Major Plants of the Southwest Region

Total Page:16

File Type:pdf, Size:1020Kb

Major Plants of the Southwest Region Major Plants of the Southwest Region K. Launchbaugh K. Launchbaugh K. Launchbaugh Rangeland Ecology 252 – Wildland Plant Identification Rangelands of the U.S. - Simplified Variation in Annual Precipitation Across U.S. Pacific Region Great Basin Plants of the Southwest Region GRASSES - - - - - - - - CYNODONTEAE Black Grama Bouteloua eriopoda Perennial Native CYNODONTEAE Tobosa Grass Hilaria mutica Perennial Native CYNODONTEA Sideoats Grama Bouteloua curtipendula Perennial Native FORBS & Woody Plants- - - - - - - - ASTEREA Broom Snakeweed Gutierrezia sarothrae Perennial Native HELIANTHEAE Desert Marigold Baileya multiradiata Perennial Native HELIANTHEAE Tarbrush Flourensia cernua Perennial Native FABACEAE Catclaw Acacia Acacia greggii Perennial Native FABACEAE Purple Locoweed Oxytropis lambertii Perennial Native FABACEAE Honey Mesquite Prosopis glandulosa Perennial Native ZYGOPHYLLACEAE Creosotebush Larrea tridentata Perennial Native CYNODONTEA Sideoats Grama Perennial | Native Bouteloua curtipendula A rhizomatous mid- grass that grows 1-3 feet tall Spicate branches are bent to one side - looks like it was pressed in a book Mike Haddock CYNODONTEA Sideoats Grama Perennial | Native Bouteloua curtipendula End of main seed stalk creates a zig-zag Lower leaf blade edges with evenly spaced hairs from pimple-like base Mike Haddock CYNODONTEAE Black Grama Perennial | Native Bouteloua eriopoda Stoloniferous grass forming a weak sod Not very tall <2 feet CYNODONTEAE Black Grama Perennial | Native Bouteloua eriopoda Internodes pubescent, covered by glabrous sheaths giving it an alternate Hairy “hairy/not-hair” appearance Internode Seedhead has 3-5 spicate, comb-like Glabrous branches per culm Sheath Awns as long or longer than spikelets CYNODONTEAE Tobosa Grass Perennial | Native Hilaria mutica Sod forming with thick and scaly rhizomes Leaf blade is flat or somewhat rolled inwards Gray-green color CYNODONTEAE Tobosa Grass Perennial | Native Hilaria mutica Lower nodes are hairy, upper nodes without hairs Seedhead is a bilateral spike Spikelets are “Fan-like” ASTEREAE Broom Snakeweed Perennial | Native Gutierrezia sarothrae Suffrutescent plant that grows up to 2 feet Branches arise from the base of the plant forming a “broom-like” structure Mike Haddock ASTEREAE Broom Snakeweed Perennial | Native Gutierrezia sarothrae Linear, sessile leaves Yellow flowers mostly the top of plants HELIANTHEAE Desert Marigold Perennial | Native Baileya multiradiata Low growing plants ½ to 1½ feet tall Woody caudex on top of taproot Leaves in basal rosette – woolly white hairs HELIANTHEAE Desert Marigold Perennial | Native Baileya multiradiata Flowers are composite with disk & ray flowers Bright yellow Ray flowers 3-toothed at tip HELIANTHEAE Tarbrush Perennial | Native Flourensia cernua Shrub varies in height up to 6 ft. Highly branched throughout Leaves entire, petiolate, and alternate, with road map venation Leaves and stem covered with small black glands HELIANTHEAE Tarbrush Perennial | Native Flourensia cernua Flowers yellow, discoid Heads nodding turning blackish at maturation Flowers from July to September FABACEAE Catclaw Acacia Perennial | Native Acacia greggii Shrub or small tree (3-5 feet tall) forming thickets Spines are “cat claws” on branches Leaves alternate & even- bipinnately compound FABACEAE Catclaw Acacia Perennial | Native Acacia greggii Flowers creamy-white or yellow Produces flat, curved legumes FABACEAE Purple Locoweed Perennial | Native Oxytropis lambertii 13 inches tall Compound leaves in basal rosette Leaves and stems arise directly from a branching base Mike Haddock FABACEAE Purple Locoweed Perennial | Native Oxytropis lambertii Flowers April to August – Purple/Blue Flowers elevated above leaves on stem Flowers “irregular” FABACEAE Honey Mesquite Perennial | Native Prosopis glandulosa Shrub or small tree 20-feet tall Small straight thorns Leaves alternate & bipinnately compound FABACEAE Honey Mesquite Perennial | Native Prosopis glandulosa Fruits are pods that are long and straight or slightly curved Inflorescences greenish-yellow to creamy yellow ZYGOPHYLLACEAE Creosotebush Perennial | Native Larrea tridentata Shrub up to 9 feet tall with no well- defined trunk Twigs slender with brown nodes Foliage emits creosote odor, particularly when wet or burned Leaves are opposite, bifoliate, and glossy ZYGOPHYLLACEAE Creosotebush Perennial | Native Larrea tridentata Flowers yellow with 5 petals Fruits are fuzzy white spheres.
