Hyperseeing Hyperseeing
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Computational Design Framework 3D Graphic Statics
Computational Design Framework for 3D Graphic Statics 3D Graphic for Computational Design Framework Computational Design Framework for 3D Graphic Statics Juney Lee Juney Lee Juney ETH Zurich • PhD Dissertation No. 25526 Diss. ETH No. 25526 DOI: 10.3929/ethz-b-000331210 Computational Design Framework for 3D Graphic Statics A thesis submitted to attain the degree of Doctor of Sciences of ETH Zurich (Dr. sc. ETH Zurich) presented by Juney Lee 2015 ITA Architecture & Technology Fellow Supervisor Prof. Dr. Philippe Block Technical supervisor Dr. Tom Van Mele Co-advisors Hon. D.Sc. William F. Baker Prof. Allan McRobie PhD defended on October 10th, 2018 Degree confirmed at the Department Conference on December 5th, 2018 Printed in June, 2019 For my parents who made me, for Dahmi who raised me, and for Seung-Jin who completed me. Acknowledgements I am forever indebted to the Block Research Group, which is truly greater than the sum of its diverse and talented individuals. The camaraderie, respect and support that every member of the group has for one another were paramount to the completion of this dissertation. I sincerely thank the current and former members of the group who accompanied me through this journey from close and afar. I will cherish the friendships I have made within the group for the rest of my life. I am tremendously thankful to the two leaders of the Block Research Group, Prof. Dr. Philippe Block and Dr. Tom Van Mele. This dissertation would not have been possible without my advisor Prof. Block and his relentless enthusiasm, creative vision and inspiring mentorship. -
Petrie Schemes
Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes. -
Math 311. Polyhedra Name: a Candel CSUN Math ¶ 1. a Polygon May Be
Math 311. Polyhedra A Candel Name: CSUN Math ¶ 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible to go from any segment to any other segment by crossing vertices of the polygon. A polyhedron (plural: polyhedra) is a three dimensional figure enclosed by a finite number of polygons arranged in such a way that (a) exactly two polygons meet (at any angle) at every edge. (b) it is possible to get from every polygon to every other polygon by crossing edges of the polyhedron. ¶ 2. The simplest class of polyhedra are the simple polyhedra: those that can be continuously deformed into spheres. Within this class we find prisms and pyramids. Prism Pyramid If you round out the corners and smooth out the edges, you can think of a polyhedra as the surface of a spherical body. An so you may also think of the polyhedra, with its faces, edges, and vertices, as determining a decomposition of the surface of the sphere. ¶ 3. A polyhedron is called convex if the segment that joins any two of its points lies entirely in the polyhedron. Put in another way, a convex polyhedron is a finite region of space enclosed by a finite number of planes. Convexity is a geometric property, it can be destroyed by deformations. It is important because a convex polyhe- dron is always a simple polyhedron. (a) Can you draw a simple polyhedron that is not a convex polyhedron? November 4, 2009 1 Math 311. -
15 BASIC PROPERTIES of CONVEX POLYTOPES Martin Henk, J¨Urgenrichter-Gebert, and G¨Unterm
15 BASIC PROPERTIES OF CONVEX POLYTOPES Martin Henk, J¨urgenRichter-Gebert, and G¨unterM. Ziegler INTRODUCTION Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their im- portance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry to linear and combinatorial optimiza- tion. In this chapter we try to give a short introduction, provide a sketch of \what polytopes look like" and \how they behave," with many explicit examples, and briefly state some main results (where further details are given in subsequent chap- ters of this Handbook). We concentrate on two main topics: • Combinatorial properties: faces (vertices, edges, . , facets) of polytopes and their relations, with special treatments of the classes of low-dimensional poly- topes and of polytopes \with few vertices;" • Geometric properties: volume and surface area, mixed volumes, and quer- massintegrals, including explicit formulas for the cases of the regular simplices, cubes, and cross-polytopes. We refer to Gr¨unbaum [Gr¨u67]for a comprehensive view of polytope theory, and to Ziegler [Zie95] respectively to Gruber [Gru07] and Schneider [Sch14] for detailed treatments of the combinatorial and of the convex geometric aspects of polytope theory. 15.1 COMBINATORIAL STRUCTURE GLOSSARY d V-polytope: The convex hull of a finite set X = fx1; : : : ; xng of points in R , n n X i X P = conv(X) := λix λ1; : : : ; λn ≥ 0; λi = 1 : i=1 i=1 H-polytope: The solution set of a finite system of linear inequalities, d T P = P (A; b) := x 2 R j ai x ≤ bi for 1 ≤ i ≤ m ; with the extra condition that the set of solutions is bounded, that is, such that m×d there is a constant N such that jjxjj ≤ N holds for all x 2 P . -
