Recent Reports of Solid-Phase Cyclohexapeptide Synthesis and Applications
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Peptoid Residues Make Diverse, Hyperstable Collagen Triple Helices
Peptoid Residues Make Diverse, Hyperstable Collagen Triple Helices Julian L. Kessler1, Grace Kang1, Zhao Qin2, Helen Kang1, Frank G. Whitby3, Thomas E. Cheatham III4, Christopher P. Hill3, Yang Li1,*, and S. Michael Yu1,5 1Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA 2Department of Civil & Environmental Engineering, Collagen of Engineering & Computer Science, Syracuse University, Syracuse, New York 13244, USA 3Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA 4Department of Medicinal Chemistry, College of Pharmacy, L. S. Skaggs Pharmacy Research Institute, University of Utah, Salt Lake City, Utah 84112, USA 5Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA *Corresponding Author: Yang Li ([email protected]) Abstract The triple-helical structure of collagen, responsible for collagen’s remarkable biological and mechanical properties, has inspired both basic and applied research in synthetic peptide mimetics for decades. Since non-proline amino acids weaken the triple helix, the cyclic structure of proline has been considered necessary, and functional collagen mimetic peptides (CMPs) with diverse sidechains have been difficult to produce. Here we show that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, allowing synthesis of thermally stable triple-helical CMPs with unprecedented sidechain diversity. We found that the N-glys stabilize the triple helix by sterically promoting the preorganization of individual CMP chains into the polyproline-II helix conformation. Our findings were supported by the crystal structures of two atomic-resolution N-gly-containing CMPs, as well as experimental and computational studies spanning more than 30 N-gly-containing peptides. -
A Global Review on Short Peptides: Frontiers and Perspectives †
molecules Review A Global Review on Short Peptides: Frontiers and Perspectives † Vasso Apostolopoulos 1 , Joanna Bojarska 2,* , Tsun-Thai Chai 3 , Sherif Elnagdy 4 , Krzysztof Kaczmarek 5 , John Matsoukas 1,6,7, Roger New 8,9, Keykavous Parang 10 , Octavio Paredes Lopez 11 , Hamideh Parhiz 12, Conrad O. Perera 13, Monica Pickholz 14,15, Milan Remko 16, Michele Saviano 17, Mariusz Skwarczynski 18, Yefeng Tang 19, Wojciech M. Wolf 2,*, Taku Yoshiya 20 , Janusz Zabrocki 5, Piotr Zielenkiewicz 21,22 , Maha AlKhazindar 4 , Vanessa Barriga 1, Konstantinos Kelaidonis 6, Elham Mousavinezhad Sarasia 9 and Istvan Toth 18,23,24 1 Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; [email protected] (V.A.); [email protected] (J.M.); [email protected] (V.B.) 2 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland 3 Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; [email protected] 4 Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; [email protected] (S.E.); [email protected] (M.A.) 5 Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland; [email protected] (K.K.); [email protected] (J.Z.) 6 NewDrug, Patras Science Park, 26500 Patras, Greece; [email protected] 7 Department of Physiology and Pharmacology, -
(12) Patent Application Publication (10) Pub. No.: US 2011/0082079 A1 Spetzler Et Al
US 2011 0082079A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0082079 A1 Spetzler et al. (43) Pub. Date: Apr. 7, 2011 (54) GLUCAGON-LIKE PEPTDE-1 DERVATIVES Publication Classification AND THEIR PHARMACEUTICAL USE (51) Int. Cl. A638/22 (2006.01) (75) Inventors: Jane Spetzler, Bronsho (DK); C07K I4/575 (2006.01) Lauge Schäffer, Lyngby (DK); A6IP3/10 (2006.01) Jesper Lau, Farum (DK); Thomas A6IP 9/12 (2006.01) Kruse, Herlev (DK); Patrick A6IP3/04 (2006.01) William Garibay, Holte (DK); A6IP 9/10 (2006.01) Steffen Runge, Frederiksberg A6IPI/00 (2006.01) (DK); Henning Thogersen, Farum A6IPL/04 (2006.01) (DK); Ingrid Petersson, Frederiksberg (DK) (52) U.S. Cl. .......................... 514/7.2:530/399; 514/11.7 (57) ABSTRACT (73) Assignee: Novo Nordisk A/S, Bagsvard (DK) The invention relates to protracted Glucagon-Like Peptide-1 Appl. No.: (GLP-1) derivatives and therapeutic uses thereof. The GLP-1 (21) 12/676,451 derivative of the invention comprises a modified GLP-1 (7- PCT Fled: 37) sequence having a total of 2-12 amino acid modifications, (22) Sep. 5, 2008 including Glu22 and Arg26, and being derivatised with an PCT NO.: PCT/EP2008/061755 albumin binding residue or pegylated in position 18, 20, 23. (86) 30, 31, 34, 36, 37, or 39. These compounds are useful in the S371 (c)(1), treatment or prevention of diabetes type 2 and related dis (2), (4) Date: Oct. 13, 2010 eases. The compounds are potent, stable, have long half-lives, a high affinity of binding to albumin, and/or a high affinity of (30) Foreign Application Priority Data binding to the extracellular domain of the GLP-1 receptor (GLP-1R), all of which is of potential relevance for the overall Sep. -
