(12) Patent Application Publication (10) Pub. No.: US 2015/0052975 A1

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2015/0052975 A1 US 2015.0052975A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0052975 A1 Martin (43) Pub. Date: Feb. 26, 2015 (54) NETWORKED AIR QUALITY MONITORING (52) U.S. Cl. CPC ..... F24F II/0017 (2013.01); F24F 2011/0026 (71) Applicant: David Martin, Chagrin Falls, OH (US) (2013.01); F24F 2011/0027 (2013.01) (72) Inventor: David Martin, Chagrin Falls, OH (US) USPC ......................................................... 73/31.02 (21) Appl. No.: 14/533,305 (57) ABSTRACT (22) Filed: Nov. 5, 2014 Related U.S. Application Data Systems, methods, and non-transitory computer-readable (63) Continuation of application No. 13/737,102, filed on media for continuously monitoring residential air quality and Jan. 9, 2013, now Pat. No. 8,907,803. providing a trend based analysis regarding various air pollut (60) Provisional application No. 61/584,432, filed on Jan ants are presented herein. The system comprises an air quality 9, 2012 s - as monitor located in a residential house, wherein the air quality s monitor is configured to measure the level of an air pollutant. Publication Classification The system also includes a server that is communicatively coupled to the air quality monitor, wherein the server is con (51) Int. Cl. figured to generate a unique environmental fingerprint asso F24F II/00 (2006.01) ciated with the residential house. AIR QUALITY MONITOR 102 104 RAOO MODULE 100. / 106 SENSOR COMPONENT 108 SERVER 10 Patent Application Publication Feb. 26, 2015 Sheet 1 of 15 US 2015/0052975 A1 id 3 S g O 2. O e >- s C e s Patent Application Publication Feb. 26, 2015 Sheet 3 of 15 US 2015/0052975 A1 300 TN 204 PARTICULATE SENSOR POWER REGULATOR 304 AUDOWSAL ENDICATORS FIG. 3 Patent Application Publication Feb. 26, 2015 Sheet 4 of 15 US 2015/0052975 A1 400 N. 2OS TEMPERATURE SENSOR 402 POWER REGULATOR 404 TEMPERATURE MODULE FG. 4 Patent Application Publication Feb. 26, 2015 Sheet 5 of 15 US 2015/0052975 A1 500 N 208 RELATIVE HUMIDITY SENSOR POWER REGULATOR 504 RELATWE HUMOTY WOOUE F.G. 5 Patent Application Publication Feb. 26, 2015 Sheet 6 of 15 US 2015/0052975 A1 SO) N. 210 WOAE ORGANC COMPOUND SENSOR 602 HEATER AND POWER REGULATOR 604 WOALE ORGANC COMPOUND WODE F.G. 6 Patent Application Publication Feb. 26, 2015 Sheet 7 of 15 US 2015/0052975 A1 700 N 212 NTROGEN OXDES SENSOR 702 HEATER AND POWER REGULATOR 704 NITROGEN OXDES MODULE FIG. 7 Patent Application Publication Feb. 26, 2015 Sheet 8 of 15 US 2015/0052975 A1 800 N. 2S COWBUSTEBLE GAS SENSOR 802 HEATER AND POWER REGULATOR 804 COWBUSTBLE GAS WODUE FIG. 8 Patent Application Publication Feb. 26, 2015 Sheet 9 of 15 US 2015/0052975 A1 900 N. 218 CARBON DOXDE SENSOR 902 HEATER AND POWER REGULATOR 904 CARBON DOXDE MODE FG. 9 Patent Application Publication Feb. 26, 2015 Sheet 10 of 15 US 2015/0052975 A1 OOO TN 220 FORMADEHYDE SENSOR 102 HEATER AND POWER REGULATOR 1904 FORMADEHYDE WOOLE FIG. 10 Patent Application Publication Feb. 26, 2015 Sheet 11 of 15 US 2015/0052975 A1 1100 N. 108 ANAYSS COWPONENT 1102 NOTFCATION COMPONENT 1104. ARTFCA NELGENCE COWPONENT 1 106 FIG. 11 Patent Application Publication Feb. 26, 2015 Sheet 12 of 15 US 2015/0052975 A1 {}02||__^ Patent Application Publication Feb. 26, 2015 Sheet 13 of 15 US 2015/0052975 A1 300 TN STAR 3O2 NALIZE SENSORS MONTOR AMBENT AR QUALITY 1304 AND BROAOCAST DATA TO SERVER FOR ANALYSES RECEIVE SIGNAL FROM SERVER 306 REGARONG DEWATIONS FROMAN ESTABLISHED ENVIRONMENTAL FNGERPRINT DSPACH NOTIFICATIONS OR 1308 RAISE ALARM BASED ON THE SGNAL F.G. 13 Patent Application Publication Feb. 26, 2015 Sheet 14 of 15 US 2015/0052975 A1 1400- STAR 1402 RECEIVE DAA FROM SENSORS BULD BASEINE ENVIRONMENTAL A.04 FNGERPRENT MONOR DATA RECEIVEO FROM 4OS SENSORS FOR DEWATONS FROM ESTABSHED BASELNE ENVERONMENTAL FINGERPRNT SEND NOTIFICATIONALARMS 4.08 SIGNALS TO AROUALITY