Histone H3K27 Methyltransferase Ezh2 Represses Wnt Genes to Facilitate Adipogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Histone H3K27 Methyltransferase Ezh2 Represses Wnt Genes to Facilitate Adipogenesis Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis Lifeng Wanga, Qihuang Jina, Ji-Eun Leea, I-hsin Sub,1, and Kai Gea,2 aNuclear Receptor Biology Section, Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and bLaboratory of Lymphocyte Signaling, The Rockefeller University, New York, NY 10065 Edited by Mark T. Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved March 12, 2010 (received for review January 4, 2010) Wnt/β-catenin signaling inhibits adipogenesis. Genome-wide histone methyltransferase subunit Ezh2, PRC2 methylates his- profiling studies have revealed the enrichment of histone H3K27 tone H3 on lysine 27 (H3K27). The resulting H3K27 trimethy- methyltransferase Ezh2 on Wnt genes. However, the functional lation is specifically recognized and bound by the PRC1 complex significance of such a direct link between the two types of devel- to facilitate transcriptional repression (6). PRC2 and PRC1 are opmental regulators in mammalian cells, and the role of Ezh2 in localized on a large number of developmental genes in embry- adipogenesis, remain unclear. Here we show Ezh2 and its H3K27 onic stem (ES) cells. Disruption of PRC2 by deletion of Ezh2, methyltransferase activity are required for adipogenesis. Ezh2 Suz12, or EED in ES cells markedly decreases the global levels directly represses Wnt1,-6,-10a, and -10b genes in preadipocytes of H3K27 di- and trimethylation (H3K27me2 and H3K27me3) and during adipogenesis. Deletion of Ezh2 eliminates H3K27me3 and derepresses many polycomb target genes (7–12). on Wnt promoters and derepresses Wnt expression, which leads Genomewide profiling studies have revealed the enrichment β to activation of Wnt/ -catenin signaling and inhibition of adipo- of H3K27 methyltransferase Ezh2 and associated H3K27me3 on genesis. Ectopic expression of the wild-type (WT) Ezh2, but not the Wnt genes in Drosophila and mammalian cells (7, 13, 14). How- enzymatically inactive F667I mutant, prevents the loss of − − ever, the functional significance of such a direct link between the H3K27me3 and the defects in adipogenesis in Ezh2 / preadipo- Ezh2−/− two types of developmental regulators in mammalian cell differ- cytes. The adipogenesis defects in cells can be rescued by entiation has not been shown. In addition, the role of Ezh2 in expression of adipogenic transcription factors PPARγ, C/EBPα,or − − adipogenesis remains unclear. Using Ezh2 conditional knockout inhibitors of Wnt/β-catenin signaling. Interestingly, Ezh2 / cells cells, here we show Ezh2 and its H3K27 methyltransferase activity show marked increase of H3K27 acetylation globally as well as on Wnt are required for adipogenesis. Ezh2 directly represses multiple promoters. These results indicate that H3K27 methyltransfer- Wnt ase Ezh2 directly represses Wnt genes to facilitate adipogenesis genes to facilitate adipogenesis. We also provide evidence to suggest that acetylation and trimethylation on H3K27 play and suggest that acetylation and trimethylation on H3K27 play Wnt opposing roles in regulating Wnt expression. opposing roles in regulating expression. Results epigenetics | histone methylation | polycomb | PRC2 Severe Adipogenesis Defects in Ezh2−/− Primary Preadipocytes. To Wnt investigate the role of H3K27 methyltransferase Ezh2 in adipo- he genes encode an evolutionarily conserved family of genesis, we isolated primary white preadipocytes from Ezh2 fl fl Tsecreted proteins that play critical roles in regulating conditional knockout Ezh2 ox/ ox mice (15). Cells were infected embryonic development and adult tissue homeostasis (1). In the with adenovirus expressing Cre (Ad-Cre) to acutely delete the canonical Wnt signaling pathway, also know as the Wnt/ Ezh2 gene. Deletion of Ezh2 was confirmed by quantitative β-catenin signaling pathway, Wnt binding to cell surface recep- reverse-transcriptase PCR (qRT-PCR) (Fig. S1A). Gene expres- tors leads to the stabilization and accumulation of free β-catenin sion analysis revealed increased expression of known Ezh2 target in the cytoplasm. The accumulated cytosolic β-catenin trans- Ink4a Arf − − genes including