Hwsolns5scan.Pdf
Math 462: Homework 5 Paul Hacking 3/27/10 (1) One way to describe a polyhedron is by cutting along some of the edges and folding it flat in the plane. The diagram obtained in this way is called a net. For example here is a net for the cube: Draw nets for the tetrahedron, octahedron, and dodecahedron. +~tfl\ h~~1l1/\ \(j [ NJte: T~ i) Mq~ u,,,,, cMi (O/r.(J 1 (2) Another way to describe a polyhedron is as follows: imagine that the faces of the polyhedron arc made of glass, look through one of the faces and draw the image you see of the remaining faces of the polyhedron. This image is called a Schlegel diagram. For example here is a Schlegel diagram for the octahedron. Note that the face you are looking through is not. drawn, hut the boundary of that face corresponds to the boundary of the diagram. Now draw a Schlegel diagram for the dodecahedron. (:~) (a) A pyramid is a polyhedron obtained from a. polygon with Rome number n of sides by joining every vertex of the polygon to a point lying above the plane of the polygon. The polygon is called the base of the pyramid and the additional vertex is called the apex, For example the Egyptian pyramids have base a square (so n = 4) and the tetrahedron is a pyramid with base an equilateral 2 I triangle (so n = 3). Compute the number of vertices, edges; and faces of a pyramid with base a polygon with n Rides. (b) A prism is a polyhedron obtained from a polygon (called the base of the prism) as follows: translate the polygon some distance in the direction normal to the plane of the polygon, and join the vertices of the original polygon to the corresponding vertices of the translated polygon. -
An Enduring Error
Version June 5, 2008 Branko Grünbaum: An enduring error 1. Introduction. Mathematical truths are immutable, but mathematicians do make errors, especially when carrying out non-trivial enumerations. Some of the errors are "innocent" –– plain mis- takes that get corrected as soon as an independent enumeration is carried out. For example, Daublebsky [14] in 1895 found that there are precisely 228 types of configurations (123), that is, collections of 12 lines and 12 points, each incident with three of the others. In fact, as found by Gropp [19] in 1990, the correct number is 229. Another example is provided by the enumeration of the uniform tilings of the 3-dimensional space by Andreini [1] in 1905; he claimed that there are precisely 25 types. However, as shown [20] in 1994, the correct num- ber is 28. Andreini listed some tilings that should not have been included, and missed several others –– but again, these are simple errors easily corrected. Much more insidious are errors that arise by replacing enumeration of one kind of ob- ject by enumeration of some other objects –– only to disregard the logical and mathematical distinctions between the two enumerations. It is surprising how errors of this type escape detection for a long time, even though there is frequent mention of the results. One example is provided by the enumeration of 4-dimensional simple polytopes with 8 facets, by Brückner [7] in 1909. He replaces this enumeration by that of 3-dimensional "diagrams" that he inter- preted as Schlegel diagrams of convex 4-polytopes, and claimed that the enumeration of these objects is equivalent to that of the polytopes. -
Ecaade 2021 Towards a New, Configurable Architecture, Volume 1
