Ncap): Past, Present and Future
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Accidental Injuries Caused by Automotive Frontal Collision
ORIGINAL ARTICLE Accidental Injuries Caused by Automotive Frontal Collision Karen Viviana Pérez Lujána , Rita de Cassia Silvaa , Alessandro Borges de Souza Oliveiraa , Diego Antonio Legarda Cordobab , Palloma Vieira Muterllea , José Alexander Araújoa , Jorge Luiz de Almeida Ferreiraa , Cosme Roberto Moreira da Silvaa* a Universidade de Brasília, Departamento de Engenharia Mecânica, Brasília, Brasil. E-mails: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] b Corporación Universitaria Unicomfacauca, Popayán, Cauca, Colômbia. E-mail: [email protected] *Corresponding author https://doi.org/10.1590/1679-78256256 ABSTRACT This study aimed to use a simulated vehicle to asses quantitatively the head and neck injuries of the occupants, in a frontal car crash, when the driver has only one hand on the steering wheel, such as while using a cell phone when driving. First, we conducted a survey of NHTSA reports on real laboratory tests of frontal collisions involving sedans. The effects of these collisions on the neck of a Hybrid III 50th percentile male crash test dummy were measured in terms of average head acceleration and force along the X, Z, and Y-axes. These acceleration, force and torque values obtained from the NHTSA database were used to validate the simulated model. The results obtained were compared with case E, the standard dummy position used in frontal collision tests. The results obtained in the simulation of the four cases of driving with only one hand demonstrate a probability of more than 67% that the driver will sustain AIS+2 injuries during a frontal crash. -
Occupant Dynamics in Rollover Crashes: Influence of Roof
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Annals of Biomedical Engineering, Vol. 35, No. 11, November 2007 (Ó 2007) pp. 1973–1988 DOI: 10.1007/s10439-007-9355-1 Occupant Dynamics in Rollover Crashes: Influence of Roof Deformation and Seat Belt Performance on Probable Spinal Column Injury 1 2 3 4 MARTHA W. BIDEZ, JOHN E. COCHRAN JR., DOTTIE KING, and DONALD S. BURKE III 1Department of Biomedical Engineering, University of Alabama at Birmingham, 2100 3rd Avenue North, Suite 410, Birmingham, AL 35203, USA; 2Department of Aerospace Engineering, Auburn University, Auburn, AL, USA; 3The King Consulting Group, Inc., Birmingham, AL, USA; and 4Bidez & Associates, Birmingham, AL, USA (Received 20 November 2006; accepted 6 July 2007; published online 20 July 2007) Abstract—Motor vehicle crashes are the leading cause of INTRODUCTION death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. Motor vehicle crashes are the leading cause of death At the request and under the sponsorship of Ford Motor in the United States for persons of every age from 3 Company, Autoliv conducted a series of dynamic rollover through 33.18 Rollover crashes, in particular, have a tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to higher fatality rate than any other crash mode. Of the the public and were analyzed in this study to investigate the 6,159,287 police reported crashes in 2005 in the United magnitude of and the temporal relationship between roof States, only 4.1% involved a rollover. -
Increasing Seat Belt Use Among 8- to 15-Year-Olds Volume II Appendices This Publication Is Distributed by the U.S
Increasing Seat Belt Use Among 8- to 15-Year-Olds Volume II Appendices This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 810 966 4. Title and Subtitle 5. Report Date May 2008 Increasing Seat Belt Use Among 8- to 15-Year-Olds: 6. Performing Organization Code Volume II: Appendices 7. Authors 8. Performing Organization Report No. Michelle Kuhn and Jed Lam 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Aeffect, Inc. 520 Lake Cook Road, Suite 100 11. Contract or Grant No. Deerfield, IL 60015 DTNH22-03-C-05121 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Office of Behavioral Safety Research Summary Research Report National Highway Traffic Safety Administration September, 2003-December, 2006 1200 New Jersey Avenue SE. 14. Sponsoring Agency Code Washington, DC 20590 15. Supplementary Notes 16. Abstract The broad aim of this research project was to determine the nature and causes of non-use of seat belts among 8- to 15- year-olds, and to recommend interventions and strategic approaches to increase usage among this age group. -
Vehicle Selection, Specification, Testing and Retesting
