Asteroid Mass Estimation with the Robust Adaptive Metropolis Algorithm L
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Oakley Police Department Incident Summary Report 07/29/18- 08/04/18
Oakley Police Department Incident Summary Report 07/29/18- 08/04/18 Call No. Time 7/29/2018 P182100001 00:00 UTL * 415L LOITERING SNOWY EGRET WY/CRANE CT, OAK P182100011 00:15 UTL * SCIRC SUSPICIOUS CIRCUMSTANCE40 Block YULA WY, OAK P182100012 00:16 UTL * 415FWK FIREWORKS 60 Block PRESCOTT CR, OAK P182100013 00:16 UTL * PROM PROM SHOOT 1000 Block WARHOL WY, OAK P182100014 00:18 UTL * 602N TRESPASS W/ VEHICLE5600 Block MAIN ST, OAK P182100017 00:22 UTL * 911UNK 911 HANGUP 5300 Block ELM LN, OAK P182100045 01:12 UTL * SSUBJ SUSPICIOUS SUBJECT 10 Block PRESCOTT CR, OAK P182100047 01:14 CON * 1734 CIVIL 600 Block GINGHAM WY, OAK P182100048 01:13 UTL * SVEH SUSPICIOUS VEHICLE 6000 Block TAZETTA DR, OAK P182100061 01:38 * * 1033A ALARM AUDIBLE FREEDOM HIGH SCHOOL, OAK P182100070 01:50 STC * 1702 PATROL REQUEST BEST WESTERN P182100074 01:53 CON * 1059 SECURITY CHECK 10 Block 11 P182100075 01:55 STC * 1744 SERVICE TO CITIZEN No House Number P182100078 02:01 UTL * 1059 SECURITY CHECK LUCKYS P182100080 02:05 STC * 1702 PATROL REQUEST FRANDORAS CR P182100091 02:29 STC * 1702 PATROL REQUEST RALEYS P182100093 02:45 STC * 1702 PATROL REQUEST OAKLEY PLAZA P182100098 02:55 UNF * 415 DISTURBING THE PEACE2100 Block EL LAGO DR, OAK P182100101 03:01 STC * 1702 PATROL REQUEST LAUREL BALL FIELDS P182100103 03:03 STC * 1702 PATROL REQUEST CROCKET PARK P182100108 03:22 UTL * 1732 SUSP CIRCUMSTANCES900 Block ROSEMARY LN, OAK P182100119 03:47 ARR OA180001606 11377 UNAUTHORIZED POSSESSIONNORCROSS LN P182100122 03:50 STC * 1059 SECURITY CHECK 3400 Block MAIN STREET P182100123 03:54 UTL * 1059 SECURITY CHECK O HARA PARK MIDDLE SCHOOL Oakley Police Department Incident Summary Report 07/29/18 - 08/04/18 Call No. -
ESO's VLT Sphere and DAMIT
ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away. -
A Study of the Work of Guy Le Fevre De La
A STUDY OF THE WORK OF GUY LE FEVRE DE LA BODERIE (1541-1598) by MAUREEN ANN CROMIE B.A., University of British Columbia, 1958 M.A., University of British Columbia, 1966 A THESIS SUMBITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of French We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April, 1971 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree tha permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of French The University of British Columbia Vancouver 8, Canada Date April 1971 ii ABSTRACT The aim of this thesis is to present an analysis of the work of a late French Renaissance poet and linguist, Guy Le Fevre de La Boderie. Considered as a Christian Kabbalist, he is placed in the con• text of the continuing Florentine Neo-Platonist syncretist tradition. The thematic content of his original works is studied, and the relationship of his translations to those works is established. La Boderie's use of symbolic imagery is shown to constitute a further indication of his adherence to the Neo-Platonist tradition. In conclusion, La Boderie is shown to have sought in the multiplicity of traditions cited by syncretizing Renaissance writers a proof of the unity of truth and the foundations for a universal harmony in his age of civil and religious discord. -
Surgical Repair of Root and Tooth Perforations JOHN D
Endodontic Topics 2005, 11, 152–178 Copyright r Blackwell Munksgaard All rights reserved ENDODONTIC TOPICS 2005 1601-1538 Surgical repair of root and tooth perforations JOHN D. REGAN, DAVID E. WITHERSPOON & DEBORAH M. FOYLE A root perforation is a mechanical or pathological communication formed between the supporting periodontal apparatus of the tooth and the root canal system. Three broad categories of etiological factors exist and these are procedural mishaps, resorption and caries. The diagnosis, management and repair of root perforations require skill and creative thinking. Unfortunately, much of what has been written on the subject of root perforation repair is unsubstantiated and empirical in nature and contributes little to evidence-based support for any specific repair procedure. However, perforation repair frequently provides a very