MONTOR ANDOR USER FIG. 14 Patent Application Publication Feb. 26, 2015 Sheet 15 of 15 US 2015/0052975 A1 1500 YA irrir". - 1528 ....................................................OPERATING SYSTEM APPLICATIONS - - - - - - - - - - - - - - - - 1532 MODULES: - 1534 DATA 1512 OUTPUT DEVICE(S) 1540 INPUT DEVICE(S) 1536 NETWORK iNTERFACE 1548 SORAGE REMOTE COMPUTER(S) MEMORY SORAGE 1546 FIG. 15 US 2015/0052975 A1 Feb. 26, 2015 NETWORKED AIR QUALITY MONITORING from poor indoor air quality continues to grow, the Scientific literature and the awareness of this health issue will grow as CROSS REFERENCE TO RELATED well. APPLICATIONS 0009 Telemedicine has been shown to reduce the cost of healthcare and increase efficiency through better manage 0001. This application is a Continuation of U.S. patent ment of chronic diseases by reducing and shortening hospital application Ser. No. 13/737,102, filed Jan. 9, 2013, entitled visits. The providers of telemedicine technology can help “NETWORKED AIR QUALITY MONITORING” which hospitals control their costs where it matters most. claims priority to Provisional Application No. 61/584,432 0010. In the current administrations healthcare reforms, entitled “NETWORKED AIR QUALITY MONITORING” new legislation will penalize hospitals for readmission. Cur filed Jan. 9, 2012. The entireties of the above noted U.S. rently, readmissions are the most costly to the government patent application and Provisional application are hereby and the taxpayer taking up nearly 20% of Medicare’s S103 incorporated by reference. billion budget. In fact, one in five patients discharged are readmitted within 30 days. This is widely regarded to be an TECHNICAL FIELD avoidable problem. However, some patients with chronic dis eases will always be coming back. 0002 The subject matter described and disclosed herein 0011. Due to the chronic and worsening nature of COPD, relates to air quality monitoring, and more specifically to patients suffering from this disease have some of the highest remotely monitoring indoor air quality. readmission rates. Consequently, the average annual Medi care expenditure on COPD patients is nearly double that of all BACKGROUND covered patients. COPD also has the highest cost of care of all 0003 Air quality has been a popular issue for decades. Air illnesses. Knowing that poor indoor air quality can trigger quality is typically in the context of outdoor pollutants such as symptoms in COPD patients, remote and constant monitoring Smog, car exhaust, or Smoke. The negative effects of poor of the indoor air quality in COPD patients’ homes can help outdoor air quality has on an individuals health has been well reduce these costs. studied and is commonly known. Now, the focus is moving 0012 Asthma is responsible for a large number of hospital indoors to the negative effects poor indoor air quality has on visits as well. It accounts for 10.5 million visits each year and a person’s health. is the third ranking cause of visits for children under 15. As a 0004 Indoor air pollution is one of the world’s worst result, the direct cost due to asthma in the United States each pollution problems. People spend 90% of their time indoors year is S14.7 billion. While people suffering from asthma and 65% of their time is in their home. That number is even know the importance of eliminating triggers from their envi higher for the patients most vulnerable to poor indoor air ronment, fewer than 30% know what those triggers are. Con quality: bed-ridden patients with chronic disease, the elderly, stant monitoring of indoor air quality can raise awareness of and infants. These patients suffer from difficulty breathing, asthma triggers and prevent millions of hospital visits each wheezing, coughing, and aggravation of chronic respiratory year. and cardiac conditions. SUMMARY 0005 One such medical condition that is worsened by poor indoor air quality is chronic obstructive