The Biology of the Cosmopolitan Fish Parasite Neobenedenia Girellae

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of the Cosmopolitan Fish Parasite Neobenedenia Girellae ResearchOnline@JCU This file is part of the following reference: Brazenor, Alexander Karlis (2017) The biology of the cosmopolitan fish parasite Neobenedenia girellae. PhD thesis, James Cook University. Access to this file is available from: http://dx.doi.org/10.4225/28/5a93846f8d373 The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] The biology of the cosmopolitan fish parasite Neobenedenia girellae Thesis submitted by Alexander Karlis Brazenor BSc (Hons.) In fulfilment of the requirements for the Doctorate of Philosophy (Science) in the College of Marine and Environmental Sciences James Cook University Statement on the Contribution of Others Financial support for this study was provided by the College of Marine and Environmental Sciences, James Cook University (JCU). An Australian Postgraduate Award stipend provided support of living costs between 2012 and 2015. I was awarded a James Cook University Graduate Research School scholarship in 2014 to assist in paying for lab consumables and materials crucial to completing my experiments. The National Climate Change Adaptation Research Facility also awarded me with a grant that provided me with materials and lab consumables for conducting experiments. Travel grants to conferences were provided by the Australian Society for Parasitology, the Fisheries Research Development Corporation, and Fisheries Society of the British Isles. Most significantly, the Australian Society for Parasitology awarded me a travel grant in 2012 (covering flights and accommodation costs) to travel to Adelaide to begin my molecular analysis of parasite samples with Terry Bertozzi. Guidance in the analyses used in my thesis was provided by Kate Hutson, Richard Saunders, Nicholas Paul, Ross Alford, Martin Sheaves, and Rhondda Jones. Leslie Chisholm and Robert Adlard of the South Australia Museum and Queensland Museum respectively assisted in accessioning samples from Chapters 2, 3, and 4. Chapter Co-author Contribution Chapter 2 Terry Bertozzi Terry Bertozzi provided assistance in genetic analyses and editorial support. Terry Miller Terry Miller provided assistance in genetic analyses and editorial support. Ian Whittington Ian Whittington was instrumental in the development of ideas, the i provision of samples, and taxonomic identification of specimens. Kate Hutson Kate Hutson provided financial and editorial support and assisted in the development of ideas. Chapter 3 Richard Saunders Richard Saunders assisted in developing the aims of this paper, in the statistical analysis of the data, and in editing. Terry Miller Terry Miller assisted in the genetic analysis of samples included in this paper. Kate Hutson Kate Hutson assisted in financial support, editorial assistance, and the development of ideas. Chapter 4 Kate Hutson Kate Hutson provided assistance in finances, experiments, statistical analyses, and editing. Chapter 5 David Francis David Francis assisted in the biochemical analysis of samples in this study and provided editorial support. Kate Hutson Kate provided assistance in the development of ideas and editing. Guy Carton Guy Carton assisted in the development of ideas and the editing of this paper. Chapter 6 David Francis David Francis assisted in the biochemical analysis of samples in this study and provided editorial support. Guy Carton Guy Carton assisted in the development of ideas in this paper. Kate Hutson Kate provided assistance in the development of ideas, financial support, and editing. Title page image: Adult Neobenedenia girellae. Photograph taken by A. Brazenor. Image dimensions = 250 µm × 100 µm. ii Acknowledgements At the time of submitting this thesis, I will have spent almost six years in the Marine Parasitology Laboratory for my Honours and PhD research at James Cook University. During this time, I have had the great pleasure of learning from wonderful people. Every single co-author I worked with offered something new that I could learn from and I gained an immense amount of knowledge from researchers from incredibly diverse backgrounds. I am eternally grateful to Terry Bertozzi, Terry Miller, Richard Saunders, Ian Whittington, and David Francis who all made this thesis possible. Thank you to Ben Lawes, Simon Wever, and Andrew Thompson of the Marine and Aquaculture Research Facility. Their help sourcing laboratory space, equipment use, and general systems management has been instrumental in conducting a large number of the experiments in this thesis. Of course, one of the most important relationships a PhD candidate has is the one with their supervisor(s). I was incredibly fortunate that I had two supervisors who offered such different perspectives to situations. There were many situations in which this proved to be very helpful in developing solutions to problems or for motivating me when I needed it most. Firstly, my gratitude to Guy Carton, my co-supervisor, for providing advice and instruction throughout