Recommended publications
  • Bull0664.Pdf (14.64Mb)
    [Blank Page in Original Bulletin] Serious losses in sheep and goats as a result of grazing the ripe fruit of F_laurensia-cernua hm-kern observed on three ranches during the months of January and February. The characteristic pathological rlterations were inflammation, ulceration and perforation of the gastro- ' intestinal tract due to the presence ogsome intense irritant. In all cazes the animals had been subjected to cansiderable handling and were quite hungry when they gained access to the plant. When sheep and goats have continuous access to the plant and are not subjected to-handling during the winter months,there is no evidence that this p&k'of the ~lantis grazed in sufficient amounts to cause toxic effects. The plant has not been associated with similar losses in cattle. 1 The toxicity of the ripe fruit was demonstrated by experimental i feeding to sheep and goats. o In this wark a marked variation in the ~ueceptihility of different iddividuals was observed, as well as a nar- row margin between a sli$htly toxic andqethal dose of the material. I Lmses -frcm-this4ce can be avoided by preventing hungry animals from gainidg access to the plant during the winter months. There is no evidence that the green leaves constitute a hazard to livestock. 1 CONTENTS ~ Page 1 Introduction ...................................................... 5 Botanical Description and Distribution .............................. 7 Experimental Procedure ........................................... 8 C Feeding Ripe Fruit for One Day ...............................
    [Show full text]
  • Sonoran Joint Venture Bird Conservation Plan Version 1.0
    Sonoran Joint Venture Bird Conservation Plan Version 1.0 Sonoran Joint Venture 738 N. 5th Avenue, Suite 102 Tucson, AZ 85705 520-882-0047 (phone) 520-882-0037 (fax) www.sonoranjv.org May 2006 Sonoran Joint Venture Bird Conservation Plan Version 1.0 ____________________________________________________________________________________________ Acknowledgments We would like to thank all of the members of the Sonoran Joint Venture Technical Committee for their steadfast work at meetings and for reviews of this document. The following Technical Committee meetings were devoted in part or total to working on the Bird Conservation Plan: Tucson, June 11-12, 2004; Guaymas, October 19-20, 2004; Tucson, January 26-27, 2005; El Palmito, June 2-3, 2005, and Tucson, October 27-29, 2005. Another major contribution to the planning process was the completion of the first round of the northwest Mexico Species Assessment Process on May 10-14, 2004. Without the data contributed and generated by those participants we would not have been able to successfully assess and prioritize all bird species in the SJV area. Writing the Conservation Plan was truly a group effort of many people representing a variety of agencies, NGOs, and universities. Primary contributors are recognized at the beginning of each regional chapter in which they participated. The following agencies and organizations were involved in the plan: Arizona Game and Fish Department, Audubon Arizona, Centro de Investigación Cientifica y de Educación Superior de Ensenada (CICESE), Centro de Investigación de Alimentación y Desarrollo (CIAD), Comisión Nacional de Áreas Naturales Protegidas (CONANP), Instituto del Medio Ambiente y el Desarrollo (IMADES), PRBO Conservation Science, Pronatura Noroeste, Proyecto Corredor Colibrí, Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Sonoran Institute, The Hummingbird Monitoring Network, Tucson Audubon Society, U.S.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Food Habits of Rodents Inhabiting Arid and Semi-Arid Ecosystems of Central New Mexico." (2007)
    University of New Mexico UNM Digital Repository Special Publications Museum of Southwestern Biology 5-10-2007 Food Habits of Rodents Inhabiting Arid and Semi- arid Ecosystems of Central New Mexico Andrew G. Hope Robert R. Parmenter Follow this and additional works at: https://digitalrepository.unm.edu/msb_special_publications Recommended Citation Hope, Andrew G. and Robert R. Parmenter. "Food Habits of Rodents Inhabiting Arid and Semi-arid Ecosystems of Central New Mexico." (2007). https://digitalrepository.unm.edu/msb_special_publications/2 This Article is brought to you for free and open access by the Museum of Southwestern Biology at UNM Digital Repository. It has been accepted for inclusion in Special Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. SPECIAL PUBLICATION OF THE MUSEUM OF SOUTHWESTERN BIOLOGY NUMBER 9, pp. 1–75 10 May 2007 Food Habits of Rodents Inhabiting Arid and Semi-arid Ecosystems of Central New Mexico ANDREW G. HOPE AND ROBERT R. PARMENTER1 Special Publication of the Museum of Southwestern Biology 1 CONTENTS Abstract................................................................................................................................................ 5 Introduction ......................................................................................................................................... 5 Study Sites ..........................................................................................................................................