Hox, p16 , and p19 in Ezh2 / primary locates to the nucleus, where it binds to sequence-specific tran- preadipocytes (Fig. S1B). scription factors LEF/TCF and functions as a transcriptional Two days after cells reached confluence, preadipocytes were coactivator to promote expression of Wnt target genes. Numerous induced to undergo adipogenesis. Deletion of Ezh2 resulted in studies have pinpointed the details of how Wnt/β-catenin signaling a severe adipogenesis defect in primary white preadipocytes (Fig. activates expression of Wnt target genes that regulate various S1C). Consistent with the morphology, Ezh2 deletion blocked developmental processes. However, how Wnt genes are regulated expression of adipogenesis markers PPARγ, C/EBPα, and aP2 remains poorly understood. D CELL BIOLOGY Wnt/β-catenin signaling inhibits adipogenesis (2). Activation (Fig. S1 ). Similarly, deletion of Ezh2 in primary brown pre- of Wnt/β-catenin signaling by expression of Wnt1 or Wnt10b, or adipocytes resulted in increased expression of known Ezh2 target β genes and severe defects in adipogenesis and associated by chemicals that stabilize cytosolic free -catenin, blocks adi- E–H pogenesis (3). Wnt/β-catenin signaling prevents the induction of expression of markers for brown adipocytes (Fig. S1 ). peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα), the two principal adipogenic transcription factors that cooperate to control pre- Author contributions: L.W. and K.G. designed research; L.W., Q.J., J.-E.L., and K.G. per- β formed research; I.-h.S. contributed new reagents/analytic tools; L.W., Q.J., J.-E.L., and adipocyte differentiation (adipogenesis). In addition, -catenin K.G. analyzed data; and L.W. and K.G. wrote the paper. γ inhibits the transcriptional activity of PPAR (4). Conversely, The authors declare no conflict of interest. β inhibition of Wnt/ -catenin signaling by expressing Axin1 or This article is a PNAS Direct Submission. dominant-negative TCF4 (dnTCF4) promotes adipogenesis (3). Data deposition: Microarray data have been deposited in NCBI GEO database (accession Polycomb group proteins are transcriptional repressors that number GSE20054). help maintain the cell identity during development through 1Present address: Division of Genomics and Genetics, School of Biological Sciences, chromatin modification (5). Mammalian polycomb group pro- Nanyang Technological University, Singapore 639798. teins form two multisubunit complexes, polycomb repressive 2To whom correspondence should be addressed. E-mail: [email protected]. complexes 1 and 2 (PRC1 and PRC2), respectively (5, 6). PRC2 This article contains supporting information online at www.pnas.org/cgi/content/full/ contains three core subunits: Ezh2, Suz12, and EED. Through its 1000031107/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1000031107 PNAS | April 20, 2010 | vol. 107 | no. 16 | 7317–7322 Downloaded by guest on September 25, 2021 − − Characterization of SV40T-Immortalized Ezh2 / Preadipocytes. Ezh2 Is Required for Adipogenesis. The SV40T-immortalized fl fl Because primary preadipocytes had a limited growth potential Ezh2 ox/ ox brown preadipocytes maintained the full adipogenesis of only several passages in culture, it was difficult to obtain potential, with over 90% of cells in the population differentiating sufficient cells for mechanistic studies. Further, it was unclear into adipocytes within 6 days following induction of adipogenesis − − −/− whether the observed adipogenesis failure in Ezh2 / primary (Fig. 2A). In contrast, Ezh2 brown preadipocytes showed preadipocytes was due to a differentiation defect or a potential severe defects in adipogenesis, which could be partially rescued by growth defect caused by derepression of tumor suppressor genes ectopic Ezh2 (Fig. 2A and Fig. S2B). Deletion of Ezh2 in pre- Ink4a Arf fi p16 and p19 . To distinguish the role of Ezh2 in differ- adipocytes did not signi cantly change the basal-level expression γ α entiation from its role in cell proliferation, we immortalized of adipogenic transcription factors PPAR and C/EBP and other fl fl primary Ezh2 ox/ ox brown preadipocytes with SV40 large T adipocyte markers such as aP2, adiponectin, and the brown adi- antigen (SV40T) (16). The immortalized cells were infected with pocyte marker PRDM16 (17). However, the