Advances in Visualization Tools for Phylogenomic and Phylodynamic Studies of Viral Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Visualization Tools for Phylogenomic and Phylodynamic Studies of Viral Diseases REVIEW published: 02 August 2019 doi: 10.3389/fpubh.2019.00208 Advances in Visualization Tools for Phylogenomic and Phylodynamic Studies of Viral Diseases Kristof Theys, Philippe Lemey, Anne-Mieke Vandamme and Guy Baele* Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium Genomic and epidemiological monitoring have become an integral part of our response to emerging and ongoing epidemics of viral infectious diseases. Advances in high-throughput sequencing, including portable genomic sequencing at reduced costs and turnaround time, are paralleled by continuing developments in methodology to infer evolutionary histories (dynamics/patterns) and to identify factors driving viral spread in space and time. The traditionally static nature of visualizing phylogenetic trees that represent these evolutionary relationships/processes has also evolved, albeit perhaps at a slower rate. Advanced visualization tools with increased resolution assist in drawing conclusions from phylogenetic estimates and may even have potential to better inform Edited by: public health and treatment decisions, but the design (and choice of what analyses Vitali Sintchenko, are shown) is hindered by the complexity of information embedded within current University of Sydney, Australia phylogenetic models and the integration of available meta-data. In this review, we discuss Reviewed by: Denis Baurain, visualization challenges for the interpretation and exploration of reconstructed histories University of Liège, Belgium of viral epidemics that arose from increasing volumes of sequence data and the wealth Sergey Eremin, of additional data layers that can be integrated. We focus on solutions that address joint World Health Organization, Switzerland temporal and spatial visualization but also consider what the future may bring in terms of John-Sebastian Eden, visualization and how this may become of value for the coming era of real-time digital University of Sydney, Australia pathogen surveillance, where actionable results and adequate intervention strategies *Correspondence: Guy Baele need to be obtained within days. [email protected] Keywords: visualization, phylogenetics, phylogenomics, phylodynamics, infectious disease, epidemiology, evolution Specialty section: This article was submitted to Infectious Diseases - Surveillance, 1. VIRUS EPIDEMIOLOGY AND EVOLUTION Prevention and Treatment, a section of the journal Despite major advances in drug and vaccine design in recent decades, viral infectious diseases Frontiers in Public Health continue to pose serious threats to public health, both as globally well-established epidemics Received: 07 April 2019 of e.g., Human Immunodeficiency Virus Type 1 (HIV-1), Dengue virus (DENV) or Hepatitis Accepted: 12 July 2019 C virus (HCV), and as emerging or re-emerging epidemics of e.g., Zika virus (ZIKV), Middle Published: 02 August 2019 East Respiratory Syndrome Coronavirus (MERS-CoV), Measles virus (MV), or Ebola virus Citation: (EBOV). Efforts to reconstruct the dynamics of viral epidemics have gained considerable attention Theys K, Lemey P, Vandamme A-M as they may support the design of optimal disease control and treatment strategies (1, 2). and Baele G (2019) Advances in Visualization Tools for Phylogenomic These analyses are able to provide answers to questions on the diverse processes underlying and Phylodynamic Studies of Viral disease epidemiology, including the (zoonotic) origin and timing of virus outbreaks, drivers of Diseases. Front. Public Health 7:208. spatial spread, characteristics of transmission clusters and factors contributing to enhanced viral doi: 10.3389/fpubh.2019.00208 pathogenicity and adaptation (3–5). Frontiers in Public Health | www.frontiersin.org 1 August 2019 | Volume 7 | Article 208 Theys et al. Visualization for Viral Phylodynamics Molecular epidemiological techniques have proven to be phylogenetic tree visualization efforts constituted an integral important and effective in informing public health and part of phylogenetic inference software packages and as such therapeutic decisions in the context of viral pathogens (6, 7), were restricted to simply showing the inferred phylogenies on given that most of the viruses with a severe global disease a command line or in a simple text file, often even without an burden are characterized by high rates of evolutionary change. accompanying graphical user interface. The longstanding use of These genetic changes are being accumulated in viral genomes phylogenies in molecular epidemiological analyses has however on a time scale similar to the one where the dynamics led to the emergence of increasingly feature-rich visualization of population genetic and epidemiological processes can be tools over time. The advent of the new research disciplines such as observed, which has lead to the definition of viral phylodynamics phylogenomics and phylodynamics necessitated more complex as the study of how epidemiological, immunological, and visualizations in order to accommodate projections of pathogen evolutionary processes act and potentially interact to shape dispersal onto a geographic map, ancestral reconstruction of viral phylogenies (8). As such, phylogenetic trees constitute a various types of trait data and appealing animations of the crucial instrument in studies of virus evolution and molecular reconstructed evolution and spread over time. Tree visualizations epidemiology, elucidating evolutionary relationships between resulting from these analyses are also complemented by visual sampled virus