The Taxonomy, Distribution, and Developmental Stages of Water Mites Collected in Central and North Central Ohio

Total Page:16

File Type:pdf, Size:1020Kb

The Taxonomy, Distribution, and Developmental Stages of Water Mites Collected in Central and North Central Ohio THE TAXONOMY, DISTRIBUTION, AND DEVELOPMENTAL STAGES OF WATER MITES COLLECTED IN CENTRAL AND NORTH CENTRAL OHIO DISSERTATION Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By ROBERT MERRILL CROWELL, A.B., M.A. The Ohio State University 1957 Approved by: Adviser Department of Zoology and Entomology ACKNOWLEDGMENTS The writer wishes to express his thanks to those persons who have facilitated the pursuit of this project. I am especially grateful to the several Individuals, students, and colleagues who have contributed specimens for use in the study. The cooperation of members of the staff of the Chicago Natural History Museum, in making available Iden­ tified material from the Huth Marshall Collection, is acknowledged with appreciation. I should like to thank Dr. C. B. Philip and the editors of The Scientific Monthly for permission to quote the passage included in the epilogue. Thanks are due also to Hand McNally and Company for permission to reproduce the copyrighted map of Ohio, Figure 18. The following sources have supplied funds through grants-in-aid which have assisted in financing various phases of the project: The Ohio Academy of Science, The William H. Wilson Awards (College of Wooster), and the Professional Development Fund (St. Lawrence University, Canton, N. Y.). This assistance Is deeply appreciated. il ill Finally, I should like to acknowledge with thanks the guidance and counsel of Dr. Carl E. Venard in the course of this work. TABLE OF CONTENTS CHAPTER - PAGE INTRODUCTION ...................................... 1 I. GENERAL SYSTEMATICS OF THE WATER MITES AND REVIEW OF THE LITERATURE................ 3 II. GENERAL CHARACTERISTICS OF THE WATER MITES . 10 III. THE LIFE CYCLE OF WATER M I T E S ................. 22 IV. THE OCCURRENCE OF WATER MITES ON INSECTS . 30 V. COLLECTION AND PREPARATION OF MATERIALS . 39 VI. SYSTEMATIC RECORD OF OHIO WATER MITES .... 53 - Family Hydrachnidae ...................... 53 Family Eylaidae............................ 67 Family Thyasidae ................ 7b Family Hydryphantidae...................... 81 Family Hydrodromidae...................... 91 Family Lebertiidae ...................... 96 Family Torrenticolidae................... 100 Family Limnesiidae....................... 107 Family Hygrobatidae . ................... 110 iv TABLE OP CONTENTS (Continued) Family Pionidae........................... Ill; Family Arrenuridae ..................... 138 Unassignable material..................... li|.l Additional r e c o r d s ....................... H 4.I SUMMARY..................................... IIOj. LITERATURE C I T E D ........................... 1^$ ILLUSTRATIONS ............................. 1$5 EPILOGUE ................................. 18 k AUTOBIOGRAPHY...............................185 v LIST OF TABLES TABLE PAGE I. Summary of Infestation of Insects with Water Mites (Gibraltar Island and Vicinity. June July, 195^4-)............................ 33 vi LIST OP ILLUSTRATIONS FIGURE PAGE 1•i. _ 17. Structural characteristics of water mites .......................... 157 18. Map of Ohio showing distribution of collections .................... 159 19 - 22. Collecting equipment and techniques 159 23. Specimen of Ranatra sp. heavily para­ sitized by Hydrachna magniscutata 159 2k - 38. Hydrachna magnlflcutata............ 162 39 - ip.. H. rotunda ..... .............. 165 k2 - 56. H. baculcscu^ata , ................ 165 .97 - 76. Eylais extendens .................. 169 77 - 89. Thyas stolli ...................... 169 90 - 97. Hydryphantes ruber ................ 172 98 - 105. H. waynensis . ................ 172 106 - 115. Hydrodroma despiciens ....... 175 116 - 119. Lebertia porosa . .............. 175 120 - 122. Torrenticola indistincta .......... 175 123 “ 125. T. bittikoferae .................. 175 LIST OP ILLUSTRATIONS (Continued) 126 - 131. Limneaia u n d u l a t a ................178 132 - 136. Hygrobatea longlpalpis........... 1?8 137 - 114.1 . Tiphya torria var. amerlcanua . 178 lij.2 - l£0. Piona rotunda ....................1®1 l£l - 159. P. reighardl................. * • * 1®1 160 - 167. P. naplo ......................1®3 .168. Arrenurus latlcornis .............. 183 169 - 170. A. m a r a h a l l a e .......... 