induction of these − − B C retrovirus expressing Cre to generate Ezh2 / brown pre- genes during adipogenesis was severely impaired (Fig. 2 and ). adipocytes (Fig. 1A). Deletion of Ezh2 destabilized PRC2, as Interestingly, Ezh2 deletion in preadipocytes had no effect on induction of the adipogenic transcription factor C/EBPβ, which shown by the reduced protein level of the Suz12 subunit, but had works upstream of PPARγ and C/EBPα (Fig. 2C) (4). Next we no marked effects on the morphology or the growth rate of the − − infected Ezh2 / brown preadipocytes with retroviruses express- immortalized cells (Fig. 1 B–D). Deletion of Ezh2 in preadipocytes ing either PPARγ or C/EBPα (Fig. S3A). Ectopic expression of did not change the expression of Ezh2 paralog Ezh1, which has − − either PPARγ or C/EBPα fully rescued adipogenesis in Ezh2 / been shown to display partial functional redundancy with Ezh2 in D B F preadipocytes (Fig. 2 ). These results indicate that Ezh2 is ES cells (Fig. S1
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • A Midbody Component Homolog, Too Much Information/Prc1-Like, Is Required For
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447958; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A midbody component homolog, too much information/prc1-like, is required for microtubule reorganization during both cytokinesis and axis induction in the early zebrafish embryo Nair, S 1,2,*, 1Welch, E.L. 1,*, Moravec, C.E. 1, Trevena, R.L.1, Pelegri, F. 1 * shared first authorship 1. LaBoratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA 2. Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India Correspondence to: Francisco Pelegri at [email protected] 608-262-2920 Short title: zebrafish Prc-1L, cytokinesis and axis induction Key words: zebrafish, Prc-1, cytokinesis, midBody, microtuBule reorganization, axis induction bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447958; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract We show that the zeBrafish maternal-effect mutation too much information (tmi) corresponds to zebrafish prc1-like (prc1l), which encodes a member of the MAP65/Ase1/PRC1family of microtuBule-associated proteins. Embryos from tmi/prc1l homozygous mutant mothers display cytokinesis defects in meiotic and mitotic divisions in the early embryo, indicating that tmi/prc1l has a role in midBody formation during cell division at the egg-to-embryo transition. Unexpectedly, maternal tmi/prc1l function is also essential for the reorganization of vegetal pole microtuBules required for embryonic axis induction.
    [Show full text]
  • Transcriptional Regulation of the P16 Tumor Suppressor Gene
    ANTICANCER RESEARCH 35: 4397-4402 (2015) Review Transcriptional Regulation of the p16 Tumor Suppressor Gene YOJIRO KOTAKE, MADOKA NAEMURA, CHIHIRO MURASAKI, YASUTOSHI INOUE and HARUNA OKAMOTO Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, Fukuoka, Japan Abstract. The p16 tumor suppressor gene encodes a specifically bind to and inhibit the activity of cyclin-CDK specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 complexes, thus preventing G1-to-S progression (4, 5). and is found altered in a wide range of human cancers. p16 Among these CKIs, p16 plays a pivotal role in the regulation plays a pivotal role in tumor suppressor networks through of cellular senescence through inhibition of CDK4/6 activity inducing cellular senescence that acts as a barrier to (6, 7). Cellular senescence acts as a barrier to oncogenic cellular transformation by oncogenic signals. p16 protein is transformation induced by oncogenic signals, such as relatively stable and its expression is primary regulated by activating RAS mutations, and is achieved by accumulation transcriptional control. Polycomb group (PcG) proteins of p16 (Figure 1) (8-10). The loss of p16 function is, associate with the p16 locus in a long non-coding RNA, therefore, thought to lead to carcinogenesis. Indeed, many ANRIL-dependent manner, leading to repression of p16 studies have shown that the p16 gene is frequently mutated transcription. YB1, a transcription factor, also represses the or silenced in various human cancers (11-14). p16 transcription through direct association with its Although many studies have led to a deeper understanding promoter region.