the thesis. His ability to clarify directions in which to progress and to facilitate helpful connections was invaluable to the completion of this PhD and I will always be grateful for his contribution to this thesis. iii Throughout my time in the Marine Parasitology Laboratory, my supervisor Kate has always been attentive and enthusiastic about my research. She has carefully instructed and directed my development as a researcher but, more importantly, also as a person. She is the most influential role model in my professional life and I owe all of the invaluable lessons and knowledge I have accrued in these past years to her skilful and dedicated guidance. I could not imagine having a better supervisor. It has been a pleasure to be able to work with her in her laboratory and to develop a friendship with her that is immensely important to me. Thank you, Kate. For so much. I owe so much to all of my friends who have supported me throughout this thesis. To Scott, Nina, Michael, Darcy, Angus, and Jack you made completing this journey a lot easier than it would have been otherwise. Thank you. To my colleagues in the Marine Parasitology Laboratory, you have all done a lot to support me throughout this endeavour and I am eternally indebted to you all for that. To Alejandro and Thane in particular, throughout the PhD we’ve weathered good times and bad, often with the judicious application of scotch. I can truly call both of you my brothers and your support has meant so much to me. Thanks, guys. It goes without saying that the successful completion of this thesis could not have occurred without the help of countless people including other researchers, administrative staff, industry contacts, and colleagues. My sincere gratitude to James Cook University for providing me with a foundation on which to build my skills and for allowing me to develop my skills as a marine parasitologist. iv My sincere gratitude to the Australian Society for Parasitology for providing me with funds to travel to South Australia, the Fisheries Society of British Ichthyology for awarding me a travel grant to be able to present my research in Spain, and to the Fisheries Research and Development Corporation (FRDC) for allowing me to present at their conferences in Cairns. Presenting my research to my peers was always nerve wracking but it was also one of the most rewarding experiences as a scientist. The organisations above made this a reality and I am so grateful for their help. My family deserve far more credit for the completion of thesis than I am able to convey. They have been incredibly supportive and encouraging throughout my education and are the reason that I am able to be doing what I love. Finally, to my loving fiancée, Madeleine. You are the most supportive partner I can possibly imagine having. Thank you for the encouragement, the support, and the patience you have had for me throughout this thesis. This thesis is dedicated to my family, my friends, and to those who took the time in their lives to support me throughout this journey. v Abstract Monogeneans are a fascinating parasite group to study. They can be harmful pathogens of finfish and display interesting relationships with their hosts making research on these species engaging from both ecological and economic perspectives. Neobenedenia (Family Capsalidae) Yamaguti, 1963, is a notable monogenean genus and is notorious for the large number of potential host species that the constituent parasite taxa are able to infect. The distinct lack of research on Neobenedenia biology and the diversity of species present in Australian waters presented me with an opportunity to conduct a series of research studies designed to improve understanding of this parasite genus. The aim of this thesis was to provide an in-depth investigation of Neobenedenia phylogenetics and detailed biology (including the growth, morphology, reproduction, and biochemistry) of the species in Australia. The first data chapter (Chapter 2) determined the phylogenetic relationships between 33 Neobenedenia isolates by amplifying three genes; two nuclear (H3 and 28S rDNA) and one mitochondrial (cytochrome b). Isolates were collected from a total of 23 host species and nine countries in both hemispheres and included 16 isolates from 12 host fishes in Australia. Representative samples for Neobenedenia melleni MacCallum, 1927, Neobenedenia pacifica Bravo-Hollis, 1971, and Neobenedenia longiprostata Bravo-Hollis, 1971, formed discrete clades and collectively accounted for seven of the 33 samples used in this study. The remaining 26 isolates formed a single clade genetically distinct from all representative specimens. Morphological observation of these 26 isolates confirmed that they were morphologically indistinguishable from N. melleni despite displaying clear genetic differences in the phylogenetic trees. This confirmed the suggestion by the scientific community that Neobenedenia girellae vi Hargis, 1955, a species that was synonymised with N. melleni in 1996, should be reinstated as its own taxon, a recommendation that is encouraged by the authors.