pulmonary dis 0013 The following presents a simplified summary to ease (COPD). COPD is predicted to become the third leading provide a basic understanding of Some aspects described cause of death by 2020. Currently, poor indoor air quality is herein. This summary is not an extensive overview of the responsible for 700,000 of the 2.7 million deaths from COPD disclosed subject matter. It is not intended to identify key or worldwide. When poor indoor air quality does not cause critical elements of the disclosed subject matter, or delineate death, it triggers symptoms in COPD patients. the scope of the Subject disclosure. Its sole purpose is to present some concepts of the disclosed Subject matter in a 0006 Poor indoor air quality can also trigger symptoms in simplified form as a prelude to the more detailed description asthmatics. The environmental protection agency (EPA) lists presented later. secondhand Smoke, dust mites, mold, pests, warm-blooded 0014 Telemedicine is the future of healthcare and along pets, and nitrogen and outside as the most common indoor with it comes telemonitoring. Yet, there is no cost effective asthma triggers. Approximately one in ten Americans have method to remotely and continuously monitor indoor air been diagnosed with asthma and 70% of them also have quality. Poor indoor air quality has a negative impact, short allergies. It is estimated that the number of asthmatics will term and long-term, on the health and productivity of those at grow to 100 million by 2025. home, work, and School. It is an increasing issue putting a 0007. There have been numerous studies showing an asso negative strain on our economy by increasing costs to busi ciation between indoor air quality and heart disease. In par nesses and healthcare. Telemonitoring of indoor air quality ticular, carbon monoxide, nitrogen dioxide, and fine particle can improve healthcare and control these costs. However, if it mass have been found to trigger episodes in arrhythmia is to gain widespread adoption, the technology must be reli patients.
Recommended publications
  • Wide Band Gap Materials and Devices for Nox, H2 and O2 Gas Sensing Applications
    Wide band gap materials and devices for NOx, H2 and O2 gas sensing applications Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) vorgelegt der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Ilmenau von Dipl.-Ing Majdeddin Ali geboren am 08.09.1976 in Homs, Syrien 1. Gutachter: Univ.-Prof. Dr. rer. nat. habil. Oliver Ambacher, Fraunhofer-Institut für Angewandte Festkörperphysik, Freiburg 2. Gutachter: PD Dr.-Ing. habil. Frank Schwierz, TU Ilmenau 3. Gutachter: Dr. Martin Eickhoff, Walter Schottky Institut, TU München Tag der Einreichung: 28.06.2007 Tag der wissenschaftlichen Aussprache: 22.01.2008 urn:nbn:de:gbv:ilm1-2007000323 Abstract III Abstract In this thesis, field effect gas sensors (Schottky diodes, MOS capacitors, and MOSFET transistors) based on wide band gap semiconductors like silicon carbide (SiC) and gallium nitride (GaN), as well as resistive gas sensors based on indium oxide (In2O3), have been developed for the detection of reducing gases (H2, D2) and oxidising gases (NOx, O2). The development of the sensors has been performed at the Institute for Micro- and Nanoelectronic, Technical University Ilmenau in co- operation with (GE) General Electric Global Research (USA) and Umwelt-Sensor- Technik GmbH (Geschwenda). Chapter 1: serves as an introduction into the scientific fields related to this work. The theoretical fundamentals of solid-state gas sensors are provided and the relevant properties of wide band gap materials (SiC and GaN) are summarized. In chapter 2: The performance of Pt/GaN Schottky diodes with different thickness of the catalytic metal were investigated as hydrogen gas detectors. The area as well as the thickness of the Pt were varied between 250 × 250 µm2 and 1000 × 1000 µm2, 8 and 40 nm, respectively.