Protein Side-Chain Translocation Mutagenesis Via Incorporation of Peptoid Residues † Byoung-Chul Lee and Ronald N
ARTICLES pubs.acs.org/acschemicalbiology Protein Side-Chain Translocation Mutagenesis via Incorporation of Peptoid Residues † Byoung-Chul Lee and Ronald N. Zuckermann* Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, United States bS Supporting Information ABSTRACT: For the last few decades, chemistry has played an important role in protein engineering by providing a variety of synthetic tools such as chemoselective side-chain modifications, chemical conjugation, incorporation of non-natural amino acids, and the development of protein-mimetic heteropolymers. Here we study protein backbone engineering in order to better understand the molecular mechanism of protein function and to introduce protease stable, non-natural residues into a protein structure. Using a combination of genetic engineering and chemical synthesis, we were able to introduce peptoid residues (N-substituted glycine residues) at defined positions into bovine pancreatic ribonuclease A. This results in a side-chain translocation from the Cα carbon to the neighboring backbone nitrogen atom. To generate these peptoid substitutions, we removed the N-terminal S-peptide of the protein by proteolysis and chemically conjugated synthetic peptide-peptoid hybrids to the new N-terminus. A triple peptoid mutant containing a catalytic  4 À1 À1 His12 peptoid mutation was active with a kcat/Km value of 1.0 10 M s . This kcat/Km value is only 10-fold lower than the control wild-type conjugate and comparable in magnitude to many other natural enzymes. The peptoid mutations increased the chain flexibility at the site of peptoid substitution and at its C-terminal neighboring residue. -
Discrete Arginine Topologies Guide Escape of Miniature Proteins from Early Endosomes to the Cytoplasm Jacob S
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 10-1-2012 Discrete arginine topologies guide escape of miniature proteins from early endosomes to the cytoplasm Jacob S. Appelbaum Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Part of the Medicine and Health Sciences Commons Recommended Citation Appelbaum, Jacob S., "Discrete arginine topologies guide escape of miniature proteins from early endosomes to the cytoplasm" (2012). Yale Medicine Thesis Digital Library. 3362. http://elischolar.library.yale.edu/ymtdl/3362 This Open Access Dissertation is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. Discrete arginine topologies guide escape of miniature proteins from early endosomes to the cytoplasm. A Dissertation Presented to the Faculty of the Graduate School of Yale University in Candidacy for the Degree of Doctor of Philosophy by Jacob S. Appelbaum Dissertation Director: Alanna Schepartz i October 2012 Abstract Discrete arginine topologies guide escape of miniature proteins from early endosomes to the cytoplasm. Jacob S. Appelbaum 2012 Polypeptides and peptide mimetics sample a wide chemical space with broad potential to modulate cellular function, but their application to cytoplasmic targets is limited be cause when added to cells their cytosolic concentration remains low. This limitation is due to a diffusion barrier (the plasma membrane) and absence of dedicated import ma chinery. -
PYY(3-36) Analogues: Structure
PYY(3-36) analogues: Structure- activity relationships in energy homeostasis A thesis submitted for the degree of Doctor of Philosophy, Imperial College London 2011 Iain David Pritchard Section of Investigative Medicine Division of Diabetes, Endocrinology and Metabolism Department of Medicine Imperial College London Abstract The developed world is currently in the grip of an obesity epidemic. As a result, there is much ongoing research into the development of an effective anti-obesity agent. Peptide YY (PYY) is a 36 amino acid gastro-intestinal hormone released post- prandially by L-cells in the gastro-intestinal tract in proportion to the calorie content of a meal. The predominant form of the hormone found in circulation is the truncated PYY(3-36). Administration of PYY(3-36) at physiological doses to humans has been shown to reduce food intake. However, due to enzymatic degradation these effects are short lived, reducing the hormone’s utility as an anti-obesity pharmaceutical agent. A series of analogues of PYY(3-36) were designed either with amino acid substitutions in specific parts of the peptide sequence and/or with chemical modifications to the native sequence with the aim of increasing resistance to enzymatic activity whilst retaining or even enhancing the peptide’s bioactivity. The analogues were tested for resistance to degradation by different proteolytic enzymes in comparison to natural PYY(3-36). Their affinity to the Y2 receptor, for which PYY(3-36) is a natural agonist was then investigated. Finally, the effects of peripheral administration of selected analogues on food intake in overnight fasted mice were investigated. -