    [Show full text]
  • Human Catechol O-Methyltransferase Genetic Variation
    Molecular Psychiatry (2004) 9, 151–160 & 2004 Nature Publishing Group All rights reserved 1359-4184/04 $25.00 www.nature.com/mp ORIGINAL RESEARCH ARTICLE Human catechol O-methyltransferase genetic variation: gene resequencing and functional characterization of variant allozymes AJ Shield1, BA Thomae1, BW Eckloff2, ED Wieben2 and RM Weinshilboum1 1Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Medical School, Mayo Clinic, Mayo Foundation, Rochester, MN, USA; 2Department of Biochemistry and Molecular Biology, Mayo Medical School, Mayo Clinic, Mayo Foundation, Rochester, MN, USA Catechol O-methyltransferase (COMT) plays an important role in the metabolism of catecholamines, catecholestrogens and catechol drugs. A common COMT G472A genetic polymorphism (Val108/158Met) that was identified previously is associated with decreased levels of enzyme activity and has been implicated as a possible risk factor for neuropsychiatric disease. We set out to ‘resequence’ the human COMT gene using DNA samples from 60 African-American and 60 Caucasian-American subjects. A total of 23 single nucleotide polymorphisms (SNPs), including a novel nonsynonymous cSNP present only in DNA from African-American subjects, and one insertion/deletion were observed. The wild type (WT) and two variant allozymes, Thr52 and Met108, were transiently expressed in COS-1 and HEK293 cells. There was no significant change in level of COMT activity for the Thr52 variant allozyme, but there was a 40% decrease in the level of activity in cells transfected with the Met108 construct. Apparent Km values of the WT and variant allozymes for the two reaction cosubstrates differed slightly, but significantly, for 3,4-dihydroxybenzoic acid but not for S-adenosyl-L-methionine.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Histone Methylases As Novel Drug Targets. Focus on EZH2 Inhibition. Catherine BAUGE1,2,#, Céline BAZILLE 1,2,3, Nicolas GIRARD1
    Histone methylases as novel drug targets. Focus on EZH2 inhibition. Catherine BAUGE1,2,#, Céline BAZILLE1,2,3, Nicolas GIRARD1,2, Eva LHUISSIER1,2, Karim BOUMEDIENE1,2 1 Normandie Univ, France 2 UNICAEN, EA4652 MILPAT, Caen, France 3 Service d’Anatomie Pathologique, CHU, Caen, France # Correspondence and copy request: Catherine Baugé, [email protected], EA4652 MILPAT, UFR de médecine, Université de Caen Basse-Normandie, CS14032 Caen cedex 5, France; tel: +33 231068218; fax: +33 231068224 1 ABSTRACT Posttranslational modifications of histones (so-called epigenetic modifications) play a major role in transcriptional control and normal development, and are tightly regulated. Disruption of their control is a frequent event in disease. Particularly, the methylation of lysine 27 on histone H3 (H3K27), induced by the methylase Enhancer of Zeste homolog 2 (EZH2), emerges as a key control of gene expression, and a major regulator of cell physiology. The identification of driver mutations in EZH2 has already led to new prognostic and therapeutic advances, and new classes of potent and specific inhibitors for EZH2 show promising results in preclinical trials. This review examines roles of histone lysine methylases and demetylases in cells, and focuses on the recent knowledge and developments about EZH2. Key-terms: epigenetic, histone methylation, EZH2, cancerology, tumors, apoptosis, cell death, inhibitor, stem cells, H3K27 2 Histone modifications and histone code Epigenetic has been defined as inheritable changes in gene expression that occur without a change in DNA sequence. Key components of epigenetic processes are DNA methylation, histone modifications and variants, non-histone chromatin proteins, small interfering RNA (siRNA) and micro RNA (miRNA).
    [Show full text]
  • Polycomb Repressor Complex 2 Function in Breast Cancer (Review)
    INTERNATIONAL JOURNAL OF ONCOLOGY 57: 1085-1094, 2020 Polycomb repressor complex 2 function in breast cancer (Review) COURTNEY J. MARTIN and ROGER A. MOOREHEAD Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada Received July 10, 2020; Accepted September 7, 2020 DOI: 10.3892/ijo.2020.5122 Abstract. Epigenetic modifications are important contributors 1. Introduction to the regulation of genes within the chromatin. The poly- comb repressive complex 2 (PRC2) is a multi‑subunit protein Epigenetic modifications, including DNA methylation complex that is involved in silencing gene expression through and histone modifications, play an important role in gene the trimethylation of lysine 27 at histone 3 (H3K27me3). The regulation. The dysregulation of these modifications can dysregulation of this modification has been associated with result in pathogenicity, including tumorigenicity. Research tumorigenicity through the increased repression of tumour has indicated an important influence of the trimethylation suppressor genes via condensing DNA to reduce access to the modification at lysine 27 on histone H3 (H3K27me3) within transcription start site (TSS) within tumor suppressor gene chromatin. This methylation is involved in the repression promoters. In the present review, the core proteins of PRC2, as of multiple genes within the genome by condensing DNA well as key accessory proteins, will be described. In addition, to reduce access to the transcription start site (TSS) within mechanisms controlling the recruitment of the PRC2 complex gene promoter sequences (1). The recruitment of H1.2, an H1 to H3K27 will be outlined. Finally, literature identifying the histone subtype, by the H3K27me3 modification has been a role of PRC2 in breast cancer proliferation, apoptosis and suggested as a mechanism for mediating this compaction (1).
