Energy Information Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Energy Information Handbook New Zealand Energy Information Handbook Third Edition New Zealand Energy Information Handbook Third Edition Gary Eng Ian Bywater Charles Hendtlass Editors CAENZ 2008 New Zealand Energy Information Handbook – Third Edition ISBN 978-0-908993-44-4 Printing History First published 1984; Second Edition published 1993; this Edition published April 2008. Copyright © 2008 New Zealand Centre for Advanced Engineering Publisher New Zealand Centre for Advanced Engineering University of Canterbury Campus Private Bag 4800 Christchurch 8140, New Zealand e-mail: [email protected] Editorial Services, Graphics and Book Design Charles Hendtlass, New Zealand Centre for Advanced Engineering. Cover photo by Scott Caldwell, CAENZ. Printing Toltech Print, Christchurch Disclaimer Every attempt has been made to ensure that data in this publication are accurate. However, the New Zealand Centre for Advanced Engineering accepts no liability for any loss or damage however caused arising from reliance on or use of that information or arising from the absence of information or any particular information in this Handbook. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted, or otherwise disseminated, in any form or by any means, except for the purposes of research or private study, criticism or review, without the prior permission of the New Zealand Centre for Advanced Engineering. Preface This Energy Information Handbook brings Climate Change and the depletion rate of together in a single, concise, ready- fossil energy resources, more widely reference format basic technical informa- recognised now than when the second tion describing the country’s energy edition was published, add to the resources and current energy commodi- pressure of finding and using energy ties. resources with the utmost efficiency and with due regard to the environmental The editor of the second edition of the consequences. Handbook published in 1991, James Baines, was responsible for editing a The data contained in this Handbook similar volume in 1984 under the have been selected as being suitable for auspices of the New Zealand Energy analyses and investigations at the Research and Development Committee. planning and policy level, and for general This is the third revised and expanded consumer and student enquiries. The two edition, published for the first time by main aims served by this Handbook are the New Zealand Centre for Advanced to encourage the widespread and Engineering (CAENZ). consistent use of a uniform data set, relevant to New Zealand, and to familiar- CAENZ was established in 1987 as the ise users who do not have a technical Centre for Advanced Engineering (CAE) to background with the important factors mark one hundred years of teaching that affect the appropriateness and engineering at the University of Canter- accuracy of energy data. bury. Over the years, guided by ‘for the public good’ principles, CAENZ has played Interest in strategic energy issues is a strong knowledge-broking and facilitat- intensifying even more. Informed public ing role within New Zealand’s engineering debate depends on access to authorita- and technology sectors, seeking to tive data. It is heartening to observe a enlarge this country’s technological continuation of support for making good capability in areas of national impor- technical data publicly available among tance. energy sector organisations. This Handbook is a tribute to the cooperative- As with the second edition, a new ness of many individuals in the energy Handbook is overdue for several reasons. sector. The original volume was prepared at a time when the gas sector in particular The Handbook is not intended to be an was in a state of rapid evolution. It is a energy compendium, and does not very different now and so are the energy contain energy statistics or other data commodities involved. Since 1984, the that will date quickly. There are several energy sector has been re-regulated, alternative sources for information of this corporatised and privatised to varying type, such as the Ministry of Economic degrees. Access to definitive information, Development Energy Data File even of a technical rather than a commer- (www.med.govt.nz) and the EECA website cial nature, remains problematic for many. (www.eeca.govt.nz). New Zealand Energy Information Handbook Page iii Handbook Updating New Zealand’s energy scene, and As always, there are gaps in this data- additional user requirements. Comments base, attributable in the main either to and suggestions from users would be commercial sensitivities (primary resource welcomed. These can be sent to: data) or to the absence of basic informa- The Editor tion (end-use data). In time these gaps New Zealand Energy Information may be remedied. Handbook It is also likely that users of the Hand- CAENZ book will be able to identify possible University of Canterbury Campus additions or improvements to be Private Bag 4800 incorporated in future editions. This CHRISTCHURCH 8140 Handbook will continue to be reviewed or e-mailed to: and updated from time to time to accommodate changing circumstances in [email protected] Page iv Preface Contents Preface .............................................................................................................iii List of Tables ................................................................................................. viii List of Figures ................................................................................................... x 1Introduction ..................................................................................................... 1 New Zealand focus and international conventions .................................................1 Units and conversion factors ...................................................................................1 Levels of accuracy ....................................................................................................1 2Units and Energy Conversion Factors .....................................................................3 SI units of measurement ........................................................................................ 3 Metric prefixes ......................................................................................................... 