variants based on the temporal resolution in the reconstructions of other important aspects of the model genetic data of these fast-evolving viruses that allows resolving reconstructions, such as population size dynamics over time, their epidemiology in terms of months or years. Through transmission networks and estimates of ancestral states for traits the integration of population genetics theory, epidemiological of interest throughout the tree (15). data and mathematical modeling, insights into epidemiological, Across disciplines, adequate visualizations are pivotal to immunological, and evolutionary processes shaping genetic communicate, disseminate and translate research findings into variation can be inferred from these phylogenies. The field of meaningful information and actionable insights for clinical, phylodynamics has generated new opportunities to obtain a more research and public health officials. The aim to improve data- detailed understanding of evolutionary histories—through time driven decision making fits within a broader scope to establisha as well as geographic space—and transmission dynamics of both universal data visualization literacy (16). To this end, enhancing well-established viral epidemics and emerging outbreaks (9, 10). collaborations and dissemination of visualizations is increasingly The ability of molecular epidemiological analyses, and achieved through sharing of online resources for hosting phylodynamic analyses in particular, to fully exploit the annotated tree reconstructions (17), online workspaces (18) and information embedded in viral sequence data has significantly continuously updated pipelines that accommodate increasing improved through a combination of technological innovations data flow during infectious disease outbreaks (19) (see further and advances in inference frameworks during the past decades. sections for more information and examples of these packages). From a data perspective, genomic epidemiology is becoming Given the plethora of options for presenting and visualizing a standard framework driven by high-throughput sequencing results, and its importance for effectively communicating with technologies that are associated with reduced costs and a wide audience, choosing the appropriate representation and increasing turnover. Moreover, the portability and potential of visualization strategy can be challenging. Recent work on this rapid deployment on-site of these new technologies enable the topic focuses on navigating through all the available visualization generation of complete genome data from samples within hours options by offering clear guidelines on how to turn large datasets of taking the samples (11). This rising availability of whole- into compelling and aesthetically appealing figures (20). genome sequences increases the resolution by which historical events and epidemic dynamics can be reconstructed. From a methodological perspective, new developments in statistical 2. A FRAMEWORK FOR VISUALIZATION and computational methods along with advances in hardware infrastructure have allowed the analysis of ever-growing data A large array of software packages for performing phylogenetic sets, the incorporation of more complex models and the and phylodynamic analyses have emerged in the last decade, inclusion of information related to sample collection, infected in particularly for fast-evolving RNA viruses [see (10) for a host characteristics and clinical or experimental status (generally recent overview]. A more recent but similar trend can be known as metadata) (9, 10, 12, 13). seen for methodologies and applications aimed at visualization In contrast to a marked increase in the number of software of the output of these frameworks. In addition to the packages targetting increasingly efficient but complex approaches need to communicate these outputs in a visual manner, to infer annotated phylogenies by exploiting
Recommended publications
  • Genome Signature-Based Dissection of Human Gut Metagenomes to Extract Subliminal Viral Sequences
    ARTICLE Received 16 Apr 2013 | Accepted 8 Aug 2013 | Published 16 Sep 2013 DOI: 10.1038/ncomms3420 OPEN Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences Lesley A. Ogilvie1, Lucas D. Bowler1, Jonathan Caplin2, Cinzia Dedi1, David Diston2,w, Elizabeth Cheek3, Huw Taylor2, James E. Ebdon2 & Brian V. Jones1 Bacterial viruses (bacteriophages) have a key role in shaping the development and functional outputs of host microbiomes. Although metagenomic approaches have greatly expanded our understanding of the prokaryotic virosphere, additional tools are required for the phage- oriented dissection of metagenomic data sets, and host-range affiliation of recovered sequences. Here we demonstrate the application of a genome signature-based approach to interrogate conventional whole-community metagenomes and access subliminal, phylogen- etically targeted, phage sequences present within. We describe a portion of the biological dark matter extant in the human gut virome, and bring to light a population of potentially gut- specific Bacteroidales-like phage, poorly represented in existing virus like particle-derived viral metagenomes. These predominantly temperate phage were shown to encode functions of direct relevance to human health in the form of antibiotic resistance genes, and provided evidence for the existence of putative ‘viral-enterotypes’ among this fraction of the human gut virome. 1 Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK. 2 School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK. 3 School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK. w Present address: Mikrobiologische and Biotechnologische Risiken Bundesamt fu¨r Gesundheit BAG, 3003 Bern, Switzerland.
