Appendix A: Powers of Ten

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A: Powers of Ten Appendix A: Powers of Ten The power-of-ten notation is a wonderfully compact way of expressing not only very large numbers but also exceedingly small ones. At its core is the fact that numbers are normally expressed using the base 10. As an illustrative reminder, consider the number 234. In it, the digit 4 is in the unit’s column, 3 is in the ten’s column, and 2 is in the hundred’s column. That is, 234 means 2 × 100 + 3 × 10 + 4 × 1. Each of the three members of the preceding sum is a number times a power of 10: 100 = 10 × 10 = 102, so that 100 equals 10 to the power 2. Similarly, 10 = 101 (i.e., 10 to the power 1), and by definition of the power 0, 100 = 1. The general case is 10n, where for the present the exponent n (i.e., the power to which 10 is raised) is a positive integer or zero. 10n is a compact way of writing 1 followed by n zeros, for instance 104 = 10,000. Furthermore, any number greater than 1 can be expressed this way. A simple example is 40,000: 40,000 = 4 × 10,000 = 4 × 104. This notation allows you to express exceedingly large numbers very neatly: it is just a question of determining the correct exponent. Another example is the once-famous gigantic number 10100, denoted a google: it equals 1 followed by 100 zeros. The salutary nature of the notation should be evident. The power-of-ten notation can be extended to include numbers less than one, as follows. First recall that a fraction such as 1/m has a specific meaning: it represents one of the portions obtained when 1 is divided into m equal parts (m is assumed to be an integer). When m is a power of ten, the decimal notation comes into play: 1/10 = 0.1, 1/100 = 0.01, 1/1000 = 0.001, etc., where, for reasons of clarity, the decimal point is preceded by a 0. Each of these examples is of the form 1/10n, and the general rule for expressing such a number as a decimal is a decimal point followed by n − 1 zeros followed by 1. That is, 1/10n means 1 in the nth place to the right of the decimal point. Rather than retain the power of ten in the denominator of this fraction, an altered notation has been introduced: one defines 1/10n as 10−n, which 226 Appendix A: Powers of Ten transforms a fraction into a negative exponent power of ten. Hence, 10−n becomes a compact, non-fraction means of writing 0.000 . 001, where the total number of zeros is n − 1. If instead of 1/10n one has m/10n, the rule becomes m/10n = m × 10−n. As an instance of this rule, the very small number five tenths of one bil- lionth, or 0.0000000005, becomes 5 × 10−10. You should not regard the introduction of the 10−n notation as a purposeless piece of pedagogy: it serves a highly needful func- tion, since exceedingly small numbers occur again and again in modern cosmology. Two among many examples are the mass of a hydrogen atom, which is about 1.67 × 10−27 kg, and the possibility of the event known as inflation, during which the very early Uni- verse underwent a period of immense expansion lasting about 10−34 seconds. (Masses are introduced in Chapter 2; inflation is discussed in Chapter 9.) The foregoing description is summarized in Table A.1, which also includes the names of the numbers and a few of the common symbols and prefixes in current use. Mega and kilo are frequently encountered, as in megawatts (MW) for electrical power and kilo- meters (km) for distance. Ditto for centi, whereas nano—for example nanotechnology, referring to microscopic machines of size 10−9 m or so—has only recently become an element of common usage. An example of a prefix not listed in Table A.1, one Table A.1. Powers of Ten* Number Name Power Symbol Prefix 0.000,000,000,000,001 Quadrillionth 10−15 0.000,000,000,001 Trillionth 10−12 0.000,000,001 Billionth 10−9 n nano 0.000,001 Millionth 10−6 0.001 Thousandth 10−3 0.01 Hundredth 10−2 c centi 0.1 Tenth 10−1 1 One 100 10 Ten 101 100 Hundred 102 1,000 Thousand 103 k kilo 1,000,000 Million 106 1,000,000,000 Billion 109 M mega 1,000,000,000,000 Trillion 1012 1,000,000,000,000,000 Quadrillion 1015 *Adapted from Berman and Evans (1977). Appendix A: Powers of Ten 227 hardly known outside the community of nuclear and elementary- particle physicists and engineers, is femto, which means 10−15. It is named after Enrico Fermi, the Nobel