3 Energy commodity units in popular usage ............................................................. 3 Energy and work equivalents ................................................................................. 4 Power equivalents ................................................................................................... 4 Calorific value equivalents ...................................................................................... 5 IEA energy equivalents............................................................................................ 6 Some examples of unit conversions ....................................................................... 6 3 Coal .........................................................................................................................9 Character of the resource ....................................................................................... 9 The coal sector in New Zealand ............................................................................. 9 New Zealand coal properties ................................................................................. 11 New Zealand coal resources .................................................................................. 11 Coal analysis ......................................................................................................... 14 Other coal-based solid fuels ................................................................................. 18 4Natural Gas ........................................................................................................... 19 Character of the resource ......................................................................................19 Gas treatment ....................................................................................................... 19 Fuel components of natural gas ........................................................................... 19 New Zealand resources ......................................................................................... 20 Location of major facilities ................................................................................... 21 Natural gas distribution ........................................................................................ 21 Overview of natural gas sales streams ................................................................. 21 Liquefied Petroleum Gas (LPG) ............................................................................. 21 5Petroleum ..............................................................................................................25 Character of the resource ..................................................................................... 25 New Zealand resources ......................................................................................... 25 Technical infrastructure ......................................................................................... 25 Product density ..................................................................................................... 25 Energy and product density .................................................................................
Recommended publications
  • Carbon Capture and Storage: Setting the New Zealand Scene
    Carbon capture and storage: Setting the New Zealand scene Brad Field GNS Science Lower Hutt [email protected] GNS Science The mitigation wedges required to meet 2050 emission target (if only 2o in 2100) 60 CCS 50 40 2 O 30 Gt C 20 10 0 2009 2015 2020 2025 2030 2035 2040 2045 2050 CCS 14% (17%) Power generation efficiency and fuel switching 3% (1%) Renewables 21% (23%) End-use fuel switching 12% (12%) Nuclear 8% (8%) End-use energy efficiency 42% (39%) Percentages represent share of cumulative emissions reductions to 2050. Percentages in brackets represent share of emissions reductions in the year 2050. IEA 2012, GCCSI 2012 GNS Science Deep purple… http://www.smh.com.au/environment/weather/temperatures-off-the-charts-as-australia-turns-deep-purple-20130108-2ce33.html GNS Science The carbon capture, transport and storage process Below ~800 m = liquid CO2CRC GNS Science Geological storage of CO2 claystone seal rock sandstone reservoir rock seal reservoir CO2CRC injected CO2 seal CO2 storage sites: natural gas reservoir • Several kilometres below surface • Similar locations to oil and natural gas GNS Science Typical depth ranges for subsurface resources Interactions could include leakage/migration, and pressure effects IEAGHG Technical Report 2013-08 GNS Science Global scene • 16 large CCS projects currently operating or in construction, with a total capture ~ 36 Mtpa of CO2 • 59 large projects being planned: >110 Mtpa Government support for CCS: • UKP 1,000 M government funding • USD 3,400 M government funding • AUD 1,680 M Flagship Project
    [Show full text]
  • Hello from Todd Energy
    Community Update Issue 29, June 2021 View over the Taramoukou Conservation Area looking south west to Taranaki Maunga HELLO FROM TODD ENERGY... This is my first community update since joining Todd All of this work that we do is to help provide an affordable and Energy in January, and it’s certainly been a busy time reliable energy supply to all New Zealanders as we transition – both for me in the role of CEO and also for the wider to a low emissions economy. We are actively finding ways to reduce our emissions and, while this will remain an ongoing Todd team. I hope this update finds you and your families journey, through our initiatives we were able to reduce our well as we move into the winter months. emissions by 660 tCO2 / year in 2020 – the equivalent of taking 144 cars off the road. On top of that, through the various Last month, we completed our scheduled drilling activities projects we’re implementing this year, we will be able to further at the Mangahewa G wellsite in north Taranaki, bringing the reduce our emissions by 4,500 tCO2 / year – the equivalent of second phase of development to a close. As some of our taking almost 1,000 cars off the road. You can find out more neighbours may have noticed, Todd’s ‘Big Ben’ drilling rig about our efforts to reduce our emissions in this update, and has already been demobilised and relocated to our Kapuni J I look forward to sharing more on this topic over the coming wellsite in south Taranaki.