    [Show full text]
  • Comparative Genomic Analysis of Three Pseudomonas
    microorganisms Article Comparative Genomic Analysis of Three Pseudomonas Species Isolated from the Eastern Oyster (Crassostrea virginica) Tissues, Mantle Fluid, and the Overlying Estuarine Water Column Ashish Pathak 1, Paul Stothard 2 and Ashvini Chauhan 1,* 1 Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA; [email protected] 2 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-850-412-5119; Fax: +1-850-561-2248 Abstract: The eastern oysters serve as important keystone species in the United States, especially in the Gulf of Mexico estuarine waters, and at the same time, provide unparalleled economic, ecological, environmental, and cultural services. One ecosystem service that has garnered recent attention is the ability of oysters to sequester impurities and nutrients, such as nitrogen (N), from the estuarine water that feeds them, via their exceptional filtration mechanism coupled with microbially-mediated denitrification processes. It is the oyster-associated microbiomes that essentially provide these myriads of ecological functions, yet not much is known on these microbiota at the genomic scale, especially from warm temperate and tropical water habitats. Among the suite of bacterial genera that appear to interplay with the oyster host species, pseudomonads deserve further assessment because Citation: Pathak, A.; Stothard, P.; of their immense metabolic and ecological potential. To obtain a comprehensive understanding on Chauhan, A. Comparative Genomic this aspect, we previously reported on the isolation and preliminary genomic characterization of Analysis of Three Pseudomonas Species three Pseudomonas species isolated from minced oyster tissue (P.
    [Show full text]
  • Three New Genome Assemblies Support a Rapid Radiation in Musa Acuminata (Wild Banana)
    GBE Three New Genome Assemblies Support a Rapid Radiation in Musa acuminata (Wild Banana) Mathieu Rouard1,*, Gaetan Droc2,3, Guillaume Martin2,3,JulieSardos1, Yann Hueber1, Valentin Guignon1, Alberto Cenci1,Bjo¨rnGeigle4,MarkS.Hibbins5,6, Nabila Yahiaoui2,3, Franc-Christophe Baurens2,3, Vincent Berry7,MatthewW.Hahn5,6, Angelique D’Hont2,3,andNicolasRoux1 1Bioversity International, Parc Scientifique Agropolis II, Montpellier, France 2CIRAD, UMR AGAP, Montpellier, France 3AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, France 4Computomics GmbH, Tuebingen, Germany 5Department of Biology, Indiana University 6Department of Computer Science, Indiana University 7LIRMM, Universite de Montpellier, CNRS, Montpellier, France *Corresponding author: E-mail: [email protected]. Accepted: October 10, 2018 Data deposition: Raw sequence reads for de novo assemblies were deposited in the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) (BioProject: PRJNA437930 and SRA: SRP140622). Genome Assemblies and gene annotation data are available on the Banana Genome Hub (Droc G, Lariviere D, Guignon V, Yahiaoui N, This D, Garsmeur O, Dereeper A, Hamelin C, Argout X, Dufayard J-F, Lengelle J, Baurens F–C, Cenci A, Pitollat B, D’Hont A, Ruiz M, Rouard M, Bocs S. The Banana Genome Hub. Database (2013) doi:10.1093/ database/bat035) (http://banana-genome-hub.southgreen.fr/species-list). Cluster and gene tree results are available on a dedicated database (http://panmusa.greenphyl.org) hosted on the South Green Bioinformatics Platform (Guignon et al. 2016). Additional data sets are made available on Dataverse: https://doi.org/10.7910/DVN/IFI1QU. Abstract Edible bananas result from interspecific hybridization between Musa acuminata and Musa balbisiana,aswellasamongsubspeciesin M.