183 viii INTRODUCTION The water mites are a little-known group of arthro­ pods of wide occurrence. They may be found In almost all types of aquatic habitats. As adults they are most abundant In vernal ponds and in the littoral zone of larger bodies of water. They may also be found in rivers and streams and along rubble beaches. As larvae they are often observed parasitizing aquatic and semi-aquatic Insects. The lack of knowledge about the group is sometimes accounted for by reference to their small size and obscure habits. However, they exceed most of the protozoa and many of the trematodes in size and are certainly more obvious than the Individuals of both of these groups which are much better known. Their lack of economic importance has been cited as an explanation of the absence of information about them. A demonstration by Uchida and Miyazaki (1935) of the water mites as a potential biologi­ cal control agent of anophellne mosquitoes indicates that they may have unrecognized economic significance. The occurrence of water mites as parasites of noxious insects suggests possibilities for research and investigation of problems in basic biology. Whatever the explanation for the paucity of Infor- mation may be, it is true that only six American investi­ gators have published on the water mites within the past ten years. Not since Miller's Introductory Study of the Acarlna, or Mites, of Ohio in 1925 has there been a paper indicating the hydracarinid fauna of Ohio. Miller's listings included nine species of water mites. The writer's aim in the present investigation has been twofold. First, I have endeavored to expand the knowledge of the Ohio fauna through collection and identi­ fication of water mites in the central and north central regions of the state. Secondly, I have attempted to present general and systematic information about the group in such a manner that it can be utilized by the general biologist in identifying water mites which he may collect. Anatomical structure of mites and methods of collection and handling are considered in detail subse­ quently. Determinations have been made by the writer, based on comparisons with Identified material in the writer's collection or material loaned by the Chicago Natural History Museum. Chapters I to V inclusive cover various phases of general information about water mites. Chapter VI pre­ sents, In systematic order, descriptions and data con­ cerning the 19 species identified. Four of these are new species. Taxonomic features of all species which have been identified are illustrated. CHAPTER I GENERAL SYSTEMATICS OP THE WATER MITES AND REVIEW OP THE LITERATURE The water mites are an. ecological grouping of Acarina which appear to represent several phyletic lines. American authors have generally referred to them as the Hydracarina. European authors frequently use the term Hydrachnellae for this group. In such usages one must keep in mind the fact that neither of these terms repre­ sent taxonomic categories, although Pennak (1953) gives the term Hydracarina ordinal rank. Viets (1956) lists 2817 species of Hydrachnellae plus sub-species, species inquirendae and those of incertae sedis. Mitchell (1954)* whose check list represents the only modern attempt to examine the extent of work on North American water mites, lists 291 Species which have been reported from this continent. The water mites have generally been considered among the prostigmatid mites of the sub-order Trombidi- formes (see Viets, 1936:40)• However tracheal stigmata have been demonstated In only a few species, and critical study of tracheal systems is needed to aid in establishing 3 k •--------------------------- this relationship. Until such information is available such relationship can be only speculation. Attempts to arrange the world fauna in a phylo­ genetic classification have not been entirely satisfactory, and the schemes in current use remain largely artificial. Modern classification of the water mites has evolved over a period of nearly 200 years, although the first authentic reference to a water mite is slightly older than that. According to Soar and Williamson (1925: 1) in 1730 Johann Leonhard Frisch described and illustrated “a little red water-spider which obtains nutriment by sucking the body of the Wasserlaus.n Seven years later, in 1737, Boer- haave's publication of Jan Swammerdam's manuscripts ’•showed that he had observed a water scorpion (Nepa) with what looked like an egg attached, but which on being opened showed a spider-like creature (nymph)” (Soar and