    [Show full text]
  • Bathymetry of the New Zealand Region
    ISSN 2538-1016; 11 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 161 BATHYMETRY OF THE NEW ZEALAND REGION by J. W. BRODIE New Zealand Oceanographic Institute Wellington New Zealand Oceanographic Institute Memoir No. 11 1964 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Fromispiece: The survey ship HMS Penguin from which many soundings were obtained around the New Zealand coast and in the south-west Pacific in the decade around 1900. (Photograph by courtesy of the Trustees, National Maritime Museum, Greenwich.) This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 161 BATHYMETRY OF THE NEW ZEALAND REGION by J. W. BRODIE New Zealand Oceanographic Institute Wellington New Zealand Oceanographic Institute Memoir No. 11 1964 Price: 15s. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page No. ABSTRACT 7 INTRODUCTION 7 Sources of Data 7 Compilation of Charts 8 EARLIER BATHYMETRIC INTERPRETATIONS 10 Carte Gen�rale Bathymetrique des Oceans 17 Discussion 19 NAMES OF OCEAN FLOOR FEATURES 22 Synonymy of Existing Names 22 Newly Named Features .. 23 FEATURES ON THE CHARTS 25 Major Morphological Units 25 Offshore Banks and Seamounts 33 STRUCTURAL POSITION OF NEW ZEALAND 35 The New Zealand Plateau 35 Rocks of the New Zealand Plateau 37 Crustal Thickness Beneath the New Zealand Plateau 38 Chatham Province Features 41 The Alpine Fault 41 Minor Irregularities on the Sea Floor 41 SEDIMENTATION IN THE NEW ZEALAND REGION .
    [Show full text]
  • Geothermal Project Reports List.Xlsx
    Geothermal Project Reports List.xlsx Geothermal Project Reports List Call Number Title Author 1979.01 Corrosion testing in geothermal systems ABDURRAHMAN, M. 1979.03 Evaluation of the North Davao geothermal prospect, Mindanao, Southern Philippines AREVALO, E. 1979.04 Geothermal pilot plant studies in Broadlands BASYARI, A. 1979.05 Two-phase geothermal fluid transmission application to El Tatio Geothermal Field, Chile BENABARRE, J. 1979.06 Geochemistry of hydrothermal alteration of the Ohaki Rhyolite, Broadlands Geothermal Field, New Zealand BOGIE, I. 1979.07 Gravity anomalies over the Ngawha Geothermal Field, Northland, New Zealand CORDON, U. 1979.08 Economic analysis of geothermal plant DANU, H. 1979.09 Preliminary study of the binary cycle with reference to its application to the geothermal resources in India RAO, D.H. 1979.10 Mapping and chemical survey of surface distance features, Ngawha Geothermal Field, Northland, New TESFAGIORGIS, P. Zealand 1979.12 Geothermal well design - prediction of flow and heat transfer KANGUA, J.F. 1979.15 Non-electrical uses of geothermal energy - downhole heat exchanger design LEE, K. 1979.16 Mapping of vents associated with Putahi Rhyolite, Northland, N.Z. LETELIER, M. 1979.17 Setting of the geothermal fields of Tibet and a discussion of associated heat source problems LIAO, Z. 1979.19 The potential of the Manito geothermal system, South-Eastern Luzon, Philippines OBUSAN, R. 1979.20 A literature survey of geopressured systems PENG, D-J. 1979.21 Build-up test analysis of Ngawha and Kamojang wells PRATOMO, H. 1979.22 Thermodynamics of geothermal plant - optimisation studies TARIGAN, G. 1979.23 More efficient use of geothermal heat at Broadlands Lucerne Company's drying plant VAN DE WYDEVEN, F.
