Arabidopsis Thaliana Mutants Atpd and Petc

Total Page:16

File Type:pdf, Size:1020Kb

Arabidopsis Thaliana Mutants Atpd and Petc Molecular and physiological characterisation of the two Arabidopsis thaliana mutants atpd and petc I n a u g u r a l – D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Daniela Sabine Maiwald aus Hilden Kopier Center Süd, Düsseldorf 2003 Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf. Refernt: Prof. Dr. P. Westhoff 1. Koreferent: Prof. Dr. W. Martin 2. Koreferent: Prof. Dr. F. Salamini Tag der mündlichen Prüfung: 02.07.2003 CONTENTS I CONTENTS ABBREVIATIONS............................................................................................................IV 1 INTRODUCTION ....................................................................................................... 1 1.1 The chloroplast and photosynthesis........................................................................... 1 1.2 The photosynthetic electron transport chain.............................................................. 2 1.3 The cytochrome b6/f complex (cyt b6/f)..................................................................... 4 1.4 Mutational analysis of the cyt b6/f complex .............................................................. 5 1.5 The chloroplast ATP synthase................................................................................... 8 1.6 The d-subunit of the ATP synthase ......................................................................... 11 1.7 Mutational analysis of the ATP synthase ................................................................ 12 1.8 Chlorophyll fluorescence, photochemical and non-photochemical quenching and the role of the xanthophyll cycle....................................................................... 14 1.9 Aim of the thesis...................................................................................................... 16 2 MATERIAL & METHODS ..................................................................................... 17 2.1 Chemicals and enzymes........................................................................................... 17 2.2 Strains ...................................................................................................................... 17 2.3 Media and cultivation .............................................................................................. 17 2.3.1 E. coli: Luria Broth (LB) Medium .................................................................. 17 2.3.2 A. tumefaciens: YEB medium ......................................................................... 18 2.3.3 A. thaliana axenic culture: Murashige & Skoog (MS) medium...................... 18 2.4 Plant propagation..................................................................................................... 18 2.4.1 On soil ............................................................................................................. 18 2.4.2 Sterile culture................................................................................................... 18 2.5 Oligonucleotide sequences ...................................................................................... 19 2.6 Gel electrophoresis .................................................................................................. 19 2.6.1 Agarose gel electrophoresis............................................................................. 19 2.6.2 Polyacrylamide gel electrophoresis................................................................. 20 2.7 Enzymatic reactions................................................................................................. 20 2.7.1 PCR.................................................................................................................. 20 2.7.2 Ligation of DNA fragments............................................................................. 20 2.7.3 Restriction analysis.......................................................................................... 20 2.7.4 Radioactive labelling of DNA ......................................................................... 20 CONTENTS II 2.7.5 cDNA single strand synthesis.......................................................................... 21 2.8 Sequence analyses ................................................................................................... 21 2.9 Plasmids................................................................................................................... 21 2.9.1 pGEM-Teasy ................................................................................................... 21 2.9.2 pPVC702 ......................................................................................................... 21 2.9.3 pPVC702-AtpD................................................................................................ 21 2.10 Nucleic acid preparation.......................................................................................... 22 2.10.1 DNA preparation ............................................................................................. 22 2.10.2 RNA preparation ............................................................................................. 22 2.11 Northern analysis..................................................................................................... 22 2.12 Transformation of E. coli......................................................................................... 23 2.13 Complementation analysis of Arabidopsis plants via A. tumefaciens ....................... transformation.......................................................................................................... 23 2.13.1 Transformation of Arabidopsis using A. tumefaciens ..................................... 23 2.13.2 Selection of transformed plants ....................................................................... 23 2.14 Thylakoid preparation from Arabidopsis leaves ..................................................... 23 2.14.1 For 2-D gel electrophoresis and Western analysis .......................................... 23 2.14.2 For electron transport measurements............................................................... 24 2.15 Western blot analysis............................................................................................... 