eCAADe 2021 Towards a New, Configurable Architecture Volume 1 Editors Vesna Stojaković, Bojan Tepavčević, University of Novi Sad, Faculty of Technical Sciences 1st Edition, September 2021 Towards a New, Configurable Architecture - Proceedings of the 39th International Hybrid Conference on Education and Research in Computer Aided Architectural Design in Europe, Novi Sad, Serbia, 8-10th September 2021, Volume 1. Edited by Vesna Stojaković and Bojan Tepavčević. Brussels: Education and Research in Computer Aided Architectural Design in Europe, Belgium / Novi Sad: Digital Design Center, University of Novi Sad. Legal Depot D/2021/14982/01 ISBN 978-94-91207-22-8 (volume 1), Publisher eCAADe (Education and Research in Computer Aided Architectural Design in Europe) ISBN 978-86-6022-358-8 (volume 1), Publisher FTN (Faculty of Technical Sciences, University of Novi Sad, Serbia) ISSN 2684-1843 Cover Design Vesna Stojaković Printed by: GRID, Faculty of Technical Sciences All rights reserved. Nothing from this publication may be produced, stored in computerised system or published in any form or in any manner, including electronic, mechanical, reprographic or photographic, without prior written permission from the publisher. Authors are responsible for all pictures, contents and copyright-related issues in their own paper(s). ii | eCAADe 39 - Volume 1 eCAADe 2021 Towards a New, Configurable Architecture Volume 1 Proceedings The 39th Conference on Education and Research in Computer Aided Architectural Design in Europe Hybrid Conference 8th-10th September -
Introduction to Zome a New Language for Understanding the Structure of Space
Introduction to Zome A new language for understanding the structure of space Paul Hildebrandt Abstract This paper addresses some basic mathematical principles underlying Zome and the importance of numeracy in education. Zome geometry Zome is a new language for understanding the structure of space. In other words, Zome is “hands-on” math. Math has been called the “queen of the sciences,” and Zome’s simple elegance applies to every discipline represented at the Form conference. Zome balls and struts represent points and lines, and are designed to model the relationship between the numbers 2, 3, and 5 in space in a simple, intuitive way. There’s a relationship between the shape of a strut, its vector in space, its length and the number it represents. Shape – Each Zome strut represents a number. Notice that the blue strut has a cross-section of a golden rectangle -- the long sides are in the Divine Proportion to the short sides, i.e. if the length of the short side is 1 the long side is approximately 1.618. The rectangle has 2 short sides and 2 long sides, has 2-fold symmetry in 2 directions. Everything about the rectangle seems to be related to the number 2. If the blue strut represents the number 2, it makes sense that you can only build a square out of blue struts in Zome: the square has 2x2 edges, 2x2 corners and 2-fold symmetry along 2x2 axes. It seems that everything about the square is related to the number 2. What about the cube? Vector -- It seems logical that you must also build a cube with blue struts, since a cube is made out of squares. -
Combinatorial Aspects of Convex Polytopes Margaret M
Combinatorial Aspects of Convex Polytopes Margaret M. Bayer1 Department of Mathematics University of Kansas Carl W. Lee2 Department of Mathematics University of Kentucky August 1, 1991 Chapter for Handbook on Convex Geometry P. Gruber and J. Wills, Editors 1Supported in part by NSF grant DMS-8801078. 2Supported in part by NSF grant DMS-8802933, by NSA grant MDA904-89-H-2038, and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, NSF-STC88-09648. 1 Definitions and Fundamental Results 3 1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.2 Faces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.3 Polarity and Duality : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.4 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2 Shellings 4 2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2 Euler's Relation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Line Shellings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 2.4 Shellable Simplicial Complexes : : : : : : : : : : : : : : : : : : : 5 2.5 The Dehn-Sommerville Equations : : : : : : : : : : : : : : : : : : 6 2.6 Completely Unimodal Numberings and Orientations : : : : : : : 7 2.7 The Upper Bound Theorem : : : : : : : : : : : : : : : : : : : : : 8 2.8 The Lower Bound Theorem : : : : : : : : : : : : : : : : : : : : : 9 2.9 Constructions Using Shellings : : : : : : : : : : : : : -
Zome and Euler's Theorem Julia Robinson Day Hosted by Google Tom Davis [email protected] April 23, 2008