    [Show full text]
  • Geothermal Power Development in New Zealand - Lessons for Japan
    Geothermal Power Development in New Zealand - Lessons for Japan - Research Report Emi Mizuno, Ph.D. Senior Researcher Japan Renewable Energy Foundation February 2013 Geothermal Power Development in New Zealand – Lessons for Japan 2-18-3 Higashi-shimbashi Minato-ku, Tokyo, Japan, 105-0021 Phone: +81-3-6895-1020, FAX: +81-3-6895-1021 http://jref.or.jp An opinion shown in this report is an opinion of the person in charge and is not necessarily agreeing with the opinion of the Japan Renewable Energy Foundation. Copyright ©2013 Japan Renewable Energy Foundation.All rights reserved. The copyright of this report belongs to the Japan Renewable Energy Foundation. An unauthorized duplication, reproduction, and diversion are prohibited in any purpose regardless of electronic or mechanical method. 1 Copyright ©2013 Japan Renewable Energy Foundation.All rights reserved. Geothermal Power Development in New Zealand – Lessons for Japan Table of Contents Acknowledgements 4 Executive Summary 5 1. Introduction 8 2. Geothermal Resources and Geothermal Power Development in New Zealand 9 1) Geothermal Resources in New Zealand 9 2) Geothermal Power Generation in New Zealand 11 3) Section Summary 12 3. Policy and Institutional Framework for Geothermal Development in New Zealand 13 1) National Framework for Geothermal Power Development 13 2) Regional Framework and Process 15 3) New National Resource Consent Framework and Process for Proposals of National Significance 18 4) Section Summary 21 4. Environmental Problems and Policy Approaches 22 1) Historical Environmental Issues in the Taupo Volcanic Zone 22 2) Policy Changes, Current Environmental and Management Issues, and Policy Approaches 23 3) Section Summary 32 5.
    [Show full text]
  • Marine Discharge Consent Application ‐ Deck Drainage
    MARINE DISCHARGE CONSENT APPLICATION ‐ DECK DRAINAGE Taranaki Basin Prepared for: OMV New Zealand Limited The Majestic Centre Level 20, 100 Willis Street PO Box 2621, Wellington 6015 New Zealand SLR Ref: 740.10078.00000 Version No: ‐v1.0 March 2018 OMV New Zealand Limited SLR Ref No: 740.10078.00000‐R01 Marine Discharge Consent Application ‐ Deck Drainage Filename: 740.10078.00000‐R01‐v1.0 Marine Discharge Consent Taranaki Basin 20180326 (FINAL).docx March 2018 PREPARED BY SLR Consulting NZ Limited Company Number 2443058 5 Duncan Street Port Nelson 7010, Nelson New Zealand T: +64 274 898 628 E: [email protected] www.slrconsulting.com BASIS OF REPORT This report has been prepared by SLR Consulting NZ Limited with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with OMV New Zealand Limited. Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid. This report is for the exclusive use of OMV New Zealand Limited. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work. DOCUMENT CONTROL Reference Date Prepared Checked Authorised 740.10078.00000‐R01‐v1.0 26 March 2018 SLR Consulting NZ Ltd Dan Govier Dan Govier 740.10078.00000‐R01‐v1.0 Marine Discharge Consent 20180326 (FINAL).docx Page 2 OMV New Zealand Limited SLR Ref No: 740.10078.00000‐R01 Marine Discharge Consent Application ‐ Deck Drainage Filename: 740.10078.00000‐R01‐v1.0 Marine Discharge Consent Taranaki Basin 20180326 (FINAL).docx March 2018 EXECUTIVE SUMMARY OMV New Zealand Limited (OMV New Zealand) is applying for a Marine Discharge Consent (hereafter referred to as a Discharge Consent) under Section 38 of the Exclusive Economic Zone and Continental Shelf (Environmental Effects) Act 2012 (EEZ Act).