24 2.16 2-D gel electrophoresis............................................................................................ 24 2.17 Pigment analysis...................................................................................................... 25 2.18 Chlorophyll fluorescence measurements and redox state of P700.......................... 25 2.19 Membrane potential measurements......................................................................... 26 2.20 Electron transport measurements ............................................................................ 26 2.21 Expression profiling ................................................................................................ 27 2.21.1 Probe synthesis ................................................................................................ 27 2.21.2 Hybridisation procedure .................................................................................. 27 2.21.3 Data analysis.................................................................................................... 28 3 RESULTS................................................................................................................... 29 3.1 Characterisation of the petc-2 mutant...................................................................... 29 3.1.1 Identification of the Rieske protein mutant lines............................................. 29 3.1.2 Phenotype of the petc mutant lines.................................................................. 30 3.1.3 Expression analysis of the PetC gene.............................................................. 31 3.1.4 The pigment composition in the petc-2 mutants ............................................. 32 3.1.5 The composition of the photosynthetic apparatus in the petc-2 plants............ 33 CONTENTS III 3.1.6 Photosystems are functional in petc-2, but there is no linear electron ............... transport........................................................................................................... 35 3.2 Characterisation of the atpd-1 mutant ..................................................................... 39 3.2.1 Phenotype of the atpd-1 mutant line ............................................................... 39 3.2.2 Expression analysis of the AtpD gene and complementation analysis of the atpd-1 mutation ............................................................................................... 40 3.2.3 ATP synthase activity in atpd-1 mutant plants................................................ 41 3.2.4 Leaf pigment composition in the atpd-1 mutants............................................ 42 3.2.5 The composition of the photosynthetic apparatus in the atpd-1 plants ........... 43 3.2.6 Photosystems are functional in atpd-1 mutants, but linear electron transport .... is impaired ....................................................................................................... 45 3.3 mRNA expression analysis for nucleus-encoded chloroplast proteins in the mutants petc-2 and atpd-1 ....................................................................................................
Recommended publications
  • Molecular Regulation of Plant Monoterpene Biosynthesis in Relation to Fragrance
    Molecular Regulation of Plant Monoterpene Biosynthesis In Relation To Fragrance Mazen K. El Tamer Promotor: Prof. Dr. A.G.J Voragen, hoogleraar in de Levensmiddelenchemie, Wageningen Universiteit Co-promotoren: Dr. ir. H.J Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Dr. ir. J.P Roozen, departement Agrotechnologie en Voedingswetenschappen, Wageningen Universiteit Promotiecommissie: Dr. M.C.R Franssen, Wageningen Universiteit Prof. Dr. J.H.A Kroeze, Wageningen Universiteit Prof. Dr. A.J van Tunen, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam. Prof. Dr. R.G.F Visser, Wageningen Universiteit Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op woensdag 27 november 2002 des namiddags te vier uur in de Aula Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift Wageningen Universiteit ISBN 90-5808-752-2 Cover and Invitation Design: Zeina K. El Tamer This thesis is dedicated to my Family & Friends Contents Abbreviations Chapter 1 General introduction and scope of the thesis 1 Chapter 2 Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation 21 and functional analysis of four monoterpene synthases Chapter 3 Domain swapping of Citrus limon monoterpene synthases: Impact 57 on enzymatic activity and
    [Show full text]
  • Hormonal Regulation During Initial Berry Development in Grapevine
    1 Année 2013 Thèse N° 2064 THESE pour le DOCTORAT DE L’UNIVERSITE BORDEAUX 2 Ecole Doctorale des Sciences de la Vie et de la Santé de l’Université Bordeaux-Segalen Spécialité: Biologie Végétale Hormonal regulation during initial berry development in grapevine par María Francisca Godoy Santin Née le 20 Février 1985 à Santiago, Chili Soutenue publiquement le 15 Novembre, à Pontificia Universidad Católica de Chile, Santiago, Chili Membres du Jury : Pr. Alexis KALERGIS, Universidad Católica de Chile Pr. Michael HANDFORD, University of Chile Rapporteur Pr. Claudia STANGE, University of Chile Rapportrice Pr. Loreto HOLUIGUE, Universidad Católica de Chile Examinatrice Pr. Serge DELROT, Université Victor Ségalen Bordeaux2 Examinateur Pr. Patricio ARCE-JONHSON, Universidad Católica de Chile Co-Directeur de thèse Dr. Virginie LAUVERGEAT, Université Bordeaux1 Co-Directrice de thèse 2 Acknowledgements I would like to thank my advisors Dr Patricio Arce and Dr Virginie Lauvergeat for their guidance, patience and help at every step of the way. I also want to specially acknowledge to all my labmates for their ideas, support, laughs and much more: Jenn, Xime, Amparo, Mindy, Anita, Felipe, Tomás, Susan, Mónica, Jessy, Claudia, Dani H, and everyone else who made the working place the best one ever. Special thanks to Consuelo, who guided me from the first day, and to Anibal, who has been an amazing help during these lasts years. I want to thank Nathalie Kühn for all her ideas, discussion, company and help during these experiments, where she played a fundamental part. Also, I am very grateful to my other lab across the sea, in INRA, for receiving me there: Mariam, María José, Julien, Eric, Pierre, Le, Huan, Messa, David, Fatma and all the staff for all their help.