attractive and frequently successful alternative to extraction of the involved tooth. In recent years, the procedure has become more predictable owing to the development of new materials, techniques and procedures. Introduction many perforations has been facilitated by the use of improved magnification and illumination provided by A root perforation is a mechanical or pathological the use of loupes or the surgical operating microscope communication formed between the supporting per- (SOM) (9, 10, 15–28). In practice, however, the iodontal apparatus of the tooth and the root canal indications for surgical correction of root perforations system (1). Perforations result in the destruction of the are being eroded from two directions: on the one hand dentine root wall or floor along with the investing by the improved non-surgical management of perfora- cementum. This communication compromises the tions and on the other by the use of implants. -
Sacred Places Europe: 108 Destinations
Reviews from Sacred Places Around the World “… the ruins, mountains, sanctuaries, lost cities, and pilgrimage routes held sacred around the world.” (Book Passage 1/2000) “For each site, Brad Olsen provides historical background, a description of the site and its special features, and directions for getting there.” (Theology Digest Summer, 2000) “(Readers) will thrill to the wonderful history and the vibrations of the world’s sacred healing places.” (East & West 2/2000) “Sites that emanate the energy of sacred spots.” (The Sunday Times 1/2000) “Sacred sites (to) the ruins, sanctuaries, mountains, lost cities, temples, and pilgrimage routes of ancient civilizations.” (San Francisco Chronicle 1/2000) “Many sacred places are now bustling tourist and pilgrimage desti- nations. But no crowd or souvenir shop can stand in the way of a traveler with great intentions and zero expectations.” (Spirituality & Health Summer, 2000) “Unleash your imagination by going on a mystical journey. Brad Olsen gives his take on some of the most amazing and unexplained spots on the globe — including the underwater ruins of Bimini, which seems to point the way to the Lost City of Atlantis. You can choose to take an armchair pilgrimage (the book is a fascinating read) or follow his tips on how to travel to these powerful sites yourself.” (Mode 7/2000) “Should you be inspired to make a pilgrimage of your own, you might want to pick up a copy of Brad Olsen’s guide to the world’s sacred places. Olsen’s marvelous drawings and mysterious maps enhance a package that is as bizarre as it is wonderfully acces- sible. -
Precise Astrometry and Diameters of Asteroids from Occultations – a Data-Set of Observations and Their Interpretation
MNRAS 000,1–22 (2020) Preprint 14 October 2020 Compiled using MNRAS LATEX style file v3.0 Precise astrometry and diameters of asteroids from occultations – a data-set of observations and their interpretation David Herald 1¢, David Gault2, Robert Anderson3, David Dunham4, Eric Frappa5, Tsutomu Hayamizu6, Steve Kerr7, Kazuhisa Miyashita8, John Moore9, Hristo Pavlov10, Steve Preston11, John Talbot12, Brad Timerson (deceased)13 1Trans Tasman Occultation Alliance, [email protected] 2Trans Tasman Occultation Alliance, [email protected] 3International Occultation Timing Association, [email protected] 4International Occultation Timing Association, [email protected] 5Euraster, [email protected] 6Japanese Occultation Information Network, [email protected] 7Trans Tasman Occultation Alliance, [email protected] 8Japanese Occultation Information Network, [email protected] 9International Occultation Timing Association, [email protected] 10International Occultation Timing Association – European Section, [email protected] 11International Occultation Timing Association, [email protected] 12Trans Tasman Occultation Alliance, [email protected] 13International Occultation Timing Association, deceased Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Occultations of stars by asteroids have been observed since 1961, increasing from a very small number to now over 500 annually. We have created and regularly maintain a growing data-set of more than 5,000 observed asteroidal occultations. The data-set includes: the raw observations; astrometry at the 1 mas level based on centre of mass or figure (not illumination); where possible the asteroid’s diameter to 5 km or better, and fits to shape models; the separation and diameters of asteroidal satellites; and double star discoveries with typical separations being in the tens of mas or less. -