    [Show full text]
  • Diploma Thesis
    CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF ELECTRICAL ENGINEERING DIPLOMA THESIS Modeling and state estimation of automotive SCR catalyst JiˇríFigura Praha, 2016 Supervisor: Ing. Jaroslav Pekaˇr, Ph.D. Czech Technical University in Prague Faculty of Electrical Engineering Department of Control Engineering DIPLOMA THESIS ASSIGNMENT Student: Bc. Jiří Figura Study programme: Cybernetics and Robotics Specialisation: Systems and Control Title of Diploma Thesis: Modeling and state estimation of automotive SCR catalyst Guidelines: 1. Get introduced to automotive SCR and combined SCR/DPF systems 2. Provide an overview of the state-of-the-art in SCR state estimation and SCR modeling 3. Develop a model of automotive SCR catalyst for online estimation 4. Design an SCR estimator/observer of NH3 storage and analyze its performance Bibliography/Sources: [1] I. Nova and E. Tronconi, Eds., Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts. New York, NY: Springer New York, 2014 [2] C. Ericson, B. Westerberg, and I. Odenbrand, A state-space simplified SCR catalyst model for real time applications, SAE Technical Paper, 2008 [3] H. S. Surenahalli, G. Parker, and J. H. Johnson, Extended Kalman Filter Estimator for NH3 Storage, NO, NO2 and NH3 Estimation in a SCR, SAE International, Warrendale, PA, 2013-01-1581, Apr. 2013 [4] H. Zhang, J. Wang, and Y.-Y. Wang, Robust Filtering for Ammonia Coverage Estimation in Diesel Engine Selective Catalytic Reduction Systems, Journal of Dynamic Systems, Measurement, and Control, vol. 135, no. 6, pp. 064504-064504, Aug. 2013 Diploma Thesis Supervisor: Ing. Jaroslav Pekař, Ph.D. Valid until the summer semester 2016/2017 L.S.
    [Show full text]
  • Model AIR 2000 Carbon Dioxide Sensors Consist of a Patented Solid State Infrared CO2 Monitor Housed in an Attractive Plastic Case
    CARBON DIOXIDE (CO2 ) MODEL AIR2000/ INDOOR AIR QUALITY SENSOR (TOXCO2/ANA) GENERAL DESCRIPTION: Toxalert’s AIR 2000 Carbon Dioxide (CO2) sensors come with a linearized signal output capability of 0 to 10 VDC and 4 to 20 mA over its 0-2000ppm range (other ranges available). It has an accuracy of ± 5% of reading and a repeatability of ± 20ppm. Options available with the Air 2000 are a digital dis- play for reading CO2 concentration in ppm; relay output with field adjustable set point; and duct mounting hardware. The AIR 2000 may input directly to a Toxalert controller, interface directly to any standard direct digital controller (DDC); or be a stand-alone unit for the control of ventilation equipment. SENSING ELEMENT: Model AIR 2000 Carbon Dioxide sensors consist of a patented solid state infrared CO2 monitor housed in an attractive plastic case. The AIR 2000 has a new state-of-the-art lithium tantalite detector, updated digital electronics and unique auto-zero function. This results in very stable calibration and longer trouble-free operation in the field. The new IR source is more rugged, operated at 10X derated power and has life expectancy of 10 yrs. The new lithium tantalite detector enhances stability, has less ambient temperature sensitivity, and faster response AIR2000 SENSOR time. The AIR 2000 space sensor has louvers to allow free passage of air to the sensing cell inside. AIR 2000DM duct sensor has pedo tubes for drawing a sample from the ventilation duct. STANDARD FEATURES: • Relay option available • 10 year sensing element life • Optional duct mounted unit • Low voltage circuits • Interfaces directly to DDC systems • Linear 4 to 20 mA output or 0 to 10 vdc output • Other ranges available • Optional digital display TOXALERT INTERNATIONAL, INC.