Prize–winning physicist for whom the Fermi National Accelerator Laboratory is also named. A femtometer, initially denoted a Fermi, is 10−15 m, a length approximately equal to the radius of a proton, a particle first discussed in Chapters 3 and 4. Sometimes it is necessary to multiply numbers expressed as powers of ten. The rule for accomplishing this is to multiply the numerical prefactors and add the exponents, as in 10n × 10m = 10n+m. An instance is the following simple product: (2 × 102) × (3 × 104) = (2 × 3) × (102 × 104) = 6 × 106 = 6,000,000. Negative exponents also obey the addition rule: 10n × 10−m = 10n−m. In this case, the power of ten that is the numerically larger number determines whether the result of the multiplication is greater or less than one. Thus, the product of one tenth and one hundred, which equals ten, is (1/10) × 100 = 10−1 × 102 = 10−1+2 = 101 = 10, whereas the product of one hundredth and ten, which equals one tenth, is (1/100) × 10 = 10−2 × 101 = 10−2+1 = 10−1 = 1/10. The addition-of-exponents rule also explains why 100 = 1. To show this, divide any power- of-ten number, for instance 10n, by itself: 10n/10n = 10n × 10−n = 10n−n = 100 = 1, as must be, since any number divided by itself is one. A useful feature of this notation follows from expressing big exponents as a sum of smaller ones, as it often allows a very large number to be stated in ordinary words, for example, in millions or billions. This procedure is activated by searching for ways of writing the exponent as a sum involving the numbers 6 and 9 (or 12, if trillions are desired), since from Table A.1, 106 is a million and 109 is a billion. For instance, the sun’s luminosity, or energy radiated per second (its power), is about 4 × 1026 W, obvi- ously a very BIG number. To get a feeling for how big, let us re- express it in terms of millions and billions by seeking a breakdown of 26 into 6s and 9s. One way to achieve this is via the sum 2 + 6 + 9 + 9, so that 1026 becomes 102+6+9+9 = 102 × 106 × 109 × 109, and therefore 4 × 1026 W is equal to four hundred million billion billion watts!! (That’s the same as four hundred trillion trillion watts. Either way, the sun is a bit stronger than any terrestrial light bulb....) 228 Appendix A: Powers of Ten The preceding breakdown into more familiar elements also works for negative exponents. Consider the “size” of a proton, which is about 10−15 m (that is, a femtometer). This number can be re-expressed in terms of millionths and billionths, as follows: 15 = 6 + 9, from which one gets 10−15 = 10−6−9 = 10−6 × 10−9. Hence, a femtometer is one millionth of a billionth of a meter. It should be clear that the femtometer is a much more appropriate unit for nuclear sizes than the meter. The preceding comment, on the appropriateness of the meter for nuclear sizes, brings us to the question of how many significant figures are appropriate in stating a number, especially a very large or a very small one when expressed as a power of ten. As noted in Chapter 2, the quantity 10n generally carries the most important information in a very large or very small number. A case in point is the speed of light, denoted c, whose value is 299,792,438m/sec. Equivalent statements of this speed are 2.99792438 × 108 m/sec and 2.99792438 × 105 km/sec. There are circumstances where the full nine-digit numbers must be used, but none of them will arise in the context of this book. In general, it is sufficient in the preceding power-of-ten expressions to replace all nine digits simply by 3, so that the speed of light is, to an excel- lent approximation, either 3 × 105 km/sec or 3 × 108 m/sec. In each of these numbers, the only significant figure turns out to be the numeral 3; the significant information resides in the exponent. However, it is unwise to blindly discard all but one of the digits: the factor multiplying 10n is important in some situations. A case in point is the astronomical unit, AU, introduced in Chapter 2. Needful information could be lost if at least its two-digit, approx- imate, numerical value of 9.3 × 107 miles (or 1.5 × 108 km) were not used. Appendix B: Primordial Nucleosynthesis In this appendix, I will examine some of the predictions concern- ing the relative abundance of the very light nuclei that were pro- duced in the 17-minute period beginning at 3 minutes aBB.
