: tracking mantle flow beneath the central Tonga-Kermadec arc Christian Timm1*, Daniel Bassett2, Ian J. Graham1, Matthew I. Leybourne1†, Cornel E.J. de Ronde1, Jon Woodhead3, Daniel Layton-Matthews4 and Anthony B. Watts2 1Department of Marine Geoscience, GNS Science, PO Box 30-368, Lower Hutt, New Zealand, 2Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK, 3School of Earth Sciences, University of Melbourne, Victoria 3010, Australia, 4Department of Geological Sciences & Geological Engineering, Queen’s University, Kingston, Ontario, Canada, † now at ALS Geochemistry, 2103 Dollarton Hwy, North Vancouver, BC, Canada [email protected] Subduction of alkaline intraplate seamounts beneath a geochemically depleted mantle wedge provides a rare opportunity to study element recycling and mantle flow in some detail. One example of a seamount chain – oceanic arc collision is the ~2,600 km long Tonga-Kermadec arc, where midway the Cretaceous Louisville seamount chain subducts beneath the central Tonga-Kermadec arc system. Here subduction of a thin sediment package (~200 m) beneath oceanic lithosphere together with an aqueous fluid-dominated system allows to track geochemical signatures from the subducted Louisville seamounts and to better understand mantle flow geometry. Geochemical analyses of recent lavas (<10 ka) from volcanic centers west of the contemporaneous Louisville-Tonga trench intersection (Monowai, ‘U’ and ‘V’) show elevated 206Pb/204Pb, 208Pb/204Pb and to a lesser extend 87Sr/86Sr values but N-MORB-type compared to centers to the north and south (e.g. Turner et al., 1997; Haase et al., 2002; Timm et al., 2012) but mostly similar N-MORB-type ratios of fluid-immobile trace elements (e.g.
    [Show full text]
  • Energy Information Handbook
    New Zealand Energy Information Handbook Third Edition New Zealand Energy Information Handbook Third Edition Gary Eng Ian Bywater Charles Hendtlass Editors CAENZ 2008 New Zealand Energy Information Handbook – Third Edition ISBN 978-0-908993-44-4 Printing History First published 1984; Second Edition published 1993; this Edition published April 2008. Copyright © 2008 New Zealand Centre for Advanced Engineering Publisher New Zealand Centre for Advanced Engineering University of Canterbury Campus Private Bag 4800 Christchurch 8140, New Zealand e-mail: [email protected] Editorial Services, Graphics and Book Design Charles Hendtlass, New Zealand Centre for Advanced Engineering. Cover photo by Scott Caldwell, CAENZ. Printing Toltech Print, Christchurch Disclaimer Every attempt has been made to ensure that data in this publication are accurate. However, the New Zealand Centre for Advanced Engineering accepts no liability for any loss or damage however caused arising from reliance on or use of that information or arising from the absence of information or any particular information in this Handbook. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted, or otherwise disseminated, in any form or by any means, except for the purposes of research or private study, criticism or review, without the prior permission of the New Zealand Centre for Advanced Engineering. Preface This Energy Information Handbook brings Climate Change and the depletion rate of together in a single, concise, ready- fossil energy resources, more widely reference format basic technical informa- recognised now than when the second tion describing the country’s energy edition was published, add to the resources and current energy commodi- pressure of finding and using energy ties.
    [Show full text]
  • Ultra-Long-Range Hydroacoustic Observations of Submarine Volcanic 1
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Ultra-long-range hydroacoustic observations 10.1002/2015GL067259 of submarine volcanic activity at Monowai, Key Points: Kermadec Arc • T phase arrivals at Ascension Island can be linked to a submarine eruption D. Metz1, A. B. Watts1, I. Grevemeyer2, M. Rodgers1, and M. Paulatto3 at Monowai, Kermadec Arc • T phases must have traveled along the 1Department of Earth Sciences, University of Oxford, Oxford, UK, 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, SOFAR channel and over a geodesic 3 range of ~15,800 km Germany, Géoazur, Université Nice Sophia Antipolis, Valbonne, France • Our results are confirmed by correlation with broadband seismic data and transmission loss modeling Abstract Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest PacificOcean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation Supporting Information: of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that • Supporting Information S1 the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Correspondence to: Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through D. Metz, fi [email protected] the Sound Fixing and Ranging channel in the South Paci c and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz.
    [Show full text]