    [Show full text]
  • Probes Facilitate Rollout of Environmentally Friendly Refrigeration
    CO2 PROBES FACILITATE ROLLOUT OF ENVIRONMENTALLY FRIENDLY REFRIGERATION Supermarkets all over Australia and New Zealand are benefiting from advanced carbon dioxide monitors as new natural refrigeration systems are installed in the fight against climate change. Introduction Over the last 8 years, Vaisala carbon dioxide probes have been employed widely across Woolworths Group stores, delivering a The Woolworths Group employs over 205,000 staff and range of benefits and helping the group to achieve its strategic serves 900 million customers each year. As a large and goals. diverse organisation, Woolworths knows that its approach to sustainability has an impact on national economies, communities and environments, and this is reflected in the Group’s Corporate Global move to natural refrigerants Responsibility Strategy 2020. Synthetic refrigerant gases have been utilised in a wide variety The strategy is built around twenty key targets which cover of industries for many decades. However, Chlorofluorocarbons Woolworths’ engagement with customers, communities, supply (CFCs) caused damage to the ozone layer and were phased chain and team members, as well as its responsibility to minimise out following the Montreal Protocol in 1987. Production of the environmental impact of its operations. One of the twenty Hydrochlorofluorocarbons (HCFCs) then increased globally, commitments within the strategy is to innovate with natural because they are less harmful to stratospheric ozone. However, refrigerants and reduce refrigerant leakage in its stores by 15 per HCFCs are very powerful greenhouse gases so Hydrofluorocarbons cent (of carbon dioxide equivalent) below 2015 levels. (HFCs) became more popular. Nevertheless, most HCFCs and HFCs have a global warming potential (GWP) that is thousands of times Carbon dioxide (CO2) is commonly regarded as the ideal natural refrigerant.
    [Show full text]
  • US5345830.Pdf
    |||||I||||||||US005345830A United States Patent (19) 11 Patent Number: 5,345,830 Rogers et al. 45 Date of Patent: ck Sep. 13, 1994 54 FIRE FIGHTING TRAINER AND APPARATUS INCLUDING A OTHER PUBLICATIONS TEMPERATURE SENSOR "Fire Trainer T-2000” manual, AAI corporation, un dated. 75) Inventors: William Rogers, Hopatcong; James "Trainer Engineering Report for Advanced Fire Fight J. Ernst, Livingston; Steven ing Surface Ship Trainer', Austin Electronics, Jan. Williamson, Haledon; Dominick J. 1988 (excerpt). Musto, Middlesex, all of N.J. Primary Examiner-Hezron E. Williams 73) Assignee: Symtron Systems, Inc., Fair Lawn, Assistant Examiner-George M. Dombroske N.J. Attorney, Agent, or Firm-Richard T. Laughlin * Notice: The portion of the term of this patent 57 ABSTRACT subsequent to Jan. 8, 2008 has been A fire fighting trainer for use in training fire fighters is disclaimed. provided. The fire fighting trainer includes a structure (21) Appl. No.: 80,484 having a plurality of chambers having concrete or grat ing floors. Each chamber contains one or a series of real 22 Filed: Jun. 18, 1993 or simulated items, which are chosen from a group of items, such as furniture and fixtures and equipment. The Related U.S. Application Data trainer also includes a smoke generating system having 60 Division of Ser. No. 873,965, Apr. 24, 1992, Pat. No. a smoke generator having a smoke line with an outlet 5,233,869, which is a continuation of Ser. No. 625,210, for each chamber. The trainer also includes a propane Dec. 10, 1990, abandoned, which is a continuation-in gas flame generating system having at least one propane part of Ser.