Williamson, loc. cit.). It appears that 0. F. Mflller (1776)> in a paper not seen by the writer, attempted the first organization of the known species (then numbering I4.0 ) into groups. His grouping, based on the number of eyes, is outlined by Soar and Williamson (1925: 36). Originally he arranged the mites into two groups: Oculis duobus and Oculis pluribus. Subsequently he divided them into: a. Oculis binis, subdivided into (1) Caudatae, (2) Furcatae, 5 (3) Postice pilosae, and (4) glabrae; b. Oculis quator; c. Oculis sex. About 1800 Latreille published a series of papers in which he assigned generic names to the known water mites and in 1802 grouped them in one family which he named Hydrachnellae
Recommended publications
  • A New Record of the Water Mite Hydryphantes Tenuipalpis Thon (Acariformes, Hydryphnatidae) for Russia, with Description of Its Developmental Stages P.V
    Acarina 16 (1): 57–64 © ACARINA 2008 A NEW RECORD OF THE WATER MITE HYDRYPHANTES TENUIPALPIS THON (ACARIFORMES, HYDRYPHNATIDAE) FOR RUSSIA, WITH DESCRIPTION OF ITS DEVELOPMENTAL STAGES P.V. Tuzovsky Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Prov., 152742 Russia ABSTRACT: The first illustrated description of the larva, deutonymph and adults of the water mite Hydryphantes tenuipalpis from Yaroslavl Province, Russia is given. KEY WORDS: Hydryphantidae, Hydryphantes tenuipalpis, water mite, larva, deutonymph, female, male. INTRODUCTION The water mite Hydryphantes tenuipalpis is small platelets with setae Fch and Fp. Posterior widely distributed in Europe and is only known plate narrows anteriorly and widens posteriorly; from adults (Lundblad 1968; Gerecke 1996). I setae Vi and Oi situated on posterior portion of found this species for the first time in Russia (Yaro- plate. Medial eye weakly developed, situated be- slavl’ Province) and describe the larva, deutonymph tween setae Vi. Both pairs of trichobothria thin, Fp adults. long, Oi short. Distance between bases of trichoboth- MATERIAL AND METHODS ria Oi shorter than their length. Simple proterosom- al setae (Fch, Vi and Oe) thick, but Fch slightly Six deutonymphs, 9 females, and 3 males were shorter than Vi and Oe. Hysterosomal dorsal setae collected by the author from woodland temporary Hi, He, Sci, Sce, Li, and Le subequal, their bases ponds near Borok, Nekouz Distr., Yaroslavl’ Prov- situated on very small rounded sclerites. ince, May–July 2000. Larvae (n=14) reared from Coxae II triangular, coxae I and III trapezoid three females in the laboratory conditions. The and broadly rounded medially (Fig.
    [Show full text]
  • Subterranean Fauna from Siberia and Russian Far East ______ENCYCLOPAEDIA BIOSPEOLOGICA (Siberia-Far East Special Issue)
    Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.biotaxa.org/em Subterranean fauna from Siberia and Russian Far East _________________ ENCYCLOPAEDIA BIOSPEOLOGICA (Siberia-Far East special Issue) CHRISTIAN JUBERTHIE1, DIMITRI SIDOROV2, VASILE DECU3, ELENA MIKHALJOVA2 & KSENIA SEMENCHENKO2 1Encyclopédie Biospéologique, Edition. 1 Impasse Saint-Jacques, 09190 Saint-Lizier France; e-mail: [email protected] 2Institute of Biology and Soil Science, 100-letiya Vladisvostoka Av. 159, 690022 Vladivostok, Russia; e-mail: [email protected] 3Institutul de Speologie "Emil Racovitza", Academia romana, Calea 13 Septembrie, 13050711 Bucarest, Roumanie Received 20 March 2016 │ Accepted 25 November 2016 │ Published online 29 November 2016. Abstract Description of the main karstic regions of Siberia and Far East, and the most important caves. Survey of the subterranean species collected in caves, springs, hyporheic and MSSh. Relationship with the climate and glacial paleoclimatic periods to explain the paucity of the terrestrial fauna of Siberia. Persistence of some aquatic stygobionts (Crustacea), and richness of the subterranean fauna of the Far East, particularily in the Sikhote-Alin. The Crutaceans of the eastern part of the Ussury basin and Sakhalin Island have relationship with the Japanese and Korean fauna. Key words: karst, caves, springs, MSS, subterranean fauna, biogeography. 1 Generalities and History The study of caves in Siberia was begun in the late 17th century (Tsykin et al., 1979), but the first published report were made as early as in the 18th century by swedish geographer P. von Strahlenberg who in 1722 visited the cave on the Yenisei river bank above Krasnoyarsk and gave a short description, which is considered the first report of caves in Siberia (Strahlenberg, 1730).