    [Show full text]
  • Light-Induced Psba Translation in Plants Is Triggered by Photosystem II Damage Via an Assembly-Linked Autoregulatory Circuit
    Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit Prakitchai Chotewutmontria and Alice Barkana,1 aInstitute of Molecular Biology, University of Oregon, Eugene, OR 97403 Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 22, 2020 (received for review April 26, 2020) The D1 reaction center protein of photosystem II (PSII) is subject to mRNA to provide D1 for PSII repair remain obscure (13, 14). light-induced damage. Degradation of damaged D1 and its re- The consensus view in recent years has been that psbA transla- placement by nascent D1 are at the heart of a PSII repair cycle, tion for PSII repair is regulated at the elongation step (7, 15–17), without which photosynthesis is inhibited. In mature plant chloro- a view that arises primarily from experiments with the green alga plasts, light stimulates the recruitment of ribosomes specifically to Chlamydomonas reinhardtii (Chlamydomonas) (18). However, we psbA mRNA to provide nascent D1 for PSII repair and also triggers showed recently that regulated translation initiation makes a a global increase in translation elongation rate. The light-induced large contribution in plants (19). These experiments used ribo- signals that initiate these responses are unclear. We present action some profiling (ribo-seq) to monitor ribosome occupancy on spectrum and genetic data indicating that the light-induced re- cruitment of ribosomes to psbA mRNA is triggered by D1 photo- chloroplast open reading frames (ORFs) in maize and Arabi- damage, whereas the global stimulation of translation elongation dopsis upon shifting seedlings harboring mature chloroplasts is triggered by photosynthetic electron transport.
    [Show full text]
  • Evaluation of Drought Resistance and Transcriptome Analysis For
    www.nature.com/scientificreports OPEN Evaluation of drought resistance and transcriptome analysis for the identifcation of drought‑responsive genes in Iris germanica Jingwei Zhang1, Dazhuang Huang1*, Xiaojie Zhao1 & Man Zhang2 Iris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profle changes exhibited by high‑ drought‑resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought‑resistance performance, the 10 cultivars were ordered as follows: ‘Little Dream’ > ‘Music Box’ > ‘X’Brassie’ > ‘Blood Stone’ > ‘Cherry Garden’ > ‘Memory of Harvest’ > ‘Immortality’ > ‘White and Gold’ > ‘Tantara’ > ‘Clarence’. Using the high‑drought‑resistant cultivar ‘Little Dream’ as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)‑6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss‑Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG‑6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2.