    [Show full text]
  • The Contribution of Mitochondrial Metagenomics to Large-Scale Data
    Molecular Phylogenetics and Evolution 128 (2018) 1–11 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The contribution of mitochondrial metagenomics to large-scale data mining and phylogenetic analysis of Coleoptera T ⁎ Benjamin Linarda,i,j, , Alex Crampton-Platta,b,k, Jerome Morinierec, Martijn J.T.N. Timmermansa,d, Carmelo Andújara,b,l, Paula Arribasa,b,l, Kirsten E. Millera,b,m, Julia Lipeckia,n, Emeline Favreaua,o, Amie Huntera, Carola Gómez-Rodrígueze, Christopher Bartona,p, Ruie Niea,f, Conrad P.D.T. Gilletta,q, Thijmen Breeschotena,g,r, Ladislav Bocakh, Alfried P. Voglera,b a Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom b Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot SL5 7PY, United Kingdom c Bavarian State Collection of Zoology (SNSB – ZSM), Münchhausenstrasse 21, 81247 München, Germany d Department of Natural Sciences, Hendon Campus, Middlesex University, London NW4 4BT, United Kingdom e Departamento de Zoología, Facultad de Biología, Universidad de Santiago de Compostela, c/ Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain f Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China g Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands h Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic i LIRMM, Univ. Montpellier,
    [Show full text]
  • Browser Wars
    Uppsala universitet Inst. för informationsvetenskap Browser Wars Kampen om webbläsarmarknaden Andreas Högström, Emil Pettersson Kurs: Examensarbete Nivå: C Termin: VT-10 Datum: 2010-06-07 Handledare: Anneli Edman "Anyone who slaps a 'this page is best viewed with Browser X' label on a Web page appears to be yearning for the bad old days, before the Web, when you had very little chance of read- ing a document written on another computer, another word processor, or another network" - Sir Timothy John Berners-Lee, grundare av World Wide Web Consortium, Technology Review juli 1996 Innehållsförteckning Abstract ...................................................................................................................................... 1 Sammanfattning ......................................................................................................................... 2 1 Inledning .................................................................................................................................. 3 1.1 Bakgrund .............................................................................................................................. 3 1.2 Syfte ..................................................................................................................................... 3 1.3 Frågeställningar .................................................................................................................... 3 1.4 Avgränsningar .....................................................................................................................
    [Show full text]
  • Aquatic Microbial Ecology 75:117
    Vol. 75: 117–128, 2015 AQUATIC MICROBIAL ECOLOGY Published online June 4 doi: 10.3354/ame01752 Aquat Microb Ecol Metagenomic assessment of viral diversity in Lake Matoaka, a temperate, eutrophic freshwater lake in southeastern Virginia, USA Jasmin C. Green1, Faraz Rahman1, Matthew A. Saxton2,3, Kurt E. Williamson1,2,* 1Department of Biology, College of William & Mary, Williamsburg, Virginia 23185, USA 2Environmental Science and Policy Program, College of William & Mary, Williamsburg, Virginia 23185, USA 3Present address: Department of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA ABSTRACT: Little is known about the composition and diversity of temperate freshwater viral communities. This study presents a metagenomic analysis of viral community composition, taxo- nomic and functional diversity of temperate, eutrophic Lake Matoaka in southeastern Virginia (USA). Three sampling sites were chosen to represent differences in anthropogenic impacts: the Crim Dell Creek mouth (impacted), the Pogonia Creek mouth (less impacted) and the main body of the lake (mixed). Sequences belonging to tailed bacteriophages were the most abundant at all 3 sites, with Podoviridae predominating. The main lake body harbored the highest virus genotype richness and included cyanophage and eukaryotic algal virus sequences not found at the other 2 sites, while the impacted Crim Dell Creek mouth showed the lowest richness. Cross-contig com- parisons indicated that similar virus genotypes were found at all 3 sites, but at different rank- abundances. Hierarchical cluster analysis of multiple viral metagenomes indicated high genetic similarity between viral communities of related environments, with freshwater, marine, hypersaline, and eukaryote-associated environments forming into clear groups despite large geographic dis- tances between sampling locations within each environment type.