VEHICLE SELECTION, SPECIFICATION, TESTING AND RETESTING Version 1.0 November 2019 Preface Where text is contained within square brackets this denotes that the procedure being discussed is currently being trialled in ASEAN NCAP. Its incorporation in the Test Protocol will be reviewed at a later date. During the test preparation, vehicle manufacturers are encouraged to liaise with the laboratory and to check that they are satisfied with the way cars are set up for testing. Where a manufacturer feels that a particular item should be altered, they should ask the laboratory staff to make any necessary changes. Manufacturers are forbidden from making changes to any parameter that will influence the test, such as dummy positioning, vehicle setting, laboratory environment etc. It is the responsibility of the test laboratory to ensure that any requested changes satisfy the requirements of ASEAN NCAP. Where a disagreement exists between the laboratory and manufacturer, the ASEAN NCAP secretariat should be informed immediately to pass final judgement. Where the laboratory staff suspect that a manufacturer has interfered with any of the setup, the manufacturer's representatives should be warned that they are not allowed to do so themselves. They should also be informed that if another incident occurs, they will be asked to leave the test site. Where there is a recurrence of the problem, the manufacturer’s representatives will be told to leave the test site and the Secretariat should be immediately informed. Any such incident may be reported by the Secretariat to the manufacturer and the persons concerned may not be allowed to attend further ASEAN NCAP tests. -
The Thor-Advanced Frontal Crash Test Dummy
THOR ADVANCED TEST DUMMY - BIOFIDELITY AND INJURY ASSESSMENT D. Beach R. White, Jr. T. Shams N. Rangarajan GESAC Inc., Boonsboro, MD M. Haffner National Highway Traffic Safety Administration (NHTSA), D.O.T., Washington, DC ABSTRACT This paper will discuss the advances in biofidelity and injury assessment provided by the THOR Frontal Crash Test Dummy, particularly in regard to use by the aircraft safety industry. Following a brief background on the THOR development project, injury data from the Kegworth crash in 1989 will be presented to exemplify the specific types and severity of injuries which may occur in a commercial airline crash. Based on this injury data, five specific regions of the dummy (face, neck, lower abdomen, pelvis - femur, and lower extremities) will be discussed in detail. The biomechanical background, mechanical design and instrumentation will be discussed for each region of the dummy. Additionally, a series of THOR impact test data will be presented to show the biofidelic response of the lower abdomen and femur - pelvis - knee assemblies to impact forces. INTRODUCTION For several years the National Highway Traffic Safety Administration (NHTSA) has actively supported the development of an advanced frontal crash test dummy that incorporates improved biofidelic features and significantly expanded instrumentation. This development program, undertaken by GESAC Inc approximately four years ago, has resulted in the design and development of a test device for whole-body trauma assessment in a variety of occupant restraint environments. Figure #1 shows a picture of the new advanced frontal crash test dummy which has been named THOR (Test Device for Human Occupant Restraint). -
Safety Ratings 2018 Safety Ratings
s Safety Ratings 2018 Safety Ratings CONTENTS 1 Overview _________________________________________________________________ 3 2 What are safety ratings? _____________________________________________________ 4 3 Who are they for? __________________________________________________________ 5 4 Why use safety ratings? _____________________________________________________ 5 4.1 Ratings as interventions ________________________________________________________ 6 4.2 Ratings as monitoring tools ______________________________________________________ 6 4.3 Ratings as intermediate outcome targets ___________________________________________ 7 5 Safety ratings in use ________________________________________________________ 8 5.1 Vehicle safety ratings __________________________________________________________ 8 5.1.1 Predictive vehicle safety ratings ___________________________________________________________ 8 5.1.2 Retrospective vehicle safety ratings ______________________________________________________ 16 5.2 Road network safety ratings ____________________________________________________ 19 5.2.1 Predictive safety rating protocols – Road Protection Scores __________________________________ 20 5.2.2 Retrospective safety rating protocols – Risk Mapping ________________________________________ 21 5.2.3 International Road Assessment Programme (iRAP) __________________________________________ 21 5.2.4 European Road Assessment Programme (EuroRAP) _________________________________________ 24 5.2.5 Examples of other national road assessment programmes -
Development of Crash Test Dummies Related