    [Show full text]
  • Master Plant List for Texas Range and Pasture Plant
    MASTER PLANT LIST FOR TEXAS RANGE AND RS1.044 PASTURE PLANT IDENTIFICATION CONTEST MASTER PLANT LIST NAME OF PLANT SEASON OF LONGEVITY GROWTH ORIGIN ECONOMIC VALUE Latin Names are for reference only WILDLIFE GRAZING GRASSES Annual Perennial Cool Warm Native Introduced Good Fair Poor Good Fair Poor Poison 1 Alkali sacaton Sporobolus airoides X X X X X 2 Bahiagrass Paspalum notatum X X X X X 3 Barnyardgrass Echinocloa crusgalli var. crusgalli X X X X X 4 Beaked panicum Panicum anceps X X X X X 5 Bermudagrass Cynodon dactylon X X X X X 6 Big bluestem Adropogon gerardii X X X X X 7 Black grama Bouteloua eriopoda X X X X X 8 Blue grama Bouteloua gracilis X X X X X 9 Broomsedge bluestem Andropogon virginicus X X X X X 10 Brownseed paspalum Paspalum plicatulum X X X X X 11 Buffalograss Buchloe dactyloides X X X X X 12 Buffelgrass Pennisetum ciliare X X X X X 13 Burrograss Scleropogon brevifolius X X X X X 14 Bush muhly Muhlenbergia porteri X X X X X 15 California cottontop Digitaria californica X X X X X 16 Canada wildrye Elymus canadensis X X X X X 17 Common carpetgrass Axonopus affinis X X X X X 18 Common curlymesquite Hilaria belangeri X X X X X 19 Dallisgrass Paspalum dilatatum X X X X X 20 Eastern gamagrass Tripsacum dactyloides X X X X X 21 Fall witchgrass Leptoloma cognatum X X X X X 22 Florida paspalum Paspalum floridanum X X X X X 23 Green sprangletop Leptochloa dubia X X X X X 24 Gulf cordgrass Spartina spartinae X X X X X 25 Hairawn muhly Muhlenbergia capillaris X X X X X 26 Hairy grama Boutelous hirsuta X X X X X 27 Hairy tridens Erioneuron pilosum X X X X X 28 Hall panicum Panicum hallii var.