Recommended publications
  • Philippines RVS Fish (866) 874-7639 (855) 225-8086
    American Ingenuity Tranship www.livestockusa.org Philippines RVS Fish (866) 874-7639 (855) 225-8086 Tranship - F.O.B. Manila Sunday to LAX - Monday to You Animal cost plus landing costs Order Cut-off is on Thursdays! See landing costs below No guaranty on specialty fish over $75 January 19, 2020 Excellent quality fish! The regals eat, etc.! Code Common Name Binomial - scientific name Price Stock MADAGASCAR FISH RS0802 GOLDEN PUFFER (SHOW SIZE) AROTHRON CITRINELLUS $600.00 1 RS0409 GEM TANG ZEBRASOMA GEMMATUM $775.00 46 RS0408 BLOND NASO TANG NASO HEXACANTHUS $60.00 2 RS0411 POWDER BLUE TANG (MADAGASCAR) ACANTHURUS LEUCOSTERNON $51.75 1 RS0609 MADAGASCAR FLASHER WRASSE (MALE) PARACHEILINUS HEMITAENIATUS $300.00 2 RS0609F MADAGASCAR FLASHER WRASSE (FEMALE) PARACHEILINUS HEMITAENIATUS $200.00 2 RS0107 FLAMEBACK ANGEL (MADAGASCAR) CENTROPYGE ACANTHOPS $55.00 8 RS1301 CORAZON'S DAMSELFISH POMACENTRUS VATOSOA $51.75 3 WEST AFRICAN FISH WA0601 WEST AFRICAN BLACK BAR HOGFISH BODIANUS SPECIOSUS $75.00 4 WA0902 WHITE SPOTTED DRAGON EEL (S) MURAENA MELANOTIS $215.63 1 WA0902XX WHITE SPOTTED DRAGON EEL (SHOW) MURAENA MELANOTIS $431.25 2 WA1501 WEST AFRICAN RED BISCUIT STARFISH TOSIA QUEENSLANDENSIS $60.38 10 WA0101 BLUE SPOT CORAL GROUPER (WEST AFRICAN) CEPHALOPHOLIS TAENIOPS $51.75 1 PHILIPPINES FISH 01010 BLUE KORAN ANGEL JUV (L) POMACANTHUS SEMICIRCULATUS $20.55 1 01011 BLUE KORAN ANGEL JUV (M) POMACANTHUS SEMICIRCULATUS $16.43 3 01016 SIX BAR ANGEL ADULT EUXIPHIPOPS SEXTRIATUS $13.17 2 01017 SIX BAR ANGEL JUVENILE (S) EUXIPHIPOPS SEXTRIATUS $7.43
    [Show full text]
  • Monogenean Parasites of Fish 1 Peggy Reed, Ruth Francis-Floyd, Ruthellen Klinger, and Denise Petty2
    FA28 Monogenean Parasites of Fish 1 Peggy Reed, Ruth Francis-Floyd, RuthEllen Klinger, and Denise Petty2 Introduction of water, may increase the density of parasites on wild fish and consequently result in disease. In addition, the release Monogeneans are a class of parasitic flatworms that are of monogenean-infested fishes to the natural environment commonly found on fishes and lower aquatic invertebrates. can have potentially devastating effects. One example is the Most monogeneans are browsers that move about freely on movement of resistant Atlantic salmon Salmo salar from the fish’s body surface feeding on mucus and epithelial cells Sweden that is suspected to be the source of Gyrodactylus of the skin and gills; however, a few adult monogeneans will salaris that caused heavy losses of susceptible salmon in remain permanently attached to a single site on the host. Norwegian rivers. Another example is the introduction of Some monogenean species invade the rectal cavity, ureter, monogenean-infested stellate sturgeon Acipenser stellatus body cavity, and even the blood vascular system. Between from the Caspian Sea into Lake Aral that decimated the 4,000 and 5,000 species of monogeneans have been ship sturgeon Acipenser nudiventris population, which was described. They are found on fishes in fresh and salt water not resistant to the monogenean. and in a wide range of water temperatures. Morbidity and mortality epidemics caused by excessive Classification and Identification of parasite loads are not uncommon in captive fishes and Monogeneans have also occurred in wild fishes. Captive fishes are usually held in more crowded conditions than fishes in the natural Though the terms “monogenetic trematodes” and “flukes” environment.