Arxiv:2007.05011V2 [Astro-Ph.GA] 17 Aug 2020 Laboration Et Al
Draft version August 19, 2020 Typeset using LATEX twocolumn style in AASTeX63 Revised and new proper motions for confirmed and candidate Milky Way dwarf galaxies Alan W. McConnachie1 and Kim A. Venn2 1NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, B.C., Canada, V9E 2E7 2Physics & Astronomy Department, University of Victoria, 3800 Finnerty Rd, Victoria, B.C., Canada, V8P 5C2 ABSTRACT A new derivation of systemic proper motions of Milky Way satellites is presented, and applied to 59 confirmed or candidate dwarf galaxy satellites using Gaia Data Release 2. This constitutes all known Milky Way dwarf galaxies (and likely candidates) as of May 2020 except the Magellanic Clouds, the Canis Major and Hydra 1 stellar overdensities, and the tidally disrupting Bootes III and Sagittarius dwarf galaxies. We derive systemic proper motions for the first time for Indus 1, DES J0225+0304, Cetus 2, Pictor 2 and Leo T, but note that the latter three rely on photometry that is of poorer quality than for the rest of the sample. We cannot resolve a signal for Bootes 4, Cetus 3, Indus 2, Pegasus 3, or Virgo 1. Our method is inspired by the maximum likelihood approach of Pace & Li(2019) and examines simultaneously the spatial, color-magnitude, and proper motion distribution of sources. Systemic proper motions are derived without the need to identify confirmed radial velocity members, although the proper motions of these stars, where available, are incorporated into the analysis through a prior on the model. The associated uncertainties on the systemic proper motions are on average a factor of ∼ 1:4 smaller than existing literature values. -
IRTF Spectra for 17 Asteroids from the C and X Complexes: a Discussion of Continuum Slopes and Their Relationships to C Chondrites and Phyllosilicates ⇑ Daniel R
Icarus 212 (2011) 682–696 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus IRTF spectra for 17 asteroids from the C and X complexes: A discussion of continuum slopes and their relationships to C chondrites and phyllosilicates ⇑ Daniel R. Ostrowski a, Claud H.S. Lacy a,b, Katherine M. Gietzen a, Derek W.G. Sears a,c, a Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, United States b Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States c Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States article info abstract Article history: In order to gain further insight into their surface compositions and relationships with meteorites, we Received 23 April 2009 have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX Revised 20 January 2011 infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line Accepted 25 January 2011 databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV Available online 1 February 2011 slope, a 0.7 lm feature and a 3 lm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% Keywords: of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be charac- Asteroids, composition terized by the slopes of their continua. -
A Strategy for Exploring the Asteroid Belt with Ion Propulsion C
Geophysical Research Abstracts, Vol. 8, 05272, 2006 SRef-ID: 1607-7962/gra/EGU06-A-05272 © European Geosciences Union 2006 A strategy for exploring the Asteroid Belt with Ion propulsion C. T. Russell, and the Dawn Science Team Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA. (Email: [email protected]/Fax: 310-206-3051 The largest asteroids are survivors from the earliest days of the formation of the solar system and by and large have escaped the heavy bombardment period largely un- scathed. Moreover, these largest bodies should have remained closest to their points of origin. Thus a strategy of visiting the largest bodies in the main belt could tell us much about the original compositional gradient in the solar system and hence the tem- perature and pressure gradient that produced it. The Dawn