    [Show full text]
  • Sensor Suite Sensors Overview
    Sensor Suite Sensors Overview Sensor Suite Sensors: Overview Sensor Suite Sensors enable OptiNet® to cost effectively monitor and control a breadth of environmental parameters throughout a facility. Located within a Sensor Suite, the sensors evaluate an array of environmental conditions using a shared sensing architecture. In lieu of locating individual discrete sensors in each space, OptiNet gathers air samples from the spaces and multiplexes them across the OptiNet network back to the Sensor Suite for analysis. OptiNet’s centralized sensor platform affords a more robust, cost effective approach to monitoring many parameters at many locations. A “virtual” sensor function is created as if the sensors were actually located in the environment being monitored. A shared platform additionally negates sensor errors through a true differential measurement (comparing outside to inside conditions via a common shared FEATURES sensor); while minimizing calibration and maintenance costs. • Sensor Suite Sensors are tailored to match specific monitoring and Sensor Suite Sensors have unique performance specifications and product features control needs. to meet specific applications, such as demand controlled ventilation, differential • Calibration and maintenance enthalpy economizer control; or for monitoring only purposes. The ability to sense of sensors is automatically and a variety of conditions, combined with a specific level of sensor performance, routinely scheduled through optimizes an application’s potential energy savings, control or monitoring capacity. Aircuity’s calibration depot and Assurance Services program. OptiNet’s Assurance Services plan assures that the sensors will continue to perform • Flexible architecture for future today, tomorrow, and in to the future. Aircuity’s Calibration Depot services routinely sensor enhancements and refresh all sensors within the Sensor Suite with factory calibrated and serviced units technology updates.
    [Show full text]
  • Technical Specification
    • 1.09.280E • 5.3.2007 © VALLOX Code 3486 SE TECHNICAL SPECIFICATION DIGIT SED ELECTRONIC CONTROLLER WITH LCD DISPLAY TECHNICAL SPECIFICATION • For dwelling-specific ventilation Input power 230 V, 50 Hz, 11 A in large detached houses (+ post-heating unit 4.3 A) • Supply and extract air ventilation Class of protection IP34 with heat recovery Fans alternating Extract air 300 W 1.31 A 205 dm3/s 100 Pa • Heat recovery efficiency of the 3 counter-current cell up to 80% current (AC) Supply air 300 W 1.31 A 185 dm /s 100 Pa Fans, direct Extract air 2 x 90 W 0.6 A 180 dm3/s 100 Pa • Electronic control panel with LCD display current (DC) Supply air 2 x 90 W 0.6 A 165 dm3/s 100 Pa • Week clock control as a standard feature Heat recovery Counter-current cell, ␩> 80% • Humidity control (option) Heat recovery bypass Summer / winter automation • Carbon dioxide control (option) Electric preheating unit 2.0 kW 8.7 A • Maintenance reminder Electric post-heating unit (option) 1.0 kW 4.3 A • Fireplace / booster switch function Water post-heating radiator (option) ca 3 kW at the controller Filters Supply air G3, F7 • Silent operation Extract air G3 Weight / basic unit 146 kg • Good filtering Ventilation adjustment options – control via control panel • Summer / winter automation – CO2 and %RH control • Fixed air flow measuring outlets – remote monitoring control (LON converter) – remote monitoring control (voltage / current signal) Options – electric post-heating unit – water post-heating unit – CO2 sensor – %RH sensor – pressure difference switch – LON converter – Silencer TECHNICAL SPECIFICATION © VALLOX • We reserve the right to make changes without prior notification.