    [Show full text]
  • Renewable Energy - Industry Status Report (Year Ending March 2006)
    Prepared for The Energy Efficiency and Conservation Authority Renewable Energy - Industry Status Report (year ending March 2006) By East Harbour Management Services EAST HARBOUR MANAGEMENT SERVICES P O BOX 11 595 WELLINGTON Tel: 64 4 385 3398 Fax: 64 4 385 3397 www.eastharbour.co.nz www.energyinfonz.com June 2006 East Harbour Project # EH243 Field Code Changed - Third Edition This study has been commissioned by the Energy Efficiency and Conservation Authority (EECA). EECA welcome any feedback this report. For further information contact: EECA Phone 04 470 2200 PO Box 388 Wellington New Zealand http://www.eeca.govt.nz/ [email protected] EECA disclaimer: ―It will be noted that the authorship of this document has been attributed to a number of individuals and organisations involved in its production. While all sections have been subject to review and final editing, the opinions expressed remain those of the authors and do not necessarily reflect the views of the Energy Efficiency and Conservation Authority. Recommendations need to be interpreted with care and judgement.‖ Notes: 1. The report focuses on useable energy at source from renewable energy resources, because this is what is pragmatically measurable. Hydro, wave, tidal and wind useable energy is measured as direct output from the electricity generator. Solar primary energy is measured as direct output from the collector. Geothermal primary energy is measured at the well head. Bioenergy is measured as direct output from the heat plant. Solar space heating is not measured. 2. To allow comparison with other studies the following methodologies are followed: Electricity Primary energy for electricity generation (excluding PV) is useable energy at source plus generator losses.
    [Show full text]
  • ENA's Response to Climate Change Commission's Draft Advice
    Date: 28 March 2021 Name of submitter: Electricity Networks Association Industry/area of interest: Utilities/infrastructure Contact details Richard Le Gros, Manager, Policy and Innovation Address: Level 5, Legal House 101 Lambton Quay WELLINGTON 6011 Telephone: 64 4 471 1335 Email: [email protected] 2021 Draft Advice for Consultation Submission to the Climate Change Commission From the Electricity Networks Association ELECTRICITY NETWORKS ASSOCIATION Draft Advice submission to Climate Change Commission Contents 1. Introduction ................................................................................................................ 3 2. Overview ..................................................................................................................... 3 3. Question 1 - Principles to guide our advice ................................................................... 3 4. Question 15 - Do you support the package of recommendations and actions for the heat, industry and power sectors? ................................................................................ 5 5. Question 19 - Multisector strategy - Do you support the package of recommendations and actions to create a multisector strategy? ................................................................ 9 6. Conclusion .................................................................................................................. 10 7. Appendix ...................................................................................................................
    [Show full text]
  • Electricity Distributors' Performance from 2008 to 2011
    ISBN no. 978-1-869453-02-2 Project no. 14.20/13107 Public version Electricity distributors’ performance from 2008 to 2011 Date: 29 January 2013 2 Chapter 1 Introduction 4 Helping customers understand how their electricity distributor is performing 4 We have focused on some key areas of performance 4 We use public information to give an overview of distributors’ performance 5 Structure of this report 5 We would like to hear how useful you found this report 5 Chapter 2 Overview of New Zealand’s electricity industry 6 The main parts of the electricity industry supply chain 6 Key features of the New Zealand electricity distribution sector 7 Chapter 3 Our role in the electricity industry 11 How we regulate electricity distributors in New Zealand 11 Chapter 4 Overview of industry performance 14 Prices, revenue and demand 16 How reliable is electricity distribution in New Zealand? 25 Expenditure 28 3 On 5 February 2013 we made some corrections to the paper. The table below summarises the changes. Distributor Change Buller corrected information in Table 7.1 Electricity Invercargill corrected information in Table 13.1; replaced $7.5m with $1m in commentary under Figure 13.3 MainPower corrected information in Table 16.1 Orion corrected information in Table 22.1; replaced ‘Electra’ with ‘Orion’ in notes to Figures 22.13 and 22.14 OtagoNet corrected information in Table 23.1 Powerco corrected information in Table 24.1 The Power Company corrected information in Table 25.1 Vector corrected information in Table 29.1; added note under Figure 29.1; corrected Figure 29.17 WEL Networks corrected information in Table 31.1 Wellington corrected wording above Figure 32.17 Westpower corrected information in Table 33.1 Introduction 4 Chapter 1 Introduction Helping customers understand how their electricity distributor is performing We have written this report primarily for customers of electricity distribution services, by which we mean people who have, and pay for, a connection to an electricity distribution network.1 This includes both households and businesses.