    [Show full text]
  • First Record of Neobenedenia Melleni (Monogenea: Capsalidae)
    Research Note Rev. Bras. Parasitol. Vet., Jaboticabal, v. 20, n. 4, p. 331-333, out.-dez. 2011 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) First record of Neobenedenia melleni (Monogenea: Capsalidae) in sea-farmed cobia (Rachycentron canadum) in Brazil Primeiro registro de Neobenedenia melleni (Monogenea: Capsalidae) em cultivo de bijupirás (Rachycentron canadum) no Brasil Claudia Ehlers Kerber1; Eduardo Gomes Sanches2; Mauricio Santiago1; José Luis Luque3* 1Laboratório Kerber 2Núcleo de Pesquisa e Desenvolvimento do Litoral Norte, Instituto de Pesca 3Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro – UFRRJ Received February 7, 2011 Accepted April 5, 2011 Abstract Neobenedenia melleni (MacCallum, 1927) (Monogenea) is a widespread pathogen in marine teleost cultures all over the world. The present paper reports this parasite species in farmed cobia Rachycentron( canadum) in Brazil, for the first time. Some comments on preventive actions for avoiding the disease are made. Keywords: Mariculture, pathogens, ectoparasites. Resumo Neobenedenia melleni (MacCallum, 1927) (Monogenea) é um patógeno amplamente distribuído em cultivo de teleósteos marinhos no mundo. Este estudo relata pela primeira vez essa espécie de parasito em cultivo de cobia, Rachycentron canadum, no Brasil. Comentários sobre prevenção para evitar a doença são discutidos. Palavras-chave: Maricultura, patógenos, ectoparasitos. Research relating to sea-farmed cobia (Rachycentron canadum and Cezar (2004) identified monogenean species in wild pampos Linnaeus, 1766) has been increasing recently. The great growth (Trachinotus goodei) off the coast of Rio de Janeiro and, recently, potential of cobia, their easy adaptability and ability to breed in Carvalho and Luque (2009) recorded parasitism of N. melleni in captivity, excellent meat quality and carcass utilization, among a wild host (Trichiurus lepturus) off the coast of Rio de Janeiro.
    [Show full text]
  • Marine and Estuarine Fish Fauna of Tamil Nadu, India
    Proceedings of the International Academy of Ecology and Environmental Sciences, 2018, 8(4): 231-271 Article Marine and estuarine fish fauna of Tamil Nadu, India 1,2 3 1 1 H.S. Mogalekar , J. Canciyal , D.S. Patadia , C. Sudhan 1Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India 2College of Fisheries, Dholi, Muzaffarpur - 843 121, Bihar, India 3Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120, West Bengal, India E-mail: [email protected] Received 20 June 2018; Accepted 25 July 2018; Published 1 December 2018 Abstract Varied marine and estuarine ecosystems of Tamil Nadu endowed with diverse fish fauna. A total of 1656 fish species under two classes, 40 orders, 191 families and 683 geranra reported from marine and estuarine waters of Tamil Nadu. In the checklist, 1075 fish species were primary marine water and remaining 581 species were diadromus. In total, 128 species were reported under class Elasmobranchii (11 orders, 36 families and 70 genera) and 1528 species under class Actinopterygii (29 orders, 155 families and 613 genera). The top five order with diverse species composition were Perciformes (932 species; 56.29% of the total fauna), Tetraodontiformes (99 species), Pleuronectiforms (77 species), Clupeiformes (72 species) and Scorpaeniformes (69 species). At the family level, the Gobiidae has the greatest number of species (86 species), followed by the Carangidae (65 species), Labridae (64 species) and Serranidae (63 species). Fishery status assessment revealed existence of 1029 species worth for capture fishery, 425 species worth for aquarium fishery, 84 species worth for culture fishery, 242 species worth for sport fishery and 60 species worth for bait fishery.