Zome and Euler's Theorem Julia Robinson Day Hosted by Google Tom Davis [email protected] http://www.geometer.org/mathcircles April 23, 2008 1 Introduction The Zome system is a construction set based on a set of plastic struts and balls that can be attached together to form an amazing set of mathematically or artistically interesting structures. For information on Zome and for an on-line way to order kits or parts, see: http://www.zometool.com The main Zome strut colors are red, yellow and blue and most of what we’ll cover here will use those as examples. There are green struts that are necessary for building structures with regular tetrahedrons and octahedrons, and almost everything we say about the red, yellow and blue struts will apply to the green ones. The green ones are a little harder to work with (both physically and mathematically) because they have a pentagon-shaped head, but can fit into any pentagonal hole in five different orientations. With the regular red, yellow and blue struts there is only one way to insert a strut into a Zome ball hole. The blue- green struts are not really part of the Zome geometry (because they have the “wrong” length). They are necessary for building a few of the Archimedian solids, like the rhombicuboctahedron and the truncated cuboctahedron. For these exercises, we recommend that students who have not worked with the Zome system before restrict themselves to the blue, yellow and red struts. Students with some prior experience, or who seem to be very fast learners, can try building things (like a regular octahedron or a regular tetrahedron) with some green struts. -
Lesson Plans 1.1
Lesson Plans 1.1 © 2009 Zometool, Inc. Zometool is a registered trademark of Zometool Inc. • 1-888-966-3386 • www.zometool.com US Patents RE 33,785; 6,840,699 B2. Based on the 31-zone system, discovered by Steve Baer, Zomeworks Corp., USA www zometool ® com Zome System Table of Contents Builds Genius! Zome System in the Classroom Subjects Addressed by Zome System . .5 Organization of Plans . 5 Graphics . .5 Standards and Assessment . .6 Preparing for Class . .6 Discovery Learning with Zome System . .7 Cooperative vs Individual Learning . .7 Working with Diverse Student Groups . .7 Additional Resources . .8 Caring for your Zome System Kit . .8 Basic Concept Plans Geometric Shapes . .9 Geometry Is All Around Us . .11 2-D Polygons . .13 Animal Form . .15 Attention!…Angles . .17 Squares and Rectangles . .19 Try the Triangles . .21 Similar Triangles . .23 The Equilateral Triangle . .25 2-D and 3-D Shapes . .27 Shape and Number . .29 What Is Reflection Symmetry? . .33 Multiple Reflection Symmetries . .35 Rotational Symmetry . .39 What is Perimeter? . .41 Perimeter Puzzles . .43 What Is Area? . .45 Volume For Beginners . .47 Beginning Bubbles . .49 Rhombi . .53 What Are Quadrilaterals? . .55 Trying Tessellations . .57 Tilings with Quadrilaterals . .59 Triangle Tiles - I . .61 Translational Symmetries in Tilings . .63 Spinners . .65 Printing with Zome System . .67 © 2002 by Zometool, Inc. All rights reserved. 1 Table of Contents Zome System Builds Genius! Printing Cubes and Pyramids . .69 Picasso and Math . .73 Speed Lines! . .75 Squashing Shapes . .77 Cubes - I . .79 Cubes - II . .83 Cubes - III . .87 Cubes - IV . .89 Even and Odd Numbers . .91 Intermediate Concept Plans Descriptive Writing . -
Stay Curious! August, 2018 “The Good Thing About Science Is That It's True Whether Or Not You Believe in It.” Page Article ― Neil Degrasse Tyson No
Stay Curious! August, 2018 “The good thing about science is that it's true whether or not you believe in it.” Page Article ― Neil deGrasse Tyson no. Dear Reader, 1 Gastronomy– the science of food 1 Is it possible for a car to run for a hun- The August issue of the Delphic is an amalgamation of various dred years without fuel? topics related to science. From covering the science of food and cooking, to the future of computers that may come in the form 2 DNA Computing– is it the future of com- of DNA, we have tried to make this issue as diverse as possible- puters? and all this is an effort for you to become inquisitive and 2 Collaboration with the Pirate questioning individuals. As Carl Sagan said, ‘Somewhere, 3 Dark Matter: a book review something incredible is waiting to be known’, and you might be the person to know that incredible something. 4 Drones– are they only useful for spying on people? The Delphic has been and always will be a platform for young, curious minds to express themselves. This magazine is for those 4 The Mandela Effect who want to know, and those who want to tell. It is one of the 5 A fictional story about autism few places where it is possible for students to educate other people, even teachers. Every time that I compile an issue, I am 5 FAQs from a teacher’s desk surprised at the sheer amount of information that we do not see 6 Women in Science– a tribute to in our textbooks and classrooms.