    [Show full text]
  • Carbon Dioxide Sensors GG-VL2-CO2
    VENT LINE GG-VL2-CO2 CARBON DIOXIDE SENSOR Key Features • Carbon dioxide-selective infrared sensor technology prevents false alarms • Continuous monitoring of refrigeration system relief valves • Rugged, long life, and low power catalytic-bead sensor • Designed for harsh environments (-40°F to +140°F) • Sensor and preamp in one assembly • 0-5% CO2 (0-50,000 ppm) detection range • Ability to detect “weeping valves” to prevent refrigerant loss over time Carbon Dioxide sensors Carbon Dioxide • Sensor housing allows for easy sensor replacement and calibration • 316 stainless steel 18 gauge enclosure • Industry standard 24 VDC, linear 4/20 mA output From unlikely high-pressure releases to the inevitable “weepers”, the CTI Vent Line sensor will notify you … before your neighbors do. The GG VL2 utilizes a rugged infrared High concentrations of carbon diox- The GG-VL2-CO2 provides an industry sensor technology for fast leak detec- ide gases in your vent line are usually standard linear 4/20 mA output signal tion and long life. The standard 0-5% indications of a leaking valve or system compatible with most gas detection CO2 detection range of the GG-VL2- overpressure. This could mean costly systems and PLCs. Expect long sensor CO2 provides real-time continuous repairs or plant downtime, not to men- life and no zero-signal drift over time. monitoring of carbon dioxide concen- tion loss of refrigerant and regulatory trations in your high-pressure relief fines. Early detection can save money vent header. while also protecting equipment, prod- uct,
    [Show full text]
  • 6 Cumulative and Growth Inducing Impacts
    6 CUMULATIVE AND GROWTH INDUCING IMPACTS This section includes a detailed analysis of the cumulative impacts that would be anticipated with the proposed project with a specific focus on the project’s cumulative traffic impacts. In addition, this section includes a detailed discussion of the proposed project’s growth-inducing impacts, the project’s significant and irreversible commitment of resources, and the project’s effects on global climate change. 6.1 CUMULATIVE IMPACTS OF THE PROPOSED PROJECT This draft environmental impact report (Draft EIR) provides an analysis of overall cumulative impacts of the project taken together with other past, present, and probable future projects producing related impacts, as required by Section 15130 of the California Environmental Quality Act Guidelines (State CEQA Guidelines). The goal of such an exercise is twofold: first, to determine whether the overall long-term impacts of all such projects would be cumulatively significant; and second, to determine whether the Rocklin Crossings project itself would cause a “cumulatively considerable” (and thus significant) incremental contribution to any such cumulatively significant impacts. (See State CEQA Guidelines Sections 15130[a]-[b], Section 15355[b], Section 15064[h], Section 15065[c]; Communities for a Better Environment v. California Resources Agency [2002] 103 Ca1.App.4th 98, 120.) In other words, the required analysis intends to first create a broad context in which to assess the project’s incremental contribution to anticipated cumulative impacts, viewed on a geographic scale well beyond the project site itself, and then to determine whether the project’s incremental contribution to any significant cumulative impacts from all projects is itself significant (i.e., “cumulatively considerable” in CEQA parlance).
    [Show full text]
  • Answers to Four Questions About Carbon Dioxide Sensor Self-Heating
    / APPLICATION NOTE Answers to Four Questions about Carbon Dioxide Sensor Self-Heating What Is Self-Heating and Figure 1: Error in relative humidity Why Does It Matter? reading resulting from The self-heating of electronics in +1°C (1.8°F) and +2°C (3.6°F) self-heating carbon dioxide (CO2) instruments usually originates from two main at room temperature sources: the power required to take (20°C, 68°F). the CO2 measurement (sensor infrared source) and the energy required to generate the output signals. Incandescent light bulbs – typical infrared sources in CO2 sensors – consume a significant amount of power and thus generate heat. The heat spreads within the instrument level in the environment and the Also, compensation of humidity enclosure. Because the enclosure vertical axis the error in relative measurements is even more limits thermal exchange with the humidity (%RH) measurement. difficult than that of temperature. In surrounding environment, the The humidity measurement error conclusion, compensating for self- temperature within the instrument rate grows as a function of increasing heating is not recommended. is always slightly higher than the relative humidity. Increased self- ambient temperature. heating also results in a greater Can I Perform Sensor Self-heating is practically irrelevant error. At 50%RH and 20°C ambient Self-Heating Tests? for sensors that only measure CO2. temperature, the error is -3%RH for It is simple and straightforward to However, when the instrument also instruments with +1°C (1.8°F) self- perform self-heating tests, even measures temperature, self-heating heating and -6%RH for instruments without investing in expensive disturbs the measurement by with +2°C (3.6°F) self-heating.