Peptides As Therapeutics with Enhanced Bioactivity
Send Orders of Reprints at [email protected] Current Medicinal Chemistry, 2012, 19, 4451-4461 4451 Peptides As Therapeutics with Enhanced Bioactivity D. Goodwin1, P. Simerska1 and I. Toth*,1,2, 1The University of Queensland, School of Chemistry and Molecular Biosciences; 2School of Pharmacy, St. Lucia 4072, Queensland, Australia Abstract: The development of techniques for efficient peptide production renewed interest in peptides as therapeutics. Numerous modi- fications for improving stability, transport and affinity profiles now exist. Several new adjuvant and carrier systems have also been developed, enhancing the immunogenicity of peptides thus allowing their development as vaccines. This review describes the established and experimental approaches for manufacturing peptide drugs and highlights the techniques currently used for improving their drug like properties. Keywords: Peptide, drug delivery, vaccine, manufacture, bioavailability, peptide therapeutic, immunogenicity, peptide drug, peptide synthe- sis, clinical trials. INTRODUCTION side-chain reactivity, degree of modification, incorporation of un- natural components, in addition to the required purity, solubility, Natural and synthetic peptides have shown promise as pharma- stability and scale. There are two strategies for peptide production - ceutics with the potential to treat a wide variety of diseases. This chemical synthesis and biological manufacturing. potential is often overshadowed by the inability of the peptides to reach their targets in an active form in vivo. The delivery of active Chemical Peptide Synthesis peptides is challenging due to inadequate absorption through the Chemical synthesis has been used for the production of peptides mucosa and rapid breakdown by proteolytic enzymes. Peptides are in both research and industry and led to the development of the usually selective and efficacious, therefore need only be present in majority of peptide drugs [2]. -
Versatile Oligo(N-Substituted) Glycines: the Many Roles Of
WILEY-VCH K+V Fotosatz GmbH Nielsen Beerfelden 1. UK 19.11.2003 H.J. Maier 1 1 Versatile OligoN-Substituted) Glycines: The Many Roles of Peptoids in Drug Discovery James A. Patch, Kent Kirshenbaum, Shannon L. Seurynck, Ronald N. Zuckermann, and Annelise E. Barron 1.1 Introduction Despite their wide range of important bioactivities, polypeptides are generally poor drugs. Typically, they are rapidly degraded by proteases in vivo, and are fre- quently immunogenic. This fact has stimulated widespread efforts to develop pep- tide mimics for biomedical applications, a task that presents formidable chal- lenges in molecular design. Chemists seek efficient routes to peptidomimetic compounds with enhanced pharmacological properties, which retain the activities of their biological counterparts. Since peptides play myriad roles in living sys- tems, it is likely that no individual strategy will suffice. Indeed, a wide variety of different peptidomimetic oligomer scaffolds have been explored [1]. In order to ad- dress multiple design criteria for applications ranging from medicinal chemistry to materials science, researchers have worked to identify a non-natural chemical scaffold that recapitulates the desirable attributes of polypeptides. These include good solubility in aqueous solution, access to facile sequence-specific assembly of monomers containing chemically diverse side chains, and the capacity to form stable, biomimetic folded structures. Among the first reports of chemically diverse peptide mimics were those of %N- substituted) glycine oligomers %peptoids) [2]. Sequence-specific oligopeptoids have now been studied for over a decade, and have provided illustrative examples of both the potential of peptidomimetics and the obstacles faced in translating this potential into clinically useful compounds. -
1 Peptide Therapeutics
Universal Free E-Book Store Donate Us, In order to keep our Service Alive, We have to pay for placing files (Abstracts, Books, Literature & Software) on File Hosting Servers, Your donations will make our process of payment a bit easier, Please use any one of the Payment Gateway for Donation. Never matter what amount you donate (10’s or 100’s or 1000’s). Universal Free E-Book Store Universal Free E-Book Store PEPTIDE CHEMISTRY AND DRUG DESIGN Universal Free E-Book Store Universal Free E-Book Store PEPTIDE CHEMISTRY AND DRUG DESIGN Edited by BEN M. DUNN Universal Free E-Book Store Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. -
Prion-Specific Peptoid Reagents Prionspezifische Peptoidreagentien Reactifs Peptoides Specifiques Des Prions