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Acari: Hydrachnidia) for the Turkish Fauna
    Acarological Studies Vol 1 (1): 44-47 SHORT NOTE Two new records of the genus Hydryphantes (Acari: Hydrachnidia) for the Turkish Fauna Yunus ESEN 1,4 , Abdullah MART 2 , Orhan ERMAN 3 1 Solhan Vocational School of Health Services, Bingöl University, Bingöl, Turkey 2 Department of Biology, Faculty of Arts and Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey 3 Department of Biology, Faculty of Science, Fırat University, Elazığ, Turkey 4 Corresponding author: [email protected] Received: 28 October 2018 Accepted: 20 December 2018 Available online: 29 January 2019 ABSTRACT: Two species of the genus Hydryphantes Koch, 1841 collected from Bayburt and Bingöl Provinces, Hydry- phantes (s.str.) armentarius Gerecke, 1996 and H. (s.str.) fontinalis Sokolow, 1936 are given as new records for the Turk- ish fauna. Keywords: Hydryphantes, new record, Turkey, water mite. The family Hydryphantidae Piersig, 1896 is a large and Family: Hydryphantidae Piersig, 1896 morphologically diverse group of water mites, with 329 species in 51 genera worldwide (Zhang et al., 2011). The Genus: Hydryphantes Koch, 1841 family Hydryphantidae is represented with 38 species in 12 genera from Turkey (Erman et al., 2007, 2010; Özkan Hydryphantes (s.str.) armentarius Gerecke, 1996 et al., 1988, 1994). Adults of the genus Hydryphantes live Figure 1A-E in a wide variety of habitats i.e. primarily in vernal tem- porary pools, permanent stagnant waters, lakes, pools of Material Examined: Bayburt Province, Kop Mountain, streams and riffles of cold streams (Smith, 2010; Di Saba- low-order streams, 40°02'19" N, 40°29'15" E, 2345 m tino et al., 2010).
    [Show full text]
  • Does Parasitism Mediate Water Mite Biogeography?
    Systematic & Applied Acarology 25(9): 1552–1560 (2020) ISSN 1362-1971 (print) https://doi.org/10.11158/saa.25.9.3 ISSN 2056-6069 (online) Article Does parasitism mediate water mite biogeography? HIROMI YAGUI 1 & ANTONIO G. VALDECASAS 2* 1 Centro de Ornitología y Biodiversidad (CORBIDI), Santa Rita 105, Lima 33. Peru. 2 Museo Nacional de Ciencias Naturales (CSIC), c/José Gutierrez Abascal, 2, 28006- Madrid. Spain. *Author for correspondence: Antonio G Valdecasas ([email protected]) Abstract The biogeography of organisms, particularly those with complex lifestyles that can affect dispersal ability, has been a focus of study for many decades. Most Hydrachnidia, commonly known as water mites, have a parasitic larval stage during which dispersal is predominantly host-mediated, suggesting that these water mites may have a wider distribution than non-parasitic species. However, does this actually occur? To address this question, we compiled and compared the geographic distribution of water mite species that have a parasitic larval stage with those that have lost it. We performed a bootstrap resampling analysis to compare the empirical distribution functions derived from both the complete dataset and one excluding the extreme values at each distribution tail. The results show differing distribution patterns between water mites with and without parasitic larval stages. However, contrary to expectation, they show that a wider geographic distribution is observed for a greater proportion of the species with a non-parasitic larval stage, suggesting a relevant role for non-host-mediated mechanisms of dispersal in water mites. Keywords: biogeography, water mites, non-parasitic larvae, parasitic larvae, worldwide distribution patterns Introduction Studies of the geographic distribution of organisms have greatly influenced our understanding of how species emerge and have provided arguments favoring the theory of evolution by natural selection proposed by Darwin (1859).
    [Show full text]
  • Acariformes, Hydrachnidia, Hygrobatidae
    Two new species from the Hygrobates nigromaculatus-complex (Acariformes, Hydrachnidia, Hygrobatidae), based on morphological and molecular evidence Vladimir Pešić, Milica Jovanović, Ana Manović, Andrej Zawal, Aleksandra Bańkowska, Łukasz Broda, Peter Martin, Miroslawa Dabert To cite this version: Vladimir Pešić, Milica Jovanović, Ana Manović, Andrej Zawal, Aleksandra Bańkowska, et al.. Two new species from the Hygrobates nigromaculatus-complex (Acariformes, Hydrachnidia, Hygrobatidae), based on morphological and molecular evidence. Acarologia, Acarologia, 2020, 60 (4), pp.753-768. 10.24349/acarologia/20204400. hal-02972682 HAL Id: hal-02972682 https://hal.archives-ouvertes.fr/hal-02972682 Submitted on 20 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Acarologia A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.