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Histone Deacetylase Inhibitors Synergizes with Catalytic Inhibitors of EZH2 to Exhibit Anti-Tumor Activity in Small Cell Carcinoma of the Ovary, Hypercalcemic Type
    Author Manuscript Published OnlineFirst on September 19, 2018; DOI: 10.1158/1535-7163.MCT-18-0348 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Histone deacetylase inhibitors synergizes with catalytic inhibitors of EZH2 to exhibit anti- tumor activity in small cell carcinoma of the ovary, hypercalcemic type Yemin Wang1,2,*, Shary Yuting Chen1,2, Shane Colborne3, Galen Lambert2, Chae Young Shin2, Nancy Dos Santos4, Krystal A. Orlando5, Jessica D. Lang6, William P.D. Hendricks6, Marcel B. Bally4, Anthony N. Karnezis1,2, Ralf Hass7, T. Michael Underhill8, Gregg B. Morin3,9, Jeffrey M. Trent6, Bernard E. Weissman5, David G. Huntsman1,2,10,* 1Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada 2Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada. 3Michael Smith Genome Science Centre, British Columbia Cancer Agency, Vancouver, BC, Canada. 4Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC, Canada. 5Department of Pathology and Laboratory Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA. 6Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA. 7Department of Obstetrics and Gynecology, Hannover Medical School, D-30625 Hannover, Germany. 8Department of Cellular and Physiological Sciences and Biomedical Research Centre, University 1 Downloaded from mct.aacrjournals.org on September 26, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 19, 2018; DOI: 10.1158/1535-7163.MCT-18-0348 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • EZH2 in Normal Hematopoiesis and Hematological Malignancies
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 3 EZH2 in normal hematopoiesis and hematological malignancies Laurie Herviou2, Giacomo Cavalli2, Guillaume Cartron3,4, Bernard Klein1,2,3 and Jérôme Moreaux1,2,3 1 Department of Biological Hematology, CHU Montpellier, Montpellier, France 2 Institute of Human Genetics, CNRS UPR1142, Montpellier, France 3 University of Montpellier 1, UFR de Médecine, Montpellier, France 4 Department of Clinical Hematology, CHU Montpellier, Montpellier, France Correspondence to: Jérôme Moreaux, email: [email protected] Keywords: hematological malignancies, EZH2, Polycomb complex, therapeutic target Received: August 07, 2015 Accepted: October 14, 2015 Published: October 20, 2015 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the Polycomb repressive complex 2, inhibits gene expression through methylation on lysine 27 of histone H3. EZH2 regulates normal hematopoietic stem cell self-renewal and differentiation. EZH2 also controls normal B cell differentiation. EZH2 deregulation has been described in many cancer types including hematological malignancies. Specific small molecules have been recently developed to exploit the oncogenic addiction of tumor cells to EZH2. Their therapeutic potential is currently under evaluation. This review summarizes the roles of EZH2 in normal and pathologic hematological processes and recent advances in the development of EZH2 inhibitors for the personalized treatment of patients with hematological malignancies. PHYSIOLOGICAL FUNCTIONS OF EZH2 state through tri-methylation of lysine 27 on histone H3 (H3K27me3) [6].
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_003855395Cyc: Shewanella livingstonensis LMG 19866 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • The Importance of Study Design Abundant Features in High
    The importance of study design for detecting differentially abundant features in high -throughput experiments Luo Huaien 1* , Li Juntao 1*, C hia Kuan Hui Burton 1, Paul Robson 2, Niranjan Nagarajan 1# a b c d Supplementary Figure 1. Variability in performance across DATs with few repreplicates.licates. The subfigures depict precision-recall tradeoffs for DATs, under a range of experimexperimenentaltal conditions and with few replicates (2 in this case). The following parameters were used in EDDA for the sub figures: (a) PDA=30% and FC=Uniform[2,6] (b) as in subfigure (a) but with AP=HBR (c) PDA= [15% UP, 30% DOWN] and FC=Uniform[3,15] (d) PDA=[50% UP, 25% DOWN], FC=Normal[5,1.33] and SM=Full. Common parameters unless otherwise stated include AP=BP, EC=1000, ND=500 per entity, SM=NB and SV=0.5. a b c d Supplementary Figure 2 . Variability in performance across DATs with few data -points. Note that as in Supplementary Figure 1 , the performance of DATs varies widely merely by changing the number of replicates from 1 to 4 in sub figures (a)-(d) in a situation where the number data -points generated is limited (only 50 on average per entity). Results reported are based on data generated in EDDA with the following parameters (roughly mimicking a microbial RNA-seq application) : EC=1000, PDA=26%, FC=Uniform[3,7 ], AP=BP, SM=Full and SV=0.85. Supplementary Figure 3. Distribution of relative abundance in different empirically derived profiles. Note that both axes are plotted on a log-scale and that while BP does not have entities with relative abundance < 1e-5, the profile from Wu et al is more enriched for entities with relative abundance < 1e-5 than the HBR profile.
    [Show full text]