    [Show full text]
  • Attachment a - Biological Review, Report of Site Visit & Species Inventory
    Attachment A - Biological Review, Report of Site Visit & Species Inventory From August 31 – September 2, 2014, Charles Britt conducted a pedestrian survey for all diurnal faunal and floral species along the proposed fiber optic line route for WNMT. Approximately 18 miles of cable to be placed. The project begins at milepost 28.28 on NM Highway 1, crosses NM Highway 1 at milepost 25.37, and crosses I-25 at milepost 116.572. It continues on State Route 107 at milepost 0 and ends at milepost 15.37. All three days had clear skies. Surveyor recorded all faunal and floral species observed within the Project Area/Action Area, taking photographs, and noting any features that may present potential impediments for the project The route traversed across six ecological sites. The Nolam gravelly sandy loam, 1 to 7 percent slopes (655) soil map unit is found in the R042XB035NM Gravelly Loam ecological site. This site usually occurs on nearly level to rolling piedmont slopes, hill slopes, fan remnants, or alluvial fans. Slopes range from 0 to 15 percent and occasionally reach 30 percent but average 4 to 9 percent. Elevations range from 4,300 to 5,000 feet. This site is not influenced by water from wetlands or streams. This ecological site is frequently associated with gravelly ecological sites. The historic plant community type is assumed to have exhibited dominance by black grama (Bouteloua eriopoda) and secondarily by bush muhly (Muhlenbergia porteri), Arizona cottontop (Digitaria californica) and/or cane bluestem (Bothriochloa barbinodis). Creosotebush (Larrea tridentata) and mesquite (Prosopis glandulosa) occur but are not co-dominants with grasses.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Transport of Phenolic Compounds from Leaf Surface of Creosotebush and Tarbush to Soil Surface by Precipitation1
    P1: ZBU Journal of Chemical Ecology [joec] pp701-joec-455995 November 11, 2002 21:13 Style file version June 28th, 2002 Journal of Chemical Ecology, Vol. 28, No. 12, December 2002 (C 2002) TRANSPORT OF PHENOLIC COMPOUNDS FROM LEAF SURFACE OF CREOSOTEBUSH AND TARBUSH TO SOIL SURFACE BY PRECIPITATION1 P. W. HYDER, E. L. FREDRICKSON, R. E. ESTELL, and M. E. LUCERO USDA/ARS, Jornada Experimental Range Las Cruces, New Mexico 88003, USA (Received December 3, 2001; accepted July 14, 2002) Abstract—During the last 100 years, many desert grasslands have been re- placed by shrublands. One possible mechanism by which shrubs outcompete grasses is through the release of compounds that interfere with neighboring plants. Our objective was to examine the movement of secondary compounds from the leaf surface of creosotebush and tarbush to surrounding soil surfaces via precipitation. Units consisting of a funnel and bottle were used to collect stemflow, throughfall, and interspace precipitation samples from 20 creosote- bush (two morphotypes) and 10 tarbush plants during three summer rainfall events in 1998. Precipitation samples were analyzed for total phenolics (both species) and nordihydroguaiaretic acid (creosotebush only). Phenolics were de- tected in throughfall and stemflow of both species with stemflow containing greater concentrations than throughfall (0.088 and 0.086 mg/ml for stemflow and 0.022 and 0.014 mg/ml for throughfall in creosotebush morphotypes U and V, respectively; 0.044 and 0.006 mg/ml for tarbush stemflow and throughfall, respectively). Nordihydroguaiaretic acid was not found in any precipitation col- lections. The results show that phenolic compounds produced by creosotebush and tarbush can be transported to the soil surface by precipitation, but whether concentrations are ecologically significant is uncertain.
    [Show full text]
  • Population, Distríbutlon, Habitat Use and Natural History of Ord's Kangaroo Raf
    The Untuersity of Manftoba Population, distríbutlon, habitat use and natural history of Ord's kangaroo raf. (Dipodomys ordil in the sand hill areas of / south-western Saskatchewan and south-eastern Al berta. by Raymond J. L. Kenny A thesis submitted to the Faculty of Graduate Studies in partlal fulfillment of the requirements for the degreee of Master of Science. Zoology Depar-tment Winnipeg, Manitoba March 1989 National Library Bibliothèque nationale w@w of Canada du Canada Canadian Theses Service Service des thèses canadiennes Ottawa, Canada t(1 A 0N4 The author has granted an irrevocable non- L'auteur a accordé une licence irrévocable et exclusive licence allowing the National Library non exclusive permettant à la Bibliothèque of Canada to reproduce, loan, distribute or sell nationale du Canada de reproduire, prêter, copies of his/her thesis by any means and in distribuer ou vendre des copies de sa thèse any form or format, mak¡ng this thesis available de quelque manière et sous quelque forme to interested persons. que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées. The author retains ownership of the copyright L'auteur conserve la propriété du droit d'auteur in his/her thesis. Neither the thesis nor qui protège sa thèse. Ni la thèse ni des extraits substantial extracts from it may be printed or substantiels de celle-ci ne doivent être otherwise reproduced without his/her per- imprimés ou autrement reproduits sans son mission. autorisation. rsBN 0-31-5-5168t-x CaNaadää POPULATION, DISTRIBUTION' HABITAT USE AND NATURAL HISTORY oF ORD'S KANGAROO RAT (Dipodoøys ordi) IN THE SAND HILL AREAS OF SOUTH-I,TESTERN SASKATCHEI4IAN AND SOUTH-EASTERN ALBERTA BY RAYMOND J.L.