    [Show full text]
  • Genome-Contric Metagenomic Investigation of 134 Samples
    GENOME-CONTRIC METAGENOMIC INVESTIGATION OF 134 SAMPLES COLLECTED FROM BIOGAS REACTORS REVEALED IMPORTANT FUNCTIONAL ROLES FOR MICROBIAL SPECIES BELONGING TO UNDEREXPLORED TAXA Campanaro, S.1, Luo, G.2, Treu, L.3 Kougias, P.G.4, Zhu X.3, Angelidaki, I.3 1 University of Padova, Department of Biology, Via U. Bassi, 58b, 35131 Padova (PD), Italy 2 Fudan University, Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), 200433, Shanghai, China 3 Technical University of Denmark, Department of Environmental Engineering, Kgs. Lyngby DK-2800, Denmark 4 Institute of Animal Science, Hellenic Agricultural Organization DEMETER, Paralimni, Greece e-mail of the corresponding author: [email protected] Keywords: anaerobic digestion; metagenomics; metagenome-assembled genomes; taxonomy. INTRODUCTION In the past four years many samples collected from full-scale biogas plants and lab-scale reactors have been investigated using Illumina shotgun sequencing approaches and deposited in NCBI Sequence Read Archive database. In all these reactors, the Anaerobic Digestion (AD) process is performed by a plethora of different microorganisms organized in a complex functional network where different species have distinct roles in degradation of organic matter. Difficulties associated to cultivation of many prokaryotes present in natural and engineered ecosystems strongly limits the possibility to expand our knowledge regarding their physiology, genetics and function (Tringe and Rubin, 2005). Thanks to the bioinformatics approaches recently developed, which allow the reconstruction of microbial genomes starting from shotgun DNA sequences obtained from mixed cultures (Campanaro et al., 2016), it is now becoming possible to reveal the functional roles of microbial species resisting cultivation in axenic cultures.
    [Show full text]
  • Discontinued Browsers List
    Discontinued Browsers List Look back into history at the fallen windows of yesteryear. Welcome to the dead pool. We include both officially discontinued, as well as those that have not updated. If you are interested in browsers that still work, try our big browser list. All links open in new windows. 1. Abaco (discontinued) http://lab-fgb.com/abaco 2. Acoo (last updated 2009) http://www.acoobrowser.com 3. Amaya (discontinued 2013) https://www.w3.org/Amaya 4. AOL Explorer (discontinued 2006) https://www.aol.com 5. AMosaic (discontinued in 2006) No website 6. Arachne (last updated 2013) http://www.glennmcc.org 7. Arena (discontinued in 1998) https://www.w3.org/Arena 8. Ariadna (discontinued in 1998) http://www.ariadna.ru 9. Arora (discontinued in 2011) https://github.com/Arora/arora 10. AWeb (last updated 2001) http://www.amitrix.com/aweb.html 11. Baidu (discontinued 2019) https://liulanqi.baidu.com 12. Beamrise (last updated 2014) http://www.sien.com 13. Beonex Communicator (discontinued in 2004) https://www.beonex.com 14. BlackHawk (last updated 2015) http://www.netgate.sk/blackhawk 15. Bolt (discontinued 2011) No website 16. Browse3d (last updated 2005) http://www.browse3d.com 17. Browzar (last updated 2013) http://www.browzar.com 18. Camino (discontinued in 2013) http://caminobrowser.org 19. Classilla (last updated 2014) https://www.floodgap.com/software/classilla 20. CometBird (discontinued 2015) http://www.cometbird.com 21. Conkeror (last updated 2016) http://conkeror.org 22. Crazy Browser (last updated 2013) No website 23. Deepnet Explorer (discontinued in 2006) http://www.deepnetexplorer.com 24. Enigma (last updated 2012) No website 25.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO the Comparative Genomics
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The Comparative Genomics of Salinispora and the Distribution and Abundance of Secondary Metabolite Genes in Marine Plankton A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Kevin Matthew Penn Committee in charge: Paul R. Jensen, Chair Eric Allen Lin Chao Bradley Moore Brian Palenik Forest Rohwer 2012 UMI Number: 3499839 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3499839 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Copyright Kevin Matthew Penn, 2012 All rights reserved The Dissertation of Kevin Matthew Penn is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii DEDICATION I dedicate this dissertation to my Mom Gail Penn and my Father Lawrence Penn they deserve more credit then any person could imagine. They have supported me through the good times and the bad times. They have never given up on me and they are always excited to know that I am doing well. They just want the best for me.