    [Show full text]
  • PURIFICATION of the NATIVE ENZYME and CLONING .AND CHARACTERIZATION of a Cdna for (+ )-6-CADINENE SYNTHASE from BACTERIA-INOCULATED COTTON FOLIAR TISSUE
    PURIFICATION OF THE NATIVE ENZYME AND CLONING .AND CHARACTERIZATION OF A cDNA FOR (+ )-6-CADINENE SYNTHASE FROM BACTERIA-INOCULATED COTTON FOLIAR TISSUE By EDWARD M. DAVIS Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1987 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May, 1998 PURIFICATION OF THENATIVE ENZYME AND . CLONING AND CHARACTERIZATIQNOFA cDNA FOR (+ )-B-CADINENE SYNTHASE FROM BACTERIA-INOCULATED COTTON FOLIAR TISSUE Thesis Approved: ~··. L) .. ·g pJ ~fthe Graduate College . · · ii ACKNOWLEDGMENTS I would like to express my appreciation to the faculty, staff and graduate students of the Department of Biochemistry and Molecular Biology who have given both time and energy to assist in my scientific training and development. I would like to thank Margaret and Marlee for giving me the opportunity to participate on a project that includes protein and molecular biological methods. I wish to acknowledge the members of my committee for their time, guidance, and support. I would like to acknowledge Phillips 66 Corporation for their generous donation of equipment, the McAlester Scottish Rite Foundation and the OSU Foundation for financial support, and the EPSCOR program,. the NSF, and the USDA for providing the grants which made this work possible. A special thanks to Drs. Blair, Leach, Melcher, Sensharma and Mitchell for helping to maintain a nearly steady salary when the grant money was not available and to Drs. Cushman and Melcher and Janet Rogers fortechnical support. I would like to thank Drs. Gordon Davis and Steve Hartson for their encouragement and scientific advice, Dr.
    [Show full text]
  • Greencut Protein CPLD49 of Chlamydomonas Reinhardtii Associates with Thylakoid Membranes and Is Required for Cytochrome B6f Complex Accumulation
    The Plant Journal (2018) 94, 1023–1037 doi: 10.1111/tpj.13915 GreenCut protein CPLD49 of Chlamydomonas reinhardtii associates with thylakoid membranes and is required for cytochrome b6f complex accumulation Tyler M. Wittkopp1,2,† , Shai Saroussi2,† , Wenqiang Yang2 , Xenie Johnson3 , Rick G. Kim1,2 , Mark L. Heinnickel2, James J. Russell1, Witchukorn Phuthong4 , Rachel M. Dent5,6 , Corey D. Broeckling7 , Graham Peers8 , Martin Lohr9 , Francis-Andre Wollman10 , Krishna K. Niyogi5,6 and Arthur R. Grossman2,* 1Department of Biology, Stanford University, Stanford, CA 94305, USA, 2Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA, 3Laboratoire de Bioenerg etique et Biotechnologie des Bacteries et Microalgues, CEA Cadarache, Saint Paul lez Durance, France, 4Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA, 5Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720- 3102, USA, 6Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, 7Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA, 8Department of Biology, Colorado State University, Fort Collins, CO 80523, USA, 9Institut fur€ Molekulare Physiologie – Pflanzenbiochemie, Johannes Gutenberg-Universitat,€ 55099 Mainz, Germany, and 10Institut de Biologie Physico-Chimique, CNRS-UPMC, Paris, France Received 27 October 2017; revised 23 February 2018; accepted 6 March 2018; published online 30 March 2018. *For correspondence (e-mail [email protected]). †These authors contributed equally to this work. SUMMARY The GreenCut encompasses a suite of nucleus-encoded proteins with orthologs among green lineage organ- isms (plants, green algae), but that are absent or poorly conserved in non-photosynthetic/heterotrophic organisms.
    [Show full text]
  • Structure of the Cytochrome B6 F Complex of Oxygenic Photosynthesis
    Structure of the Cytochrome b6 f Complex of Oxygenic Photosynthesis The photosynthetic unit of oxygenic photosynthesis data of 3.0 Å from the complex crystal with another is organized as two large multimolecular membrane analogue inhibitor, TDS, was collected at the SBC complexes, photosystem II (PSII) that extracts low- beamline 19ID, APS. The initial model was developed energy electrons from water and photosystem I (PSI) into a 3.4 Å map of the native complex. Final that raises the energy level of such electrons using refinement was carried out with a dataset from a co- light energy to produce a strong reductant, NADPH. crystal with TDS (Figs. 2, 3). The two photosystems operate in a series linked by a Viewed along the membrane normal, the b6f × third multiprotein complex called the cytochrome b6f complex is 90 Å 55 Å within the membrane side, × complex (Fig.1). The cytochrome b6f complex is a and 120 Å 75 Å on the lumen (p)side (Fig. 2). A membrane-spanning protein complex embedded in prominent feature of this structure is an extended the thylakoid membrane of photosynthetic organisms. quinone exchange cavity between the monomers, The molecular weight of the complex is 220,000 as a which exchanges lipophilic plastoquinone in the dimer with 26 transmembrane helices. The b6f complex bilayer center, and also mediates the electron and controls the electron transfer between the plastoquinol proton transfer across the complex. The heme-binding reduced by PSII and the electron carrier protein 4 transmembrane helices core of the b6f complex plastocyanin that associate with PSI.