    [Show full text]
  • Creamer Publications
    VIRUS RESEARCH PUBLICATIONS Al-Khatib, R. Bsoul, E., Blom, D. A., Ghoshroy, K., Creamer, R., and Ghoshroy, S. 2103. Microscopic analysis of lead accumulation in tobacco (Nicotiana tabacum var. Turkish) roots and leaves. J. Microscopy and Ultrastructure 1:57-62. Al-Khatib, R, Creamer, R, and Ghoshroy, S. 2012. Physiological and ultrastructural effects of lead (Pb) on tobacco (Nicotiana tabacum var. Turkish). Biologia Plantarum 56:711-716 Vuong, H, Caccimase, D, Remmenga, M. and Creamer, R. 2012. Ecological associations of West Nile virus and avian hosts in arid environments of southern New Mexico. Studies in Avian Biology 42:3-21. Sedano, M, Lam, N, Escobar, I, Cross, T, Hanson, SF, and Creamer, R. 2012. Application of vascular puncture for evaluation of curtovirus resistance in chile pepper and tomato. J Phytopathol 160:120-128. Mohseni-Moghadam, M, Cramer, CS, Steiner, RL, and Creamer, R. 2011. Evaluating winter-sown onion entries for Iris yellow spot virus susceptibility. HortScience 46:1224- 1229. Al-Khatib, R, Creamer., R, Lartey, RT, and Ghoshroy, S. 2011. Effect of lead (Pb) on the systemic movement of RNA viruses in tobacco (Nicotiana tabacum var. Turkish). Plant Cell Reports 30:1427-1434. Hudson, A, Richman, DB, Escobar, I, and Creamer, R. 2010. Comparison of the feeding behavior and genetics of beet leafhopper (Circulifer tenellus, Baker) populations from California and New Mexico. Southwestern Entomologist 35:241-250. Lam, N, Creamer, R, Rascon, J, and Belfon, R. 2009. Characterization of a new curtovirus, Pepper yellow dwarf virus, from chile pepper and distribution in weed hosts in New Mexico. Archives of Virology 154:429-436.
    [Show full text]
  • Annotated Checklist of Vascular Flora, Bryce
    National Park Service U.S. Department of the Interior Natural Resource Program Center Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 ON THE COVER Matted prickly-phlox (Leptodactylon caespitosum), Bryce Canyon National Park, Utah. Photograph by Walter Fertig. Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 Author Walter Fertig Moenave Botanical Consulting 1117 W. Grand Canyon Dr. Kanab, UT 84741 Sarah Topp Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 January 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientifi c community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifi cally credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resource Technical Report series is used to disseminate the peer-reviewed results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations.
    [Show full text]
  • Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection
    sustainability Review Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection Brandon Schlautman 1,2,* ID , Spencer Barriball 1, Claudia Ciotir 2,3, Sterling Herron 2,3 and Allison J. Miller 2,3 1 The Land Institute, 2440 E. Water Well Rd., Salina, KS 67401, USA; [email protected] 2 Saint Louis University Department of Biology, 1008 Spring Ave., St. Louis, MO 63110, USA; [email protected] (C.C.); [email protected] (S.H.); [email protected] (A.J.M.) 3 Missouri Botanical Garden, 4500 Shaw Blvd. St. Louis, MO 63110, USA * Correspondence: [email protected]; Tel.: +1-785-823-5376 Received: 12 February 2018; Accepted: 4 March 2018; Published: 7 March 2018 Abstract: Annual cereal and legume grain production is dependent on inorganic nitrogen (N) and other fertilizers inputs to resupply nutrients lost as harvested grain, via soil erosion/runoff, and by other natural or anthropogenic causes. Temperate-adapted perennial grain legumes, though currently non-existent, might be uniquely situated as crop plants able to provide relief from reliance on synthetic nitrogen while supplying stable yields of highly nutritious seeds in low-input agricultural ecosystems. As such, perennial grain legume breeding and domestication programs are being initiated at The Land Institute (Salina, KS, USA) and elsewhere. This review aims to facilitate the development of those programs by providing criteria for evaluating potential species and in choosing candidates most likely to be domesticated and adopted as herbaceous, perennial, temperate-adapted grain legumes. We outline specific morphological and ecophysiological traits that may influence each candidate’s agronomic potential, the quality of its seeds and the ecosystem services it can provide.
    [Show full text]