    [Show full text]
  • A Case Study of the South Taranaki District
    The Impact of Big Box Retailing on the Future of Rural SME Retail Businesses: A Case Study of the South Taranaki District Donald McGregor Stockwell A thesis submitted to Auckland University of Technology in fulfilment of the requirements for the degree of Master of Philosophy 2009 Institute of Public Policy Primary Supervisor Dr Love Chile TABLE OF CONTENTS Page ATTESTATION OF AUTHORSHIP ........................................................................ 7 ACKNOWLEDGEMENT ............................................................................................ 8 ABSTRACT ................................................................................................................... 9 CHAPTER ONE: INTRODUCTION AND BACKGROUND TO THE STUDY ................................ 10 CHAPTER TWO: GEOGRAPHICAL AND HISTORICAL BACKGROUND TO THE TARANAKI REGION................................................................................................ 16 2.1 Location and Geographical Features of the Taranaki Region ............................. 16 2.2 A Brief Historical Background to the Taranaki Region ...................................... 22 CHAPTER THREE: MAJOR DRIVERS OF THE SOUTH TARANAKI ECONOMY ......................... 24 3.1 Introduction ......................................................................................................... 24 3.2 The Processing Sector Associated with the Dairy Industry ................................ 25 3.3 Oil and Gas Industry in the South Taranaki District ..........................................
    [Show full text]
  • Oil and Gas Security
    NEW ZEALAND OVERVIEW _______________________________________________________________________ 3 1. Energy Outlook _________________________________________________________________ 4 2. Oil ___________________________________________________________________________ 5 2.1 Market Features and Key Issues ___________________________________________________________ 5 2.2 Oil Supply Infrastructure _________________________________________________________________ 8 2.3 Decision-making Structure for Oil Emergencies ______________________________________________ 10 2.4 Stocks _______________________________________________________________________________ 10 3. Other Measures _______________________________________________________________ 12 3.1 Demand Restraint ______________________________________________________________________ 12 3.2 Fuel Switching _________________________________________________________________________ 13 3.3 Surge Oil Production ____________________________________________________________________ 14 3.4 Relaxing Fuel Specifications ______________________________________________________________ 14 4. Natural Gas ___________________________________________________________________ 15 4.1 Market Features and Key Issues __________________________________________________________ 15 4.2 Natural Gas Supply Infrastructure _________________________________________________________ 17 4.3 Emergency Policy for Natural Gas _________________________________________________________ 18 List of Figures Total Primary Energy Supply .................................................................................................................................4
    [Show full text]
  • Chapter 36D. South Pacific Ocean
    Chapter 36D. South Pacific Ocean Contributors: Karen Evans (lead author), Nic Bax (convener), Patricio Bernal (Lead member), Marilú Bouchon Corrales, Martin Cryer, Günter Försterra, Carlos F. Gaymer, Vreni Häussermann, and Jake Rice (Co-Lead member and Editor Part VI Biodiversity) 1. Introduction The Pacific Ocean is the Earth’s largest ocean, covering one-third of the world’s surface. This huge expanse of ocean supports the most extensive and diverse coral reefs in the world (Burke et al., 2011), the largest commercial fishery (FAO, 2014), the most and deepest oceanic trenches (General Bathymetric Chart of the Oceans, available at www.gebco.net), the largest upwelling system (Spalding et al., 2012), the healthiest and, in some cases, largest remaining populations of many globally rare and threatened species, including marine mammals, seabirds and marine reptiles (Tittensor et al., 2010). The South Pacific Ocean surrounds and is bordered by 23 countries and territories (for the purpose of this chapter, countries west of Papua New Guinea are not considered to be part of the South Pacific), which range in size from small atolls (e.g., Nauru) to continents (South America, Australia). Associated populations of each of the countries and territories range from less than 10,000 (Tokelau, Nauru, Tuvalu) to nearly 30.5 million (Peru; Population Estimates and Projections, World Bank Group, accessed at http://data.worldbank.org/data-catalog/population-projection-tables, August 2014). Most of the tropical and sub-tropical western and central South Pacific Ocean is contained within exclusive economic zones (EEZs), whereas vast expanses of temperate waters are associated with high seas areas (Figure 1).
    [Show full text]