EVALUATION OF THE HYBRID III 5TH from certification, OOP and sled testing. The data FEMALE MODIFIED CHEST JACKET & was analyzed using standard hypothesis test methods SPINE BOX (student t-test) to accept or refute the hypothesis that the jackets are effectively the same. The test matrix Joseph D. McFadden was limited in sample size for both the OOP and sled National Highway Traffic Safety Administration tests. The use of a mandrel to assure that the jackets (NHTSA) are dimensionally correct is a novel approach for Unites States improving quality. James L. Stricklin Transportation Research Center, Inc. (TRC) INTRODUCTION Paper Number 11-0334 th The HIII 5 percentile female is regulated by the Code of Federal Regulations (CFR), Title 49, Part ABSTRACT 572 Subpart O. The Agency owns over 20 dummies mostly of the FTSS brand. There are noticeable The SAE has coordinated development of a new differences in the location and shape of the breast of chest jacket and spine box for the Hybrid III (HIII) the chest flesh assembly between the FTSS and Fifth Percentile Female Crash Test Dummy. The Denton brands that have been resolved by the new proposed modifications intend to correct dimensional jackets. Since 2006 NHTSA has been providing both inconsistencies in the chest jacket drawings, make the brands of dummies to its contracted test sites so that jackets in accordance with the new drawings and NHTSA’s Federal Motor Vehicle Safety Standard eliminate a potential source of mechanical noise in (FMVSS) No. 208 tests, especially the low risk the data. NHTSA procured two new chest jackets, deployment tests can be conducted with the same one from each supplier for evaluation. -
Asean NCAP's Success and Challenges in Promoting Safer
Transport and Communications Bulletin for Asia and the Pacific No. 89, 2019 ASEAN NCAP’S SUCCESS AND CHALLENGES IN PROMOTING SAFER VEHICLES IN THE ESCAP REGION Khairil Anwar Abu Kassim, Ahmad, Jawi and Ishak Abstract Starting from 2011, ASEAN NCAP has been mandated to carry out crash tests on new cars in the ESCAP region, particularly Southeast Asia. With a total population of over 630 million, the 10 countries comprising ASEAN have seen passenger vehicle sales reach over three million units. To date, 90 percent of the vehicles sold in ASEAN market have been tested by ASEAN NCAP. Their safety aspects have been greatly improved over time. But aside from the safety of car occupants, ASEAN NCAP is also concerned with the safety of vulnerable road users. In November 2018, ASEAN NCAP announced its latest road map which focuses on the safety of motorcyclists in the region. ASEAN NCAP’s efforts have also been recognized by the Malaysian government, as of next year, all car dealers are to showcase the star rating issued by ASEAN NCAP on the car’s front windshield and side mirror in all showroom and sales centres in Malaysia. This is to educate buyers to choose the models that give priority to the best rating. The current paper shall provide an overview of the results produced by ASEAN NCAP, including its success and challenges to elevate the safety standards of passenger vehicles in the Southeast Asian market. In addition, the last section will describe ASEAN NCAP road map which guides its journey toward achieving SDG targets 3.6 and 11.2. -
Crash Test Report
Offset crash test at 64km/hr Crash Tests New Car Safety Fiat 500 07/2007 on 01/0001 - Frontal+Side+Head Overall Evaluation Injury Measurements Refer to the information sheet Offset Crash Test at 64km/h Side Impact 'How the tests are done' (v4.1) Crash Test aa 50km/h (v4.1) Overall Score 34.91 out of 37 Driver Passn Driver Variant: Pop 3 dr hatch with ESC Engine: 1.2 litre Head Category: Light Car - HIC 563 357 64 - Acceleration (g for 3ms) 58.7 44.6 40.7 Neck Left Hand Drive - Shear (kN) 0.67 0.28 Important note: The left-hand-drive European model was tested by Euro NCAP. - Tension (kN) 1.72 0.67 Australasian specifications may vary and therefore models sold in Australasia might - Extension (Nm) 18.9 18.4 provide different levels of protection to those described on this page. Chest - Acceleration (g for 3ms) Model History and Safety Features - Compression (mm) 23.27 22.43 19.97 - Viscous Criterion (m/s) 0.08 0.1 0.12 The tested model of Fiat 500 was introduced in Australia during 2008. It is due in New Abdomen Zealand later in 2008. - Force (kN) 0.75 Dual front airbags, side airbags and head-protecting side curtains are standard Pelvis equipment. Antilock brakes (ABS) with electronic brake distribution (EBD) are also - Force (kN) 2.31 standard. Electronic stability control (ESC) is not available on the 1.2 Pop but is Upper Legs Force (kN) standard for other variants. Intelligent seat belt reminders are fitted to both front seats. -
Use of In-Depth Data in Comparing Euroncap and Real-World Crash Results