    [Show full text]
  • A Defined Protein–Detergent–Lipid Complex for Crystallization Of
    A defined protein–detergent–lipid complex for crystallization of integral membrane proteins: The cytochrome b6f complex of oxygenic photosynthesis Huamin Zhang*, Genji Kurisu†, Janet L. Smith, and William A. Cramer* Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907-2054 Communicated by Michael G. Rossmann, Purdue University, West Lafayette, IN, March 12, 2003 (received for review December 18, 2002) The paucity of integral membrane protein structures creates a resulting lability of the IMP (12), crystallization may be frus- major bioinformatics gap, whose origin is the difficulty of crystal- trated. This ‘‘detergent problem’’ is represented in Fig. 1 a and lizing these detergent-solubilized proteins. The problem is partic- b by the ordered arrangement of the transmembrane helices of ularly formidable for hetero-oligomeric integral membrane pro- an oligomeric IMP such as the cyt b6f complex in a lipid bilayer teins, where crystallization is impeded by the heterogeneity and membrane (Fig. 1a), compared with their disordered arrange- instability of the protein subunits and the small lateral pressure ment in a detergent micelle, which is depicted by a splayed imposed by the detergent micelle envelope that surrounds the arrangement of the transmembrane ␣-helices (Fig. 1b). The hydrophobic domain. In studies of the hetero (eight subunit)- spatial- and time-dependent disorder of the detergent micelle (2, dimeric 220,000 molecular weight cytochrome b6f complex, de- 14), described by the heterogeneity of the micelle shown in Fig. rived from the thermophilic cyanobacterium, Mastigocladus lami- 1b, is also an impediment to crystallization. From crystallization nosus, crystals of the complex in an intact state could not be and diffraction studies of a hetero-oligomeric integral mem- obtained from highly purified delipidated complex despite exhaus- brane protein, discussed below, it is proposed that addition of a tive screening.
    [Show full text]
  • Electrophoresis
    ELECTROPHORESIS Supporting Information for Electrophoresis DOI 10.1002/elps.200406079 Michalis Aivaliotis, Carsten Corvey, Irene Tsirogianni, Michael Karas and Georgios Tsiotis Membrane proteome analysis of the green-sulfur bacterium Chlorobium tepidum ã 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Electrophoresis 2004, 25, 0001±0010 1 6 Addendum Table 1. List of identified proteins separated in 2-D gel with Triton X-100 No. Protein definition Accession Predicted Peptides Peptide TM GRAVYSignalP Aro- Predicted b) No./gene Mr/pI matched coverage a-heli- matic localization (%) cesa) anchor Transport and binding proteins 1 ArsA ATPase family protein Q8KDR5/CT0980 44541/5.0 17 48 1 20.117 ± ± Inner membrane 2 Outer membrane efflux Q8KED1/CT0758 52716/8.9 8 16 3 20.163 ± ± Outer membrane protein, putative 3 ABC transporter, periplasmic Q8KDW4/CT0930 33207/8.9 9 26 3 20.388 YES 1±25 ± Inner membrane substrate-binding protein Energy metabolism 4 ATP synthase F1, a-subunit Q8KAW8/ATPA 56869/6.3 31 50 2 20.051 ± ± Inner membrane 5 ATP synthase, b-chain Q8KAC9/ATPD 50125/5.0 37 77 1 20.130 ± ± Inner membrane 6 ATP synthase F0, B subunit Q8KGE9/ATPF 19437/7.7 8 33 1 20.225 YES 1±39 ± Inner membrane 7 Bacteriochlorophyl A protein Q46393/FMOA 40383/7.1 34 78 ± 20.288 ± ± Inner membrane 8 Chlorosome envelope O68991/GSMH 21779/4.9 7 44 2 20.125 ± ± Chlorosome protein H 9 Chlorosome envelope O68988/GSMI 25911/7.6 11 60 2 0.082 ± ± Chlorosome protein I 10 Chlorosome envelope Q8KEN5/CSMX 23970/5.7 9 40 ± 20.155 ± ± Chlorosome protein X 11 Cytochrome
    [Show full text]
  • Transcriptomic Analysis of Resistant and Susceptible Responses in a New