Recommended publications
  • Unit Name: Powers and Multiples of 10
    Dear Parents, We will begin our next unit of study in math soon. The information below will serve as an overview of the unit as you work to support your child at home. If you have any questions, please feel free to contact me. I appreciate your on-going support. Sincerely, Your Child’s Teacher Unit Name: Powers and Multiples of 10 Common Core State Standards: 5.NBT.1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. 5.NBT.2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. Essential Vocabulary: place value decimal number powers of 10 expanded form Unit Overview: Students extend their understanding of the base-ten system by looking at the relationship among place values. Students are required to reason about the magnitude of numbers. Students should realize that the tens place is ten times as much as the ones place, and the ones place is 1/10th the size of the tens place. New at Grade 5 is the use of whole number exponents to represent powers of 10. Students should understand why multiplying by a power of 10 shifts the digits of a whole number that many places to the left.
    [Show full text]
  • A Family of Sequences Generating Smith Numbers
    1 2 Journal of Integer Sequences, Vol. 16 (2013), 3 Article 13.4.6 47 6 23 11 A Family of Sequences Generating Smith Numbers Amin Witno Department of Basic Sciences Philadelphia University 19392 Jordan [email protected] Abstract Infinitely many Smith numbers can be constructed using sequences which involve repunits. We provide an alternate method of construction by introducing a generaliza- tion of repunits, resulting in new Smith numbers whose decimal digits are composed of zeros and nines. 1 Introduction We work with natural numbers in their decimal representation. Let S(N) denote the “digital sum” (the sum of the base-10 digits) of the number N and let Sp(N) denote the sum of all the digital sums of the prime factors of N, counting multiplicity. For instance, S(2013) = 2+0+1+3 = 6 and, since 2013 = 3 × 11 × 61, we have Sp(2013) = 3+1+1+6+1 = 12. The quantity Sp(N) does not seem to have a name in the literature, so let us just call Sp(N) the p-digit sum of N. The natural number N is called a Smith number when N is composite and S(N)= Sp(N). For example, since 22 = 2 × 11, we have both S(22) = 4 and Sp(22) = 4. Hence, 22 is a Smith number—thus named by Wilansky [4] in 1982. Several different ways of constructing Smith numbers are already known. (See our 2010 article [5], for instance, which contains a brief historical account on the subject as well as a list of references.
    [Show full text]
  • Basic Math Quick Reference Ebook
    This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference eBOOK Click on The math facts listed in this eBook are explained with Contents or Examples, Notes, Tips, & Illustrations Index in the in the left Basic Math Quick Reference Handbook. panel ISBN: 978-0-615-27390-7 to locate a topic. Peter J. Mitas Quick Reference Handbooks Facts from the Basic Math Quick Reference Handbook Contents Click a CHAPTER TITLE to jump to a page in the Contents: Whole Numbers Probability and Statistics Fractions Geometry and Measurement Decimal Numbers Positive and Negative Numbers Universal Number Concepts Algebra Ratios, Proportions, and Percents … then click a LINE IN THE CONTENTS to jump to a topic. Whole Numbers 7 Natural Numbers and Whole Numbers ............................ 7 Digits and Numerals ........................................................ 7 Place Value Notation ....................................................... 7 Rounding a Whole Number ............................................. 8 Operations and Operators ............................................... 8 Adding Whole Numbers................................................... 9 Subtracting Whole Numbers .......................................... 10 Multiplying Whole Numbers ........................................... 11 Dividing Whole Numbers ............................................... 12 Divisibility Rules ............................................................ 13 Multiples of a Whole Number .......................................