(19) TZZ_¥_5B_T (11) EP 1 931 695 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07K 7/06 (2006.01) C07K 7/08 (2006.01) 10.04.2013 Bulletin 2013/15 A61K 38/08 (2006.01) A61K 38/10 (2006.01) A61K 31/16 (2006.01) G01N 33/68 (2006.01) (2006.01) (2006.01) (21) Application number: 06814415.3 G01N 33/50 A61P 25/28 C07K 14/47 (2006.01) (22) Date of filing: 08.09.2006 (86) International application number: PCT/US2006/035226 (87) International publication number: WO 2007/030804 (15.03.2007 Gazette 2007/11) (54) Prion-specific peptoid reagents Prionspezifische Peptoidreagentien Reactifs peptoides specifiques des prions (84) Designated Contracting States: (74) Representative: Marshall, Cameron John et al AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Carpmaels & Ransford HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI One Southampton Row SK TR London WC1B 5HA (GB) (30) Priority: 09.09.2005 US 715761 P 14.10.2005 US 726686 P (56) References cited: 13.01.2006 US 758934 P WO-A1-94/06451 WO-A2-02/052046 WO-A2-2005/016127 WO-A2-2005/060697 (43) Date of publication of application: US-A- 5 965 695 US-A1- 2003 040 468 18.06.2008 Bulletin 2008/25 • HAYNES, RUSSELL D. ET AL: "Comblike, (60) Divisional application: Monodisperse Polypeptoid Drag-Tags for DNA 11171585.0 / 2 383 281 Separations by End-Labeled Free-Solution Electrophoresis (ELFSE)" BIOCONJUGATE (73) Proprietor: Novartis AG CHEMISTRY, vol. -
Molecular Modeling Studies of Peptoid Polymers
AIMS Materials Science, 4(5): 1029-1051. DOI: 10.3934/matersci.2017.5.1029 Received: 05 June 2017 Accepted: 25 July 2017 Published: 12 September 2017 http://www.aimspress.com/journal/Materials Review Molecular modeling studies of peptoid polymers Laura J. Weiser and Erik E. Santiso * Department of Chemical and Biomolecular Engineering, NC State University, Campus Box 7905, Raleigh, NC 27695-7905, United States * Correspondence: Email: [email protected]; Tel: +1-919-515-2520. Abstract: Peptoids, or poly-N-substituted glycines, are synthetic polymers composed of a protein backbone with side chains attached to the nitrogen atoms rather than the α-carbons. Peptoids are biomimetic and protease resistant and have been explored for a variety of applications including pharmaceuticals and coatings. They are also foldamer-type materials that can adopt diverse structures based on the sequences of their side chains. Design of new peptoid sequences may lead to the creation of many interesting materials. Given the large number of possible peptoid side chains, computer models predicting peptoid structure-side chain relationships are desirable. In this paper, we provide a survey of computational efforts to understand and predict peptoid structures. We describe simulations at several levels of theory, along with their assumptions and results. We also discuss some challenges for future peptoid computational research. Keywords: peptoids; foldamer; molecular simulation; biomimetic Abbreviations AMBER Assisted Model Building with Energy Refinement B3LYP Becke, -
De Novo Structure Prediction and Experimental Characterization of Folded Peptoid Oligomers
De novo structure prediction and experimental characterization of folded peptoid oligomers Glenn L. Butterfossa,1, Barney Yoob,1, Jonathan N. Jaworskic,2, Ilya Chornyd, Ken A. Dille,3, Ronald N. Zuckermannc, Richard Bonneaua, Kent Kirshenbaumb, and Vincent A. Voelzf,3 aCenter for Genomics and Systems Biology, New York University, NY 10003; bDepartment of Chemistry, New York University, NY 10003; cMolecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720; dSimprota Corporation, San Francisco, CA 94158; eLaufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794-5252; and fDepartment of Chemistry, Temple University, Philadelphia, PA 19122 Contributed by Ken A. Dill, July 12, 2012 (sent for review June 12, 2012) Peptoid molecules are biomimetic oligomers that can fold into un- ique three-dimensional structures. As part of an effort to advance computational design of folded oligomers, we present blind-struc- ture predictions for three peptoid sequences using a combination of Replica Exchange Molecular Dynamics (REMD) simulation and Quantum Mechanical refinement. We correctly predicted the struc- ture of a N-aryl peptoid trimer to within 0.2 Å rmsd-backbone and a cyclic peptoid nonamer to an accuracy of 1.0 Å rmsd-backbone. Fig. 1. Peptoid vs. peptide architecture. Peptoids are oligomers of N-substi- X-ray crystallographic structures are presented for a linear N-alkyl tuted glycine units. In contrast to peptides, peptoids feature an achiral back- bone with side chain groups presented on the nitrogen atom. The relevant peptoid trimer and for the cyclic peptoid nonamer. The peptoid backbone dihedral angles are ω [Cαði − 1Þ;Cði − 1Þ;N;Cα], φ [Cði − 1Þ;N;Cα;C], macrocycle structure features a combination of cis and trans back- ψ [N; Cα;C;Nði þ 1Þ], and χ1 [Cα;N;NCα;Cβ].