    [Show full text]
  • Exploitation of Coral Reef Fishes for the Marine Aquarium Trade in Kenya: a Preliminary Assessment - Final Technical Report Contract 19/2004
    Exploitation of Coral Reef Fishes For the Marine Aquarium Trade in Kenya: a Preliminary Assessment - Final Technical Report Contract 19/2004 Item Type Report Authors Okemwa, G.M.; Fulanda, B.; Ochiewo, J.; Kimani, E.N. Publisher Kenya Marine and Fisheries Research Institute (KMFRI) Download date 24/09/2021 06:45:39 Link to Item http://hdl.handle.net/1834/8990 Exploitation of Coral Reef Fishes For the Marine Aquarium Trade in Kenya: A Preliminary Assessment FINAL TECHNICAL REPORT CONTRACT 19/2004 Principal Investigator: G. M. Okemwa Co-investigators: B. Fulanda, J. Ochiewo and E. N. Kimani Kenya Marine and Fisheries Research Institute P.O. Box 81651-80100, Mombasa Kenya September 2006 Okemwa G. M. et al. (2006) Exploitation of Coral Reef Fishes for the Marine Aquarium Trade in Kenya Table of Contents 1.0 BACKGROUND - 4 - 2.0 MATERIALS AND METHODS - 6 - 3.0 RESULTS - 10 - 3.1 Trade Links and Dynamics of the Supply Network - 10 - 3.2 Monitoring and Regulation of the Trade - 10 - 3.3 Harvest and Handling Methods Used - 11 - 3.4 Packaging and Transportation - 12 - 3.5 Key Collection Sites - 14 - 3.6 Export Markets - 14 - 3.7 Species Harvested - 16 - 3.8 Catch and Effort Trends in the Shimoni Area - 18 - 3.6 Post Harvest Mortality of Fish - 20 - 3.9 Impacts of Aquarium Fish Collection in the Shimoni Area - 21 - 4.0 Socioeconomic Dynamics of the Aquarium Industry in Kenya - 24 - 5.0 DISCUSSION - 27 - 5.1 Constraints and Limitations of the Study - 32 - 5.2 Recommendations - 33 - 6.0 REFERENCES - 36 - LIST OF FIGURES: Figure 1.
    [Show full text]
  • Curriculum Vitae
    1 CURRICULUM VITAE A. Biographical Information 1. Personal Name: Daniel Rusk Brooks Date of Birth: 12 April 1951 Citizenship: USA Address: 1821 Greenbriar Lane Lincoln, Nebraska 68506 USA Telephone: (402) 483-6046 Cell: (402) 541-4456 email: [email protected] 2. Educational Background B.S. with Distinction University of Nebraska (1973) Thesis supervisor: M. H. Pritchard M.S. University of Nebraska (1975) Thesis supervisor: M. H. Pritchard Ph.D. University of Mississippi (1978) Evolutionary Biology of Digeneans Inhabiting Crocodilians Dissertation supervisor: R. M. Overstreet 3. Employment Owner, Dan Brooks Photography LLC 2010- Adjunct Research Professor 2011- University of Nebraska-Lincoln Professor emeritus 2011 - University of Toronto Professor of Zoology 1991-2011 University of Toronto Faculty of Graduate Studies 1988-2011 University of Toronto Professor, University College 1992-1996 University of Toronto Associate Professor of Zoology 1988-1991 University of Toronto Associate Professor of Zoology 1985-8 University of British Columbia 2 Assistant Professor of Zoology 1980-5 University of British Columbia Friends of the National Zoo 1979-80 Post-doctoral Fellow National Zoological Park, Smithsonian Institution, Washington, D.C. NIH Post-doctoral Trainee 1978-9 University of Notre Dame 4. Awards and Distinctions Senior Visiting Fellow, Parmenides Foundation (2013) Anniversary Award, Helminthological Society of Washington DC (2012) Senior Visiting Fellow, Institute for Advanced Study, Collegium Budapest, (2010-2011) Fellow, Linnean
    [Show full text]
  • Monogenea: Capsalidae) in Sea-Farmed Cobia (Rachycentron Canadum) in Brazil Revista Brasileira De Parasitologia Veterinária, Vol
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Ehlers Kerber, Claudia; Gomes Sanches, Eduardo; Santiago, Mauricio; Luque, José Luis First record of Neobenedenia melleni (Monogenea: Capsalidae) in sea-farmed cobia (Rachycentron canadum) in Brazil Revista Brasileira de Parasitologia Veterinária, vol. 20, núm. 4, octubre-diciembre, 2011, pp. 331-333 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841482012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Research Note Rev. Bras. Parasitol. Vet., Jaboticabal, v. 20, n. 4, p. 331-333, out.-dez. 2011 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) First record of Neobenedenia melleni (Monogenea: Capsalidae) in sea-farmed cobia (Rachycentron canadum) in Brazil Primeiro registro de Neobenedenia melleni (Monogenea: Capsalidae) em cultivo de bijupirás (Rachycentron canadum) no Brasil Claudia Ehlers Kerber1; Eduardo Gomes Sanches2; Mauricio Santiago1; José Luis Luque3* 1Laboratório Kerber 2Núcleo de Pesquisa e Desenvolvimento do Litoral Norte, Instituto de Pesca 3Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro – UFRRJ Received February 7, 2011 Accepted April 5, 2011 Abstract Neobenedenia melleni (MacCallum, 1927) (Monogenea) is a widespread pathogen in marine teleost cultures all over the world. The present paper reports this parasite species in farmed cobia Rachycentron( canadum) in Brazil, for the first time. Some comments on preventive actions for avoiding the disease are made.