    [Show full text]
  • 1 General Questions 15 • Fibonacci Rule: Each Proceeding [Next] Term Is the Sum of the Previous Two Terms So That
    General 1 Questions 1. WHY DO I HAVE TO LEARN MATHEMATICS? The “why” question is perhaps the one encountered most frequently. It is not a matter of if but when this question comes up. And after high school, it will come up again in different formulations. (Why should I become a mathemat- ics major? Why should the public fund research in mathematics? Why did I ever need to study mathematics?) Thus, it is important to be prepared for this question. Giving a good answer is certainly difficult, as much depends on individual circumstances. First, you should try to find an answer for yourself. What was it that convinced you to study and teach mathematics? Why do you think that mathematics is useful and important? Have you been fascinated by the elegance of mathematical reasoning and the beauty of mathematical results? Tell your students. A heartfelt answer would be most credible. Try to avoid easy answers like “Because there is a test next week” or “Because I say so,” even if you think that the question arises from a general unwill- ingness to learn. It is certainly true that everybody needs to know a certain amount of elementary mathematics to master his or her life. You could point out that there are many everyday situations where mathematics plays a role. Certainly one needs mathematics whenever one deals with money—for example, when one goes shopping, manages a savings account, or makes a monthly budget. Nevertheless, we encounter the “why” question more frequently in situ- ations where the everyday context is less apparent.
    [Show full text]
  • Math 3345-Real Analysis — Lecture 02 9/2/05 1. Are There Really
    Math 3345-Real Analysis — Lecture 02 9/2/05 1. Are there really irrational numbers? We got an indication last time that repeating decimals must be rational. I’ll look at another example, and then we’ll expand that into a quick proof. Consider the number x = 845.7256. The first four digits don’t repeat, but after that the sequence of three digits 256 repeats. If we multiply x by 103 = 1000, we get (1) 1000x = 845,725.6256 That’s part of the trick. Now we subtract (2) 1000x − x = 999x = 845,725.6256 − 845.7256 = 844,879.9000 Therefore, we can write x as 844,879.9 8,448,799 (3) x = = , 999 9990 which is a fraction of integers. The repeating decimal x must be a rational number. Theorem 1. A repeating decimal must be rational. (1) Let x be a repeating decimal. (We want to show that x being rational follows from this assumption.) (2) After some point, we must have n digits repeating forever. (This is what it means to be repeating.) (3) y =10nx − x is a terminating decimal. (When you subtract, the repeating decimals cancel out.) y (4) x = 10n−1 is a fraction of a terminating decimal and an integer. (Basic computation.) (5) x must be a fraction of integers. (You can make any terminating decimal into an integer by multi- plying by a power of 10.) (6) x is rational. (Rationals are fractions of integers.) 1.1. So are all integer fractions repeating decimals? As an example, divide 11 into 235 using long division.
    [Show full text]
  • Modern Computer Arithmetic (Version 0.5. 1)
    Modern Computer Arithmetic Richard P. Brent and Paul Zimmermann Version 0.5.1 arXiv:1004.4710v1 [cs.DS] 27 Apr 2010 Copyright c 2003-2010 Richard P. Brent and Paul Zimmermann This electronic version is distributed under the terms and conditions of the Creative Commons license “Attribution-Noncommercial-No Derivative Works 3.0”. You are free to copy, distribute and transmit this book under the following conditions: Attribution. You must attribute the work in the manner specified • by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial. You may not use this work for commercial purposes. • No Derivative Works. You may not alter, transform, or build upon • this work. For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to the web page below. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. For more information about the license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Contents Contents iii Preface ix Acknowledgements xi Notation xiii 1 Integer Arithmetic 1 1.1 RepresentationandNotations . 1 1.2 AdditionandSubtraction . .. 2 1.3 Multiplication . 3 1.3.1 Naive Multiplication . 4 1.3.2 Karatsuba’s Algorithm . 5 1.3.3 Toom-Cook Multiplication . 7 1.3.4 UseoftheFastFourierTransform(FFT) . 8 1.3.5 Unbalanced Multiplication . 9 1.3.6 Squaring.......................... 12 1.3.7 Multiplication by a Constant .