Quality Criteria for the Safety Assessment of Cars Based on Real-World Crashes Use of In-Depth Data in Comparing EuroNCAP and Real-World Crash Results Report of Sub-Task 2.3 CEA/EC SARAC II QUALITY CRITERIA FOR THE SAFETY ASSESSME OF CARS BASED ON REAL-WORLD CRASHES Funded by the European Commission, Directorate General TREN SARAC II Quality Criteria for the Safety Assessment of Cars based on Real-World Crashes Project Number: SUB/B27020B-E3-S07.17321-2002 Report of Sub-Task 2.3 Use of In-Depth Data in Comparing EuroNCAP and Real-World Crash Results Stuart Newstead, Amanda Delaney and Max Cameron Monash University Accident Research Centre March 2006 CEA/EC SARAC II QUALITY CRITERIA FOR THE SAFETY ASSESSME OF CARS BASED ON REAL-WORLD CRASHES Funded by the European Commission, Directorate General TREN International Project Management Comité Européen des Assurances (CEA) Prof. Dr. Klaus Langwieder SARAC Members European Commission (EC) Comité Européen des Assurances (CEA) DG TREN 26 Boulevard Haussmann 28 Rue Demot FR-75009 Paris B-1040 Brussels Monash University Helsinki University of Technology Accident Research Centre (MUARC) Laboratory of Transportation Engineering Building 70, P.O. Box 2100 Clayton, 3800 Victoria, Australia FIN-02015 HUT, Finland BMW Group Bundesanstalt für Straßenwesen Centro Zaragoza Vehicle Safety (BASt) Instituto de Investigación Sobre D-80788 München Brüderstraße 53 Reparación de Vehiculos, S.A. D-51427 Bergisch Gladbach Carretera Nacional 232, km 273 E-50690 Pedrola (Zaragoza) DaimlerChrysler AG Department for Transport FIA Foundation for the Automobile Zone 1/29a Great Minister House and Society D-71059 Sindelfingen 76 Marsham Street 8 Place de la Concorde London, SW1P 4DR United Kingdom Paris 75008 France Ministry of Transport and Finnish Motor Insurers’ Centre FOLKSAM Insurance Group Communications of Finland (VALT) Research/Traffic Safety P.O. -
Assessment of a Pre-Crash Seatbelt Technology in Frontal Impacts by Using a New Crash Test Sled System with Controllable Pre-Impact Braking
ASSESSMENT OF A PRE-CRASH SEATBELT TECHNOLOGY IN FRONTAL IMPACTS BY USING A NEW CRASH TEST SLED SYSTEM WITH CONTROLLABLE PRE-IMPACT BRAKING Daisuke Ito Susumu Ejima Yoshihiro Sukegawa Jacobo Antona Hisao Ito Japan Automobile Research Institute Japan Fumihito Komeno Tokai Rika Co., Ltd Japan Paper Number 13-0274 ABSTRACT were measured. In this research, a new pre-crash sled system with the The objective of this study is to develop a new method potential to evaluate pre-crash safety restraint systems and tools required for the evaluation of the potential was developed. Crash tests with dummies were benefits of pre-impact safety restraint systems. conducted in order to examine the effectiveness of a PSB. By controlling the posture change during an A pre-crash sled system that can reproduce controlled emergency braking, the reduction of neck and chest pre-impact braking in combination with a variety of injury risk in front impacts was achieved. This crash pulses was built. The sled can be customized confirms the potential of a PSB to enhance occupant from existing vehicles to examine a variety of restraint protection. systems. In addition, a previously validated 50th percentile male Hybrid III dummy with a modified INTRODUCTION lumbar was employed to reconstruct realistic driver’s posture changes at the pre-impact braking phase. Occupant safety in crashes has commonly been discussed by means of experiments or simulations with In order to evaluate the potential benefits of a 50th percentile male crash test dummies and human pre-crash seatbelt (PSB), the modified dummy was computer models in normal sitting posture. -
2018 in Review and FIRST LOOK 2019 WHO WE ARE
2018 in review AND FIRST LOOK 2019 WHO WE ARE MISSION CONTENTS The Insurance Institute for Highway Safety (IIHS) is an independent, nonprofit scientific and educational organization dedicated to reducing WHO WE ARE the losses — deaths, injuries and property damage — from motor vehicle crashes. 42 Mission 43 Member companies The Highway Loss Data Institute (HLDI) shares and supports this mission 44 President’s message through scientific studies of insurance data representing the human and 46 Partnerships economic losses resulting from the ownership and operation of different types of vehicles and by publishing insurance loss results by vehicle make OUR RESEARCH and model. & ANALYSIS Our research seeks to identify effective countermeasures against crashes 47 Crashworthiness and the problems they cause. We recognize crash prevention will only go 48 Ratings timeline so far, so we also look for ways to mitigate crash consequences, as well 410 Crash avoidance & automation as the best ways to recover from them. Our inquiry examines ways to 412 Distracted driving modify human behavior and implement safer vehicle and road designs. 413 Enforcement 414 Impaired driving 416 Insurance loss trends 418 Pedestrians, bicyclists & motorcycles OUR COMMUNICATIONS & EDUCATION PROGRAMS 420 Webinars 422 IIHS in the classroom website 423 VRC visitors/groups hosted 424 Advertising & earned media 425 Video news releases 425 Publications & presentations 426 Social media 427 Website BIBLIOGRAPHY & REPORTS 428 IIHS research papers 430 HLDI reports 2 | 2018 in review MEMBER COMPANIES Our member companies share our vision of saving lives and reducing inju- WE WELCOMED 6 NEW ries through scientific research that compels manufacturers, policymakers MEMBER COMPANIES IN 2018: and insurers to act to improve all aspects of motor vehicle transportation.