    [Show full text]
  • Molecular Complexity of Successive Bacterial Epidemics Deconvoluted by Comparative Pathogenomics
    Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics Stephen B. Beresa,b, Ronan K. Carrolla,b, Patrick R. Sheaa,b, Izabela Sitkiewicza,b, Juan Carlos Martinez-Gutierreza,b, Donald E. Lowc, Allison McGeerd, Barbara M. Willeyd, Karen Greend, Gregory J. Tyrrelld, Thomas D. Goldmanf, Michael Feldgardeng, Bruce W. Birreng, Yuriy Fofanovh, John Boosi, William D. Wheatoni, Christiane Honischf, and James M. Mussera,b,1 aCenter for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and bDepartment of Pathology, The Methodist Hospital, Houston, TX 77030; cOntario Agency for Health Protection and Promotion, and University of Toronto, Toronto, ON M5G 1X5, Canada; dDepartment of Microbiology, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; eDepartment of Laboratory medicine and Pathology, University of Alberta, Edmonton, AB T6G 2J2, Canada; fSequenom, Inc., San Diego, CA 92121; gBroad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142; hDepartment of Computer Science and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204; and iRTI International, Research Triangle Park, NC 27709 Edited* by Charles R. Cantor, Sequenom Inc., San Diego, CA, and approved December 14, 2009 (received for review September 30, 2009) Understanding the fine-structure molecular architecture of bacterial century that GAS has the capacity to cause epidemics charac- epidemics has been a long-sought goal of infectious disease research. terized by rapid increase in disease frequency and severity. For We used short-read-length DNA sequencing coupled with mass example, Weech (6) described an epidemic of septic scarlet fever spectroscopy analysis of SNPs to study the molecular pathogenomics in Yunnanfu, China, that killed 50,000 people, fully 25% of the of three successive epidemics of invasive infections involving 344 population of the province.
    [Show full text]
  • View: Latest Perspectives on Antiinflammatory Actions of Glucocorticoids
    Fleuren et al. BioData Mining 2013, 6:2 http://www.biodatamining.org/content/6/1/2 BioData Mining RESEARCH Open Access Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining Wilco WM Fleuren1,2, Erik JM Toonen3, Stefan Verhoeven4, Raoul Frijters1,6, Tim Hulsen1,7, Ton Rullmann5, René van Schaik4, Jacob de Vlieg1,4 and Wynand Alkema1,8* * Correspondence: [email protected] Abstract 1Computational Drug Discovery (CDD), CMBI, NCMLS, Radboud Background: Glucocorticoids are potent anti-inflammatory agents used for the University Nijmegen Medical Centre, treatment of diseases such as rheumatoid arthritis, asthma, inflammatory bowel P.O. Box 91016500 HB, Nijmegen, disease and psoriasis. Unfortunately, usage is limited because of metabolic side- The Netherlands 8Present address: NIZO Food effects, e.g. insulin resistance, glucose intolerance and diabetes. To gain more insight Research BV, Ede, The Netherlands into the mechanisms behind glucocorticoid induced insulin resistance, it is important Full list of author information is to understand which genes play a role in the development of insulin resistance and available at the end of the article which genes are affected by glucocorticoids. Medline abstracts contain many studies about insulin resistance and the molecular effects of glucocorticoids and thus are a good resource to study these effects. Results: We developed CoPubGene a method to automatically identify gene-disease associations in Medline abstracts. We used this method to create a literature network of genes related to insulin resistance and to evaluate the importance of the genes in this network for glucocorticoid induced metabolic side effects and anti-inflammatory processes.
    [Show full text]
  • Compact Graphical Representation of Phylogenetic Data and Metadata with Graphlan
    Compact graphical representation of phylogenetic data and metadata with GraPhlAn The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Asnicar, Francesco, George Weingart, Timothy L. Tickle, Curtis Huttenhower, and Nicola Segata. 2015. “Compact graphical representation of phylogenetic data and metadata with GraPhlAn.” PeerJ 3 (1): e1029. doi:10.7717/peerj.1029. http://dx.doi.org/10.7717/ peerj.1029. Published Version doi:10.7717/peerj.1029 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17820708 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Compact graphical representation of phylogenetic data and metadata with GraPhlAn Francesco Asnicar1, George Weingart2, Timothy L. Tickle3, Curtis Huttenhower2,3 and Nicola Segata1 1 Centre for Integrative Biology (CIBIO), University of Trento, Italy 2 Biostatistics Department, Harvard School of Public Health, USA 3 Broad Institute of MIT and Harvard, USA ABSTRACT The increased availability of genomic and metagenomic data poses challenges at multiple analysis levels, including visualization of very large-scale microbial and microbial community data paired with rich metadata. We developed GraPhlAn (Graphical Phylogenetic Analysis), a computational tool that produces high-quality, compact visualizations of microbial genomes and metagenomes. This includes phylogenies spanning up to thousands of taxa, annotated with metadata ranging from microbial community abundances to microbial physiology or host and environmental phenotypes. GraPhlAn has been developed as an open-source command-driven tool in order to be easily integrated into complex, publication- quality bioinformatics pipelines.
    [Show full text]