    [Show full text]
  • Unit 2: Exponents and Equations
    Georgia Standards of Excellence Curriculum Frameworks Mathematics 8th Grade Unit 2: Exponents and Equations Georgia Department of Education Georgia Standards of Excellence Framework GSE Grade 8 • Exponents and Equations Unit 2 Exponents and Equations TABLE OF CONTENTS OVERVIEW ........................................................................................................................3 STANDARDS ADDRESSED IN THIS UNIT ...................................................................4 STANDARDS FOR MATHEMATICAL PRACTICE .......................................................4 STANDARDS FOR MATHEMATICAL CONTENT ........................................................4 BIG IDEAS ..........................................................................................................................5 ESSENTIAL QUESTIONS .................................................................................................6 FLUENCY ...........................................................................................................................6 SELECTED TERMS AND SYMBOLS ..............................................................................7 EVIDENCE OF LEARNING ..............................................................................................8 FORMATIVE ASSESSMENT LESSONS (FAL) ..............................................................9 SPOTLIGHT TASKS ..........................................................................................................9 3-ACT TASKS..................................................................................................................
    [Show full text]
  • Number Theory Theory and Questions for Topic Based Enrichment Activities/Teaching
    Number Theory Theory and questions for topic based enrichment activities/teaching Contents Prerequisites ................................................................................................................................................................................................................ 1 Questions ..................................................................................................................................................................................................................... 2 Investigative ............................................................................................................................................................................................................. 2 General Questions ................................................................................................................................................................................................... 2 Senior Maths Challenge Questions .......................................................................................................................................................................... 3 British Maths Olympiad Questions .......................................................................................................................................................................... 8 Key Theory ..................................................................................................................................................................................................................
    [Show full text]
  • The Power of 10
    DIVISION OF AGRICULTURE RESEARCH & EXTENSION University of Arkansas System Strategy 16 United States Department of Agriculture, University of Arkansas, and County Governments Cooperating Live “The Power of 10” We must not, in trying to think about how much we can make a big difference, ignore the small daily differences which we can make which, over time, add up to big differences that we often cannot forsee.” – Marion Wright Edelman The number “10” is powerful and fits a “small steps approach” to behavior change. It is easy to multiply, divide and remember; small enough not to discourage people from taking action; and large enough to make an impact over time. “10” also shows up repeatedly in expert recommendations to improve health and increase wealth. Whether it’s shedding 10 pounds, exercising in 10-minute increments, saving 10 percent of gross income or reducing debt by $10 a day, “10” and derivatives of 10 (e.g., 1 and 100) are strong motivators if the magnitude of their impact is fully appreciated. Sondra Anice Barnes once made the following comment about taking action to change: “It’s so hard when I have to, and so easy when I want to.” Use “The Power of 10” to increase your “want to factor” (e.g., desire to make a change). The more you know about weight loss and financial planning, the more motivated you will be to make health and wealth changes because you’ll better appreciate the difference that small steps can make. Below are some health-related examples of “The Power of 10”: The Power of 10 – Health Examples Power of 10 Health Improvement Practice Examples and Description Set an initial weight loss goal of 10 percent of As an example, an appropriate initial weight loss goal body weight, to be achieved over a six‐month would be 18 pounds for someone who currently weighs period (i.e., gradual weight loss of 1 to 180 pounds and is overweight or obese.