    [Show full text]
  • NBSREA Design Cvrs V2.Pub
    February 2009 TNC Pacific Island Countries Report No 1/09 Rapid Ecological Assessment Northern Bismarck Sea Papua New Guinea Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Supported by: AP Anonymous February 2009 TNC Pacific Island Countries Report No 1/09 Rapid Ecological Assessment Northern Bismarck Sea Papua New Guinea Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Dr. Richard Hamilton, 51 Edmondstone Street, South Brisbane, QLD 4101 Australia Email: [email protected] Suggested Citation: Hamilton, R., A. Green and J. Almany (eds.) 2009. Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea. Technical report of survey conducted August 13 to September 7, 2006. TNC Pacific Island Countries Report No. 1/09. © 2009, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Cover Photo: Manus © Gerald Allen ISBN 9980-9964-9-8 Available from: Indo-Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 4101 Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications ii Foreword Manus and New Ireland provinces lie north of the Papua New Guinea mainland in the Bismarck Archipelago. More than half of the local communities in our provinces are coastal inhabitants, who for thousands of years have depended on marine resources for their livelihood. For coastal communities survival and prosperity is integrally linked to healthy marine ecosystems.
    [Show full text]
  • How Many Fish Could Be Vocal? an Estimation from a Coral Reef (Moorea Island)
    Belgian Journal of Zoology Royal Belgian Zoological Society www.belgianjournalzoology.be This work is licensed under a Creative Commons Attribution License (CC BY 4.0). ISSN 2295-0451 Research article https://doi.org/10.26496/bjz.2021.82 How many fish could be vocal? An estimation from a coral reef (Moorea Island) Eric Parmentier 1,*, Frédéric Bertucci 2,3, Marta Bolgan 1 & David Lecchini 3,4 1 Université de Liège, Laboratoire de Morphologie fonctionnelle et évolutive, FOCUS, Institut de Chimie - B6c, Sart Tilman, Liège, 4000, Belgium. 2 Biology of Aquatic Organisms and Ecosystems (Unit BOREA), Université des Antilles- MNHN-SU-UCN-CNRS-IRD, Pointe-à-Pitre, Guadeloupe. 3 Laboratoire d’Excellence « CORAIL », BP 1013, 98729, Papetoai, Moorea, French Polynesia. 4 PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia. * Corresponding author: [email protected] Abstract. A recurrent question arising in fish bioacoustics research concerns the number of vocal fish species that may exist. Although it is not possible to provide a precise globally valid number, an estimation based on recordings already collected at coral reefs (Moorea) and on morphological approaches indicates that approximately half of the fish families of this particular environment has at least one known sound- producing species. In light of this, acoustic behaviour should be fully considered in biology, ecology and management plans as it may provide information on a consistent portion of fish biodiversity. Fish bioacoustics has switched from anecdotal reports to long-term, large-scale monitoring studies, capable of providing high resolution information on fish populations’ composition and dynamics.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Global assessment of the status of coral reef herbivorous fishes : : evidence from fishing effects Permalink https://escholarship.org/uc/item/5jx0365g Author Edwards, Clinton Brook Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO GLOBAL ASSESSMENT OF THE STATUS OF CORAL REEF HERBIVOROUS FISHES: EVIDENCE FOR FISHING EFFECTS A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Clinton Brook Edwards Committee in charge: Professor Jennifer Smith, Chair Professor Jonathan Shurin, Co-Chair Professor Joshua Kohn Professor Stuart Sandin 2013 The Thesis of Clinton Brook Edwards is approved and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Co-Chair _____________________________________________________________________ Chair University of California, San Diego 2013 iii Dedication To my sister Katee, who never had the opportunity to grow old and define new dreams as old ones were reached. I will carry your purple spirit with me wherever I go. To my sister Shannon…nobody makes me more mad or proud!!!! I love you!! To Brandon…..my co-conspirator, brother and best friend. You taught me to be proud of being smart, to be bold in my opinions and to truly love people. Thank you. To Seamus, Nagy, Neil, Pete, Pat, Mikey B and Spence dog. Learning to surf with you guys has been one of the true honors of my life. To the madmen, Ed, Sean, Garth, Pig Dog and Theo.