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.02.438176; this version posted April 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Transcriptomic analysis of resistant and susceptible responses in a new model root-knot 2 nematode infection system using Solanum torvum and Meloidogyne arenaria 3 4 Kazuki Sato1, Taketo Uehara2, Julia Holbein3, Yuko Sasaki-Sekimoto4, Pamela Gan1, Takahiro 5 Bino5, Katsushi Yamaguchi5, Yasunori Ichihashi6, Noriko Maki1, Shuji Shigenobu5, Hiroyuki 6 Ohta4, Rochus B. Franke7, Shahid Siddique3, 8, Florian M. W. Grundler3, Takamasa Suzuki9, 7 Yasu hiro Kad ota 1, *, Ken Shirasu1, 10, * 8 9 1 RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan 10 2 Central Region Agricultural Research Center, National Agriculture and Food Research 11 Organization (NARO), Tsukuba, Japan 12 3 INRES – Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, 13 Germany 14 4 School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan 15 5 NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan 16 6 RIKEN BioResource Research Center (BRC), Tsukuba, Japan 17 7 Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, 18 Germany 19 8 Department of Entomology and Nematology, University of California, Davis,
    [Show full text]
  • Chloroflexus Aurantiacus
    Tang et al. BMC Genomics 2011, 12:334 http://www.biomedcentral.com/1471-2164/12/334 RESEARCHARTICLE Open Access Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus Kuo-Hsiang Tang1, Kerrie Barry2, Olga Chertkov3, Eileen Dalin2, Cliff S Han3, Loren J Hauser4, Barbara M Honchak1, Lauren E Karbach1,7, Miriam L Land4, Alla Lapidus5, Frank W Larimer4, Natalia Mikhailova5, Samuel Pitluck2, Beverly K Pierson6 and Robert E Blankenship1* Abstract Background: Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods: The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results: Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/ anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl.
    [Show full text]
  • S1 Appendix Supplemental Reference
    S1 Appendix Supplemental reference accompanying Table S4 Adhikari, N.D., Froehlich, J.E., Strand, D.D., Buck, S.M., Kramer, D.M. and Larkin, R.M. (2011) GUN4-porphyrin complexes bind the chlH/GUN5 subunit of Mg-chelatase and promote chlorophyll biosynthesis in Arabidopsis. Plant Cell, 23, 1449–1467. Albee, A.J., Kwan, A.L., Lin, H., Granas, D., Stormo, G.D. and Dutcher, S.K. (2013) Identification of cilia genes that affect cell-cycle progression using whole-genome transcriptome analysis in chlamydomonas reinhardtti. G3 Genes, Genomes, Genet., 3, 979–991. Auchincloss, A.H., Zerges, W., Perron, K., Girard-Bascou, J. and Rochaix, J.D. (2002) Characterization of Tbc2, a nucleus-encoded factor specifically required for translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii. J. Cell Biol., 157, 953–962. Barneche, F., Winter, V., Crèvecœur, M. and Rochaix, J.D. (2006) ATAB2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins. EMBO J., 25, 5907–5918. Bellafiore, S., Barneche, F., Peltler, G. and Rochalx, J.D. (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature, 433, 892–895. Blume, C., Behrens, C., Eubel, H., Braun, H.P. and Peterhansel, C. (2013) A possible role for the chloroplast pyruvate dehydrogenase complex in plant glycolate and glyoxylate metabolism. Phytochemistry, 95, 168–176. Bohne, A.V., Schwarz, C., Schottkowski, M., Lidschreiber, M., Piotrowski, M., Zerges, W. and Nickelsen, J. (2013) Reciprocal Regulation of Protein Synthesis and Carbon Metabolism for Thylakoid Membrane Biogenesis. PLoS Biol., 11. Boulouis, A., Raynaud, C., Bujaldon, S., Aznar, A., Wollman, F.A.
    [Show full text]