    [Show full text]
  • Pelham Math Vocabulary 3-5
    Pelham Math Vocabulary 3-5 Acute angle Composite number Equation Acute triangle Compose Equilateral triangle Add (adding, addition) Composite figure Equivalent decimals Addend Cone Equivalent fractions algebra Congruent Estimate Analyze Congruent angles Evaluate Angle Congruent figures Even number Area Congruent sides Expanded forms/expanded Array Convert notation Associative property of Coordinate Exponent addition Coordinate graph or grid Expression Associative property of Coordinate plane Face multiplication Cube Fact family Attribute Cubed Factor Average Cubic unit Factor pair Axis Cup Fahrenheit (F) Bar diagram Customary system Fair share Bar graph Cylinder Favorable outcomes Base - in a power, the Data Fluid ounce number used as a factor Decagon Foot (ft) Base - any side of a Decimal Formula parallelogram Decimal point Fraction Base - one of the two Decimal equivalent Frequency parallel congruent faces in a Decompose Frequency table prism Degree Function Benchmark Degrees celsius Gallon Calendar Degrees fahrenheit Gram Capacity Denominator Graph Centimeter (cm) Difference Greatest common factor Circle Digit Half hour Circle graph Distributive property of Half inch Clock multiplication Height Combination Divide Hexagon Common denominator Dividend Hour Common factor Divisible Horizontal axis Common multiple Division sentence Hundreds Commutative property of Divisor Hundredth addition Edge Identity Property of Commutative property of Elapsed time Addition multiplication Endpoint Identity Property of Compare Equal groups Multiplication
    [Show full text]
  • Elementary Number Theory and Its Applications
    Elementary Number Theory andlts Applications KennethH. Rosen AT&T Informotion SystemsLaboratories (formerly part of Bell Laborotories) A YY ADDISON-WESLEY PUBLISHING COMPANY Read ing, Massachusetts Menlo Park, California London Amsterdam Don Mills, Ontario Sydney Cover: The iteration of the transformation n/2 if n T(n) : \ is even l Qn + l)/2 if n is odd is depicted.The Collatz conjectureasserts that with any starting point, the iteration of ?"eventuallyreaches the integer one. (SeeProblem 33 of Section l.2of the text.) Library of Congress Cataloging in Publication Data Rosen, Kenneth H. Elementary number theory and its applications. Bibliography: p. Includes index. l. Numbers, Theory of. I. Title. QA24l.R67 1984 512',.72 83-l1804 rsBN 0-201-06561-4 Reprinted with corrections, June | 986 Copyright O 1984 by Bell Telephone Laboratories and Kenneth H. Rosen. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,photocopying, recording, or otherwise,without prior written permission of the publisher. printed in the United States of America. Published simultaneously in Canada. DEFGHIJ_MA_8987 Preface Number theory has long been a favorite subject for studentsand teachersof mathematics. It is a classical subject and has a reputation for being the "purest" part of mathematics, yet recent developments in cryptology and computer science are based on elementary number theory. This book is the first text to integrate these important applications of elementary number theory with the traditional topics covered in an introductory number theory course. This book is suitable as a text in an undergraduatenumber theory courseat any level.
    [Show full text]
  • Algebra • Powers of 10 and Exponents
    Lesson 1.4 Name Reteach Algebra • Powers of 10 and Exponents You can represent repeated factors with a base and an exponent. Write 10 3 10 3 10 3 10 3 10 3 10 in exponent form. 10 is the repeated factor, so 10 is the base. The base is repeated 6 times, so 6 is the exponent. 106 exponent 10 3 10 3 10 3 10 3 10 3 10 5 106 base A base with an exponent can be written in words. Write 106 in words. The exponent 6 means “the sixth power.” 106 in words is “the sixth power of ten.” You can read 102 in two ways: “ten squared” or “the second power of ten.” You can also read 103 in two ways: “ten cubed” or “the third power of ten.” Write in exponent form and in word form. 1. 10 3 10 3 10 3 10 3 10 3 10 3 10 exponent form: word form: 2 . 10 3 10 3 10 exponent form: word form: 3. 10 3 10 3 10 3 10 3 10 exponent form: word form: Find the value. 4. 104 5. 2 3 103 6. 6 3 102 Chapter Resources 1-27 Reteach © Houghton Mifflin Harcourt Publishing Company Lesson 1.4 Name Enrich Powers and Words Find the value. Then write the value in word form. 1. 70 3 103 5 Word form: 2. 35 3 102 5 Word form: 3. 14 3 103 5 Word form: 4. 60 3 107 5 Word form: 5. 51 3 104 5 Word form: 6.
    [Show full text]