Test Plan and Procedures
Total Page:16
File Type:pdf, Size:1020Kb
DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE TOPICAL REPORT For the reporting period: September 2002 – May 2005 Prepared by: E. Kelner D. George T. Morrow T. Owen M. Nored R. Burkey A. Minachi May 2005 Prepared for: U.S. DEPARTMENT OF ENERGY DOE Cooperative Agreement No. DE-FC21-96MC33033 DOE Technical Monitor Anthony Zammerilli Gas Technology Management Division Submitted by: SOUTHWEST RESEARCH INSTITUTE® Mechanical and Fluids Engineering Division 6220 Culebra Road San Antonio, Texas, USA 78238–5166 This page is intentionally blank. ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. iii This page is intentionally blank. iv DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE E. Kelner D. George T. Morrow T. Owen M. Nored R. Burkey A. Minachi SOUTHWEST RESEARCH INSTITUTE® Mechanical and Fluids Engineering Division 6220 Culebra Road San Antonio, Texas, USA 78238–5166 ABSTRACT In 1998, Southwest Research Institute® began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002–2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO2 and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value. v This page is intentionally blank. vi TABLE OF CONTENTS Page 1. INTRODUCTION ............................................................................................................1 1.1 BACKGROUND........................................................................................................1 1.2 PROJECT TASKS AND GOALS, 2002-2003 ..............................................................4 1.3 SUMMARY OF ACCOMPLISHMENTS, 2002-2003.....................................................6 1.3.1 Algorithm Evaluation and Refinement......................................................6 1.3.2 Energy Meter Sensors...............................................................................6 1.3.3 New Prototype Energy Meter Module ......................................................7 1.3.4 Energy Meter Laboratory and Field Tests................................................8 1.3.5 Market Survey and Commercialization ....................................................9 2. EVALUATION AND REFINEMENT OF THE INFERENTIAL ALGORITHM........11 2.1 THE SINGLE-STATE METHOD...............................................................................11 2.1.1 Sound Speed at Standard Temperature and Pressure ............................11 2.1.2 Sound Speed at Arbitrary Temperature and Pressure............................12 2.2 THE TWO-STATE METHOD...................................................................................13 2.2.1 Optimum Differences between States 1 and 2.........................................14 2.2.2 Sensitivity to Errors in Sound Speed and CO2 Concentration................18 2.3 TWO-STATE ALGORITHM IMPROVEMENTS...........................................................20 2.4 UPGRADE TO AGA-10 EQUATION OF STATE .......................................................22 2.5 MULTIPLE-STATES METHODS..............................................................................23 3. SPEED OF SOUND SENSOR .......................................................................................25 3.1 PROTOTYPE ULTRASONIC TRANSDUCER..............................................................25 3.2 NEW ULTRASONIC TRANSDUCER.........................................................................26 3.2.1 Ultran Labs 500-kHz Transducer ...........................................................29 3.2.2 Ultran Labs 1-MHz Transducer..............................................................29 3.3 SPEED OF SOUND SENSOR ELECTRONICS .............................................................32 3.3.1 Tone-Burst Generator.............................................................................33 3.3.2 Waveform Receiver .................................................................................34 3.3.3 Waveform Digitizer.................................................................................35 3.3.4 Dual-Port Memory..................................................................................35 3.3.5 Digital Signal Processor.........................................................................35 3.3.6 CPLD Logic ............................................................................................36 3.3.7 Spike-Impulse Transducer Excitation.....................................................37 3.4 SPEED OF SOUND SIGNAL PROCESSING................................................................39 3.4.1 Background and New Requirements.......................................................39 3.4.2 Accuracy and Resolution Considerations...............................................41 3.4.3 Time-of-Flight Interpolation...................................................................42 3.4.4 Signal-to-Noise Requirements ................................................................46 3.4.5 Noise Contamination Model Analysis.....................................................46 3.4.6 Signal-to-Noise Ratio Enhancement.......................................................52 vii 4. CARBON DIOXIDE SENSOR......................................................................................57 4.1 CALIBRATION STUDIES ........................................................................................57 4.2 CALIBRATION TESTS AT ELEVATED PRESSURE ....................................................59 5. 2003 PROTOTYPE ENERGY METER SYSTEM........................................................65 5.1 TWO-STATE MEASUREMENT SYSTEM..................................................................65 5.1.1 Gas Sensor and Control Module.............................................................65 5.1.2 Electronics and Communications Module..............................................68 5.1.3 Master Control and Data Acquisition Module .......................................69 5.2 INTEGRATED SOS AND CO2 TEST CHAMBER.......................................................70 5.3 DATA ACQUISITION AND CONTROL .....................................................................72 5.4 DATA RECORDING AND PROCESSING ...................................................................75 6. LABORATORY AND FIELD TESTING OF THE ENERGY METER MODULE AND ALGORITHM.......................................................................................................77 6.1 LABORATORY TESTS OF THE SINGLE-STATE MODULE.........................................77 6.1.1 Test Conditions .......................................................................................77 6.1.2 Speed of Sound Sensor Results ...............................................................81 6.1.3 Carbon Dioxide Sensor Results ..............................................................88 6.1.4 Heating Value Error and Overall Module Performance........................93 6.2 NEW BRAUNFELS, TEXAS FIELD TEST .................................................................99 6.3 FIELD TESTS OF THE ENERGY METER ALGORITHM AS A STAND-ALONE APPLICATION .....................................................................................................107 6.3.1