    [Show full text]
  • Special Publications Special
    ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS WITH WET PLAYAS ARACHNIDS ASSOCIATED SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 2008 ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS (LLANO ESTACADO), C okendolpher et al. U.S.A. JAMES C. COKENDOLPHER, SHANNON M. TORRENCE, JAMES T. ANDERSON, W. DAVID SISSOM, NADINE DUPÉRRÉ, JAMES D. RAY & LOREN M. SMITH SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A. JAMES C. COKENDOLPHER , SHANNON M. TORREN C E , JAMES T. ANDERSON , W. DAVID SISSOM , NADINE DUPÉRRÉ , JAMES D. RAY , AND LOREN M. SMI T H Texas Tech University, Oklahoma State University, B&W Pantex, Texas Parks and Wildlife Department, West Texas A&M University, West Virginia University Layout and Design: Lisa Bradley Cover Design: James C. Cokendolpher et al. Copyright 2008, Museum of Texas Tech University All rights reserved. No portion of this book may be reproduced in any form or by any means, including electronic storage and retrieval systems, except by explicit, prior written permission of the publisher. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 10 April 2008 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 54 Series Editor: Robert J. Baker Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A.
    [Show full text]
  • Redescription of Atractides Neumani (Lundblad, 1962) and Description of Larvae (Acari: Hydrachnidia)
    Genus Vol. 22(2): 299-306 Wrocław, 31 VII 2011 Redescription of Atractides neumani (LUNDBLAD, 1962) and description of larvae (Acari: Hydrachnidia) EUGENIUSZ BIESIADKA & MARIA CICHOCKA University of Warmia and Mazury in Olsztyn, Faculty of Biology, Department of Ecology and Environment Protection, Olsztyn, Poland; e-mail: [email protected] ABSTRACT. Based on the material collected in Poland, a redescription of Atractides neumani is given, including a description of a previously unknown larva of the species. Key words: acarology, taxonomy, Hydrachnidia, Atractides neumani, male, female, larva, description. INTRODUCTION Atractides neumani (LUNDBLAD) has been described based on observations of two individuals (1 ♂, 1 ♀) collected in 1923 in central Sweden, the Hälsingland province, in the Spartan stream near Kilbo, as a form of Atractides nodipalpis (THOR) (LUNDBLAD 1962). A short description of the species was illustrated with figure drawings of palps and terminal sections of the first pair of legs. According toL UNDBLAD (1962), the spe- cies is highly similar to A. issajewi (SOKOLOW) found in Uzbekistan and A. valencianus (VIETS) reported from Spain. Based on the specimens preserved in the collections of the Swedish Museum of Natural History, GERECKE (2003) gave a more comprehensive description of A. neumani. The collection of more than ten A. neumani specimens in Poland as well as larvae of the species has prompted a redescription of adults to account for the existing variations as well as a description of an unknown larva. 300 EUgENIUSz BIESIADKA, MARIA CICHOCKA MATERIAL AND METHODS The material has been collected in the Pasłęka River (north-eastern Poland): Pasłęka River near Pelnik (N: 53o47’36.55’’; E: 20o9’7.93’’), 23.02.1984, 1 ♂, 2 ♀♀, 26.05.2010, 1 ♂, 1 ♀; Pasłęka River near Kalisty (N: 53o55’8.08’’; E: 20o11’46.94’’), 12.09.1984, 1 ♂; Pasłęka River near Pityny (N: 54o0’37.71’’; E: 20o8’41.12’’), 16.07.1986, 4 ♂♂, 6 ♀♀.