    [Show full text]
  • A Multipollutant Smoke Emissions Sensing and Sampling Instrument Package for Unmanned Aircraft Systems: Development and Testing
    fire Article A Multipollutant Smoke Emissions Sensing and Sampling Instrument Package for Unmanned Aircraft Systems: Development and Testing Kellen N. Nelson 1,2,*, Jayne M. Boehmler 1, Andrey Y. Khlystov 1 , Hans Moosmüller 1 , Vera Samburova 1, Chiranjivi Bhattarai 1 , Eric M. Wilcox 1 and Adam C. Watts 1,* 1 Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA; [email protected] (J.M.B.); [email protected] (A.Y.K.); [email protected] (H.M.); [email protected] (V.S.); [email protected] (C.B.); [email protected] (E.M.W.) 2 Department of Natural Resources and Environmental Sciences, University of Nevada—Reno, 1664 N. Virginia St., Reno, NV 89557, USA * Correspondence: [email protected] (K.N.N.); [email protected] (A.C.W.) Received: 4 May 2019; Accepted: 4 June 2019; Published: 7 June 2019 Abstract: Poor air quality arising from prescribed and wildfire smoke emissions poses threats to human health and therefore must be taken into account for the planning and implementation of prescribed burns for reducing contemporary fuel loading and other management goals. To better understand how smoke properties vary as a function of fuel beds and environmental conditions, we developed and tested a compact portable instrument package that integrates direct air sampling with air quality and meteorology sensing, suitable for in situ data collection within burn units and as a payload on multi-rotor small unmanned aircraft systems (sUASs). Co-located sensors collect carbon dioxide, carbon monoxide, and particulate matter data at a sampling rate of ~0.5 Hz with a microcontroller-based system that includes independent data logging, power systems, radio telemetry, and global positioning system data.
    [Show full text]
  • Mass Teacher's Retirement System, 500 Rutherford Ave
    POST-OCCUPANCY ASSESSMENT Massachusetts Teachers’ Retirement System 500 Rutherford Avenue Charlestown, MA Prepared by: Massachusetts Department of Public Health Bureau of Environmental Health Indoor Air Quality Program December 2016 Background Massachusetts Teachers’ Retirement System Building: (MTRS) Address: 500 Rutherford Avenue, Charlestown, MA Paul Burke, Senior Project Manager, Division of Assessment Requested by: Capital Asset Management and Maintenance (DCAMM) Post-occupancy indoor air quality (IAQ) Reason for Request: assessment Date of Assessment: November 17, 2016 Massachusetts Department of Public Health/Bureau of Environmental Health Ruth Alfasso, Environmental Engineer/Inspector, (MDPH/BEH) Staff Conducting IAQ Program Assessment: This office suite is a part of “Hood Park” on the location of the former H.P. Hood and Sons Milk Building Description: factory. It is now an office park containing other office tenants. The building also includes a fitness center and restaurant. Building Population: Approximately 100 Windows: Not openable Methods Please refer to the IAQ Manual for methods, sampling procedures, and interpretation of results (MDPH, 2015). IAQ Testing Results The following is a summary of indoor air testing results (Table 1). • Carbon dioxide levels were below 800 parts per million (ppm) in all areas assessed, indicating adequate fresh air in the space. • Temperature was within the recommended range of 70°F to 78°F in all areas assessed. 2 • Relative humidity was below the recommended range of 40% to 60% in all areas assessed. • Carbon monoxide levels were non-detectable in all indoor areas assessed. • Total volatile organic compounds (TVOCs) were either not detected or below background in the building at the time of assessment.
    [Show full text]