    [Show full text]
  • Monogenea: Capsalidae) Infecting Farmed Barramundi (Lates Calcarifer)
    Parasitol Res DOI 10.1007/s00436-015-4375-5 ORIGINAL PAPER Effects of temperature and salinity on the life cycle of Neobenedenia sp. (Monogenea: Capsalidae) infecting farmed barramundi (Lates calcarifer) Alexander K. Brazenor & Kate S. Hutson Received: 4 September 2014 /Accepted: 4 February 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract Effective parasite management can be achieved Keywords Aquaculture . Treatment . Asian sea bass . through strategically timed treatments that break the life cycle. Monogenea . Neobenedenia . Egg hatching We examined the effects of temperature (2 °C increments from 22 to 34 °C) and salinity (0, 11, 22, 35, 40‰) on the life cycle (embryonation period, hatching success, oncomiracidia (larvae) longevity, infection success, and time to sexual matu- Introduction rity) of Neobenedenia sp. (Monogenea: Capsalidae), a harm- ful ectoparasite of farmed marine fishes. Experiments were Integrated parasite management of farmed stock requires com- conducted in controlled conditions in the laboratory. The life prehensive and accurate knowledge of parasite life cycles and cycle was faster in warm, high saline conditions compared to the influence of environmental parameters to be effective. In cooler conditions (10–13 days between 26–32 °C, 40‰;15– agriculture, parasite management may include a combination 16 days between 22–24 °C at 40‰). Warm seawater and high of chemical treatments, resistant stock breeds and grazing pas- saline conditions (24–32 °C, 35–40‰) improved egg hatch- ture management practices such as fallowing or alternative ing success, reduced time to sexual maturity, and resulted in species grazing (Barger and Southcott 1978;Baker1996; parasites reaching sexual maturity at a larger size (at 30– Barger 1997; Waller 1997; Stromberg and Averbeck 1999).
    [Show full text]
  • Check List of Rocky Reef Associated of Rocky Reef Associated Fishes Of
    Research Journal of Marine Sciences ____________________________________ ______ _______ ISSN 2321-1296 Vol. 7(1), 1-13, June (2019) Res. J. Marine Sci. Check list of rocky reef associated fishes of south Kerala coast, India Baiju P.T. 1* , Prabhakaran M.P. 2, Benno Pereira F.G. 3 and V. Jayaprakas 4 1Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581 Kerala, India 2Department of Aquatic Environment Management, School of Fisheries RM & HT, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi – 682506, Kerala, India 3Department of Zoology, Uni versity of Kerala, Thiruvananthapuram -695581 Kerala, India 4Amity Thiruvananthapuram Center for Marine Science and Technology 3 Ravi Nagar, Ambalamukku, Peroorkada, P.O., Thiruvananthap uram- 695005, India [email protected] Available online at: www.isca.in, www.isca.me Received 25 th November 2018, revised 21 st March 2019, accepted 28 th April 2019 Abstract In this manuscript a checklist of 232 species of rocky reef associated fishes,a least documented area of tropical ichthyofauna recorded from the rocky reefs of south Kerala coast of the Indian Subcontinent. This 232 fish species were reported in the present study belong to 2 Classes, 16 Orders, 62 Families and 114Genera. Among the 62 Families recorded in the study, Pomacentridae the found as most specious family with 20 species of fishes belongs to 7 genera and followed by Labridae (18), Lutjanidae (15), Chaetodontidae (11), Apogonidae (10), Acanthuridae (11), Muraenidae (9), Serranida e (9), Scorpaenidae (8), Blenniidae (8), Haemulidae (6) , Mullidae (6), Holocentridae(5), Carangidae (5), Gobiidae(5) and Balistidae (5). Among the listed species, 141 species records asLeast Concern, followed by Not Included 77 species, Data Deficient 8 spe cies, Near Threatened 5 species, and Endangered and Vulnerable categories are 1 on each.
    [Show full text]