    [Show full text]
  • Acari: Prostigmata: Parasitengona) V
    Acarina 16 (1): 3–19 © ACARINA 2008 CALYPTOSTASY: ITS ROLE IN THE DEVELOPMENT AND LIFE HISTORIES OF THE PARASITENGONE MITES (ACARI: PROSTIGMATA: PARASITENGONA) V. N. Belozerov St. Petersburg State University, Biological Research Institute, Stary Peterhof, 198504, RUSSIA, e-mail: [email protected] ABSTRACT: The paper presents a review of available data on some aspects of calyptostasy, i.e. the alternation of active (normal) and calyptostasic (regressive) stages that is characteristic of the life cycles in the parasitengone mites. There are two different, non- synonymous approaches to ontogenetic and ecological peculiarities of calyptostasy in the evaluation of this phenomenon and its significance for the development and life histories of Parasitengona. The majority of acarologists suggests the analogy between the alternating calyptostasy in Acari and the metamorphic development in holometabolous insects, and considers the calyptostase as a pupa-like stage. This is controversial with the opposite view emphasizing the differences between calyptostases and pupae in regard to peculiarities of moulting events at these stages. However both approaches imply the similar, all-level organismal reorganization at them. The same twofold approach concerns the ecological importance of calyptostasy, i.e. its organizing role in the parasitengone life cycles. The main (parasitological) approach is based on an affirmation of optimizing role of calyptostasy through acceleration of development for synchronization of hatching periods in the parasitic parasitengone larvae and their hosts, while the opposite (ecophysiological) approach considers the calyptostasy as an adaptation to climate seasonality itself through retaining the ability for developmental arrests at special calyptostasic stages evoked from normal active stages as a result of the life cycle oligomerization.
    [Show full text]
  • Marine Insects
    UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats.
    [Show full text]
  • Sources of Water Mite (Acari: Hydrachnidia) Diversity
    diversity Article Crenal Habitats: Sources of Water Mite (Acari: Hydrachnidia) Diversity Ivana Pozojevi´c 1, Vladimir Peši´c 2, Tom Goldschmidt 3 and Sanja Gottstein 1,* 1 Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; [email protected] 2 Department of Biology, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro; [email protected] 3 Zoologische Staatssammlung, Münchhausenstraße 21, D-81247 München, Germany; [email protected] * Correspondence: [email protected] Received: 29 July 2020; Accepted: 17 August 2020; Published: 20 August 2020 Abstract: Many studies emphasized the role that water mites play within the invertebrate communities of spring ecosystems, regarding species diversity and its significance within the crenal food web, as well as the specific preferences water mites exhibit towards spring typology. In pristine natural springs with permanent flow, water mites are nearly always present and usually display high diversity. This study aimed to determine whether significant differences in water mite assemblages between rheocrene (river-forming springs with dominant riffle habitats) and limnocrene (lake-forming springs with dominant pool habitats) karst springs could be detected in terms of species richness, diversity and abundance, but also in different ratios of specific synecological groups: crenobiont (exclusively found in springs), crenophilous (associated with springs) and stygophilous (associated with groundwater) water mite taxa. Our research was carried out on four limnocrenes and four rheocrenes in the Dinaric karst region of Croatia. Seasonal samples (20 sub-samples per sampling) were taken at each spring with a 200-µm net, taking into consideration all microhabitat types with coverage of at least 5%.
    [Show full text]
  • The Biodiversity of Water Mites That Prey on and Parasitize Mosquitoes
    diversity Review The Biodiversity of Water Mites That Prey on and Parasitize Mosquitoes 1,2, , 3, 4 1 Adrian A. Vasquez * y , Bana A. Kabalan y, Jeffrey L. Ram and Carol J. Miller 1 Healthy Urban Waters, Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI 48202, USA; [email protected] 2 Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA 3 Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA; bana.kabalan@ufl.edu 4 Department of Physiology, School of Medicine Wayne State University, Detroit, MI 48201, USA; jeff[email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 2 May 2020; Accepted: 4 June 2020; Published: 6 June 2020 Abstract: Water mites form one of the most biodiverse groups within the aquatic arachnid class. These freshwater macroinvertebrates are predators and parasites of the equally diverse nematocerous Dipterans, such as mosquitoes, and water mites are believed to have diversified as a result of these predatory and parasitic relationships. Through these two major biotic interactions, water mites have been found to greatly impact a variety of mosquito species. Although these predatory and parasitic interactions are important in aquatic ecology, very little is known about the diversity of water mites that interact with mosquitoes. In this paper, we review and update the past literature on the predatory and parasitic mite–mosquito relationships, update past records, discuss the biogeographic range of these interactions, and add our own recent findings on this topic conducted in habitats around the Laurentian Great Lakes.
    [Show full text]