mission explores the two most massive main belt asteroids 4 Vesta and 1 Ceres at 2.34 and 2.77 AU respectively. These bodies are very different. Vesta has an equatorial diameter of about 520 km and is covered with basaltic flows whereas Ceres is close to 1000 km in diameter and has a shape and density consistent with a rocky core covered by a thick ice (˜100 km) shell. The third most massive main belt asteroid, 2 Pallas, lies at the same distance as Ceres with the same size of Vesta but a much lower density. However, since it orbits at a high inclination it is quite inaccessible. The fourth most massive asteroid is 10 Hygiea at 3.12 AU. -
Development of the Psyche Mission for NASA's Discovery Program
Development of the Psyche Mission for NASA’s Discovery Program IEPC-2017-153 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology • Atlanta, Georgia • USA October 8 – 12, 2017 David Y. Oh*, Steve Collins†, Dan Goebel‡, Bill Hart§, Gregory Lantoine**, Steve Snyder††, and Greg Whiffen‡‡ California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, 91109, USA Linda Elkins-Tanton§§ Arizona State University, Tempe, AZ, 85287 and Peter Lord,*** Zack Pirkl††† and Lee Rotlisburger‡‡‡ Space Systems/Loral, Palo Alto, CA, 94303, USA Abstract: In January 2017, the proposed mission Psyche: Journey to a Metal World, led by principal investigator Dr. Lindy Elkins-Tanton of Arizona State University (ASU), was selected for implementation as part of NASA’s Discovery Program. The planned Psyche mission is enabled by electric propulsion and would use SPT-140 Hall thrusters to rendezvous and orbit the largest metal asteroid in the solar system. The spacecraft requires no chemical propulsion and, when launched in 2022, would be the first mission to use Hall thrusters beyond lunar orbit. This paper describes the ongoing development of the Psyche mission concept and describes how Psyche would use commercially provided solar power and electric propulsion to meet its mission’s science requirements. It describes the mission’s scientific objectives and low thrust mission trajectory, the spacecraft architecture, including its power and propulsion systems, and the all-electric attitude control strategy that allows Psyche to fly without the use of chemical propulsion. Together, these elements provide a robust baseline design that maximizes heritage, leverages the strongest experience bases within the partner organizations, and minimizes risk across the design; providing a firm basis for implementation of the Psyche mission. -
Stable Orbits in the Small-Body Problem an Application to the Psyche Mission
Stable Orbits in the Small-Body Problem An Application to the Psyche Mission Stijn Mast Technische Universiteit Delft Stable Orbits in the Small-Body Problem Front cover: Artist illustration of the Psyche mission spacecraft orbiting asteroid (16) Psyche. Image courtesy NASA/JPL-Caltech. ii Stable Orbits in the Small-Body Problem An Application to the Psyche Mission by Stijn Mast to obtain the degree of Master of Science at Delft University of Technology, to be defended publicly on Friday August 31, 2018 at 10:00 AM. Student number: 4279425 Project duration: October 2, 2017 – August 31, 2018 Thesis committee: Ir. R. Noomen, TU Delft Dr. D.M. Stam, TU Delft Ir. J.A. Melkert, TU Delft Advisers: Ir. R. Noomen, TU Delft Dr. J.A. Sims, JPL Dr. S. Eggl, JPL Dr. G. Lantoine, JPL An electronic version of this thesis is available at http://repository.tudelft.nl/. Stable Orbits in the Small-Body Problem This page is intentionally left blank. iv Stable Orbits in the Small-Body Problem Preface Before you lies the thesis Stable Orbits in the Small-Body Problem: An Application to the Psyche Mission. This thesis has been written to obtain the degree of Master of Science in Aerospace Engineering at Delft University of Technology. Its contents are intended for anyone with an interest in the field of spacecraft trajectory dynamics and stability in the vicinity of small celestial bodies. The methods presented in this thesis have been applied extensively to the Psyche mission. Conse- quently, the work can be of interest to anyone involved in the Psyche mission. -
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta.