Lecture Notes on Crop Pests Stored Grain Pests and Their Management Course No
Total Page:16
File Type:pdf, Size:1020Kb
											Load more
										Recommended publications
									
								- 
												
												Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld. - 
												
												Hymenoptera: Ichneumonidae: Ophioninae) Newly Recorded from Japan
Japanese Journal of Systematic Entomology, 22 (2): 203–207. November 30, 2016. Three Oriental Species of the Genus Enicospilus Stephens (Hymenoptera: Ichneumonidae: Ophioninae) Newly Recorded from Japan So SHIMIZU 1), 2) and Kaoru MAETO 1) 1) Laboratory of Insect Biodiversity and Ecosystem Science, Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1–1, Nada, Kobe, Hyogo 657–8501, Japan. 2) Corresponding author: [email protected] Abstract Three species of the ophionine genus Enicospilus Stephens, 1835 collected in the Ryukyu Islands, E. abdominalis (Szépligeti, 1906), E. nigronotatus Cameron, 1903, and E. xanthocephalus Cameron, 1905, were newly recorded from Japan. E. abdominalis and E. xanthocephalus are widely distributed in the Oriental region and its neighbouring areas, however E. nigronota- tus is endemic to the Oriental region. Most of the specimens were collected in light traps, and thus the species are presumed to be nocturnal. Introduction (SMZ1500, Nikon, Tokyo, Japan) was used for morphological observation. Multi-focus photographs for figure 1 were taken The genus Enicospilus Stephens, belonging to the tribe using a single-lens reflex camera (D90, Nikon, Tokyo, Japan) Enicospilini Townes of the ichneumonid subfamily Ophioninae and were stacked by using Zeren Stacker. Figure 2 was taken Shuckard (Townes, 1971; Rousse et al., 2016), comprises over using a digital microscope (VHX-600, Keyence, Osaka, 700 species that are distributed in all biogeographical regions Japan). All figures were edited by Adobe Photoshop© CS5. except for the Arctic (e.g., Yu et al., 2012; Broad & Shaw, 2016). The morphological terminology mainly follows Gauld It is the solitary koinobiont endoparasitoid of middle- to large- (1991) and Gauld & Mitchell (1981). - 
												
												Crop and Stored Grain Pest and Their Management. (ENTO-4311)
Lec. 1(p.1 – 2): Introduction of Economic Entomology and Economic Classification of Insect Pests Lec. 2-5 (p.3- 15) Rice: Yellow stem borer, gallmidge, brown planthopper, green leafhopper, hispa, leaf folder, ear head bug, grasshoppers, root weevil, swarming caterpillar, climbing cutworm, case worm, whorl maggot, leaf mite, panicle mite, IPM practices in rice. Lec. 6-8 (p.16- 25) Sorghum and other millets: Sorghum shoot fly, stem borer, pink borer, sorghum midge, ear head bug, red hairy caterpillar, deccan wingless grasshopper, aphids, maize shoot bug, flea beetle, blister beetles, ragi cutworm, ragi root aphid, army worm. Wheat: Ghujia weevil, ragi pink borer, termites. Lec. 9-11 (p. 26- 33) Sugarcane: Early shoot borer, internodal borer, top shoot borer, scales, leafhoppers, white grub, mealy bugs, termites, whiteflies, woolly aphid, yellow mite. Lec 12- 14 (p.34- 47) Cotton: Spotted bollworm, american bollworm, pink bollworm, tobacco caterpillar, leafhopper, whiteflies, aphid, mites , thrips, red cotton bug, dusky cotton bug, leaf roller, stem weevil, grasshoppers, mealybug, IPM in cotton. Lec. 15 (p.48 - 51) Jute: jute semilooper, jute stem weevil, jute stem girdler, Bihar hairy caterpillar Mesta: Hairy caterpillars, stem weevil, mealy bugs, leafhopper, aphid. Sunhemp: Hairy caterpillars, stem borer, flea beetle. Lec. 16-17 (p.52- 59) Pulses: Gram caterpillar, plume moth, pod fly, stem fly, spotted pod borer, cowpea aphid, cow bug, pod bug, leafhopper, stink bug, green pod boring caterpillar, blue butterflies, redgram mite. Pea: pea leaf miner and pea stem fly Soyabean: Stem fly, ragi cutworm, leaf miner, whitefly. Lec. 18 (p.60- 63) Castor: Semilooper, shoot and capsule borer, tobacco caterpillar, leafhopper, butterfly, whitefly, thrips, castor slug, mite. - 
												
												On the Winter and Spring Aspect of the Macrolepidoptera Fauna of Jordan with Remarks on the Biology of Some Species
© Münchner Ent. Ges., download www.biologiezentrum.at Mitt. Münch. Ent. Ges. 102 65-93 München, 15.10.2012 ISSN 0340-4943 On the winter and spring aspect of the Macrolepidoptera fauna of Jordan with remarks on the biology of some species (Lepidoptera: Tineoidea, Cossoidea, Bombycoidea, Papilionoidea, Geometroidea, Noctuoidea) Dirk STADIE and Lutz LEHMANN († 1) Abstract The results of two lepidopterological expeditions to Jordan from December 20 to December 30, 2008 (provinces of Irbid, Karak, Tafila und Ma’an) and March 19 to March 25, 2009 (provinces: Zarqa, Tafila, Irbid and Balqa) are presented. A total of 166 species of Macrolepidoptera could be recorded, among them 21 species new for Jordan. Desertobia heloxylonia lawrencei subsp. n. is described. The female genitalia of Odontopera jordanaria (STAUDINGER, 1898) comb. n., are figured for the first time. The larvae of Odontopera jordanaria STAUDINGER, 1898, Minucia wiskotti (PÜNGELER, 1902), Allophyes benedictina (STAUDINGER, 1892), Agrochola pauli (STAUDINGER, 1892), Agrochola scabra (STAUDINGER, 1892), Agrochola staudingeri RONKAY, 1984, Conistra acutula (STAUDINGER, 1892), Polymixis apora (STAUDINGER, 1898) and Polymixis juditha (STAUDINGER, 1898) are described and figured. Introduction Our knowledge of the winter aspect of the macrolepidoptera fauna of the southwestern Palaearctic region is still lower compared to other seasons. It has been shown during expeditions that in countries with subtropical- mediterranean climate an interesting macrolepidoptera fauna with numerous poorly known or even new species could be ascertained, in the eremic as well as in the steppe and mediterranean zone. The focus of this communication is on the Noctuidae family, because Noctuid species dominate the species composition in winter (e.g. - 
												
												6 GAURAV.Pdf
Biological Forum — An International Journal, 3(1): 21-26(2011) ISSN : 0975-1130 Studies on Lepidopterous Insects Associated with Vegetables in Aravali Range, Rajasthan, India Gaurav Sharma Zoological Survey of India, Desert Regional Centre, Jhalamand, Jodhpur, (RJ) (Received 23 March, 2011 Accepted 14 April, 2011) ABSTRACT : The extensive studies on Lepidopterous insects associated with vegetables were conducted in different localities of Aravalli Range of Rajasthan i.e. Mount Abu, Udaipur, Rajsamand, Puskar, Ajmer, Jaipur, Sikar, Jhunjhunu, Sariska, Alwar, Dausa and Bharatpur during 2008-11. During present study 38 species of lepidopterous insects associated with vegetables in Aravalli Range of Rajasthan were recorded, out of 152 species of lepidopterous insects recorded from India. The families Crambidae and Noctuidae were the dominant families each represented by 8 species followed by Arctiidae having 4 species; Lycaenidae 3 species; then Nolidae, Pieridae and Sphingidae each having 2 species and least by Cosmopterigidae, Gelechiidae, Geometridae, Hesperiidae, Lymantriidae, Nymphalidae, Plutellidae, Pterophoridae and Saturniidae each having 1 species. On the basis of nature of damage the lepidopterous insects were also categorized as leaf feeders, pod borers, fruit borers, defoliators and leaf rollers, bud borers and leaf webbers, cut worms, leaf miners and stem borers etc. The salient details of their hosts, pest status or otherwise and their updated classification are provided. Keywords : Lepidopterous insects, Vegetables, pest status, Aravalli Range, Rajasthan. INTRODUCTION consequences like destruction of natural enemies fauna, effect on non target organisms, residues in consumable India is the second largest producer of vegetables after products including packed pure and mineral water and China, about 75 million tons. - 
												
												Diversity of Harmful and Beneficial Insect Fauna in Pigeonpea [Cajanus Cajan (L.)] Ecosystem in Tamil Nadu, India
Int.J.Curr.Microbiol.App.Sci (2018) 7(8): 396-402 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 08 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.708.045 Diversity of Harmful and Beneficial Insect Fauna in Pigeonpea [Cajanus cajan (L.)] Ecosystem in Tamil Nadu, India J. Alfred Daniel*, N. Chitra and M. Mathialagan Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore-3, Tamil Nadu, India *Corresponding author ABSTRACT The study of biodiversity associated with agro ecosystem is of significance for agro K e yw or ds ecologist and conservation biologist, since the maintenance of biological diversity is essential for productive and ecologically sustainable agriculture. Field experiment was Pigeonpea conducted to inventorize the insect fauna in pigeon pea ecosystem from February 2015 to [Cajanus cajan (L.)], July 2015. A total of 77 different species of insects belonging to 45 families under 10 Ecosystem, Diversity orders were collected. Of the 77 species recorded, 53 species were harmful and 24 were beneficial. The Simpson’s index of Diversity was the highest for beneficial insects (0.94) Article Info and for harmful insects it was (0.93). Similar trend was observed in Shannon-Wiener index Accepted: also for beneficial and harmful insects with values of 3.12 and 3.00, respectively. The 04 July 2018 values of Margalef index for the beneficial and harmful insects revealed that maximum Available Online: richness (6.35) was accounted for harmful insects followed by beneficial insects (5.32). 10 August 2018 The species evenness was maximum for beneficial insects (0.55), whereas for the harmful insects it was (0.45). - 
												
												Diversity and Ecology of Butterflies and Moths in Wadi Gaza, Gaza Strip, Palestine
International Journal of Scientific and Research Publications, Volume 5, Issue 11, November 2015 707 ISSN 2250-3153 Diversity and Ecology of Butterflies and Moths in Wadi Gaza, Gaza strip, Palestine Zuhair .W. Dardona*, Ayman .W. Dardona**, Mohammed.A.Albayoumi * * Msc Microbiology ** Msc Limnology Abstract- Butterflies and moths were studied in regions of Wadi Gaza, extending from Salahe El-deen bridge west to Wadi Abo- Qatron near Wadi Gaza village to the east. The research is based on studying the diversity of butterflies and moths in terms of taxa diversity, Genera compositions, and family abundance. In terms of family abundance, the survey showed that all recorded butterflies are belonging to five main families (Pieridae, Hesperiidae, Lycaenidae, Nymphalidae, Papilionidae). The recorded moths are also belonging to five families (Arctiidae, Crambidae, Geometridae, Noctuidae, Sphingidae). In terms of species and genera compositions and diversity, the survey revealed that butterflies are more abundant concerning diversity and richness than moths. The five families of butterflies are consisting of (19 genera) and (25 species) while the five families of moths are consisting of only (10 genera) and (11species).The butterflies represented (69 %) of recorded species in the area of study while the moths were represented in (31 %) of the findings. The most abundant family of butterflies is Pieridae with (36%) of all recorded butterflies, followed by Lycaenidae (32%). As for moths, the abundant families are Noctuidae, Geometridae, and Crambidae were each family was represented by (3 species), and they form (82%) of recorded moths. In this study all genera, in both moths and butterflies are represented only by one specie except six genera of butterflies and one genus of moths as each one is represented with two species, these six genera of butterflies are zizeeria,Vanessa, Colias, Pieris, Carcharodus, and Pointa and that genues of moths is Stemorrhages. - 
												
												REPORT on APPLES – Fruit Pathway and Alert List
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ ..................................................................................................................................... - 
												
												0229-0241.Pdf
R,c. %001. Surv. India, 86(2) : 229-241, 1990 LEPIDOPTEROUS FAUNA OF GUJARAT, INDIA I. J. GUPTA Zoological Survey of India, Calcutta AND R.K.THAKUR Desert Regional Station, Zoological Survey ojlndia, Jodhpur Butterflies have been reported earlier from Gujarat State by Nurse (1899), Aldrich (1946), Shull (1963, 1964), Shull and Nadkemy (1967), Nadkemy and Shull (1968), moths by Shull and Nadkemy (1964) and both butterflies and moths by Mosse (1929). Presently, 30 species and subspecies in 26 genera belonging to 11 families of butterflies and moths are dealt with from this area along with their common name, measurement of fore wing and geographical distribution. Of these, 11 species and subspecies constitute new locality records from seven Districts namely, Banas Kantha, Bharuch, Dangs, Mahesna, Panch Mahal, Rajkot and Sabar Kantha. Family PAPIUDNIDAE 1. Atrophaneura aristolochiae aristolochiae (Fabricius) 1775. Papilio aristolochiae Fabricius, Syst. Ent., : 433. 1929. Byasa aristolochiae, Mosse, J. Bombay nat. Hist. Soc., 33 (4) : 888. 1939. Polydorus aristolochiae aristolochiae, Talbot, Fauna of British India (Butterflies},l : 86. 1946. Tros aristolochiae aristolochiae, Aldrich, J. Bombay nat. Hist. Soc., 46(2) : 375. 1963. Polydorus aristolochiae aristolochaie, Shull, J. Bombay nat. Hisl. Soc., 60(3): 593. 1981. Pachliopta aristolochiae aristolochiae, Arora and Mandal, Rec. zool. Surv. India, Dcc. paper, No. 29 : 54-58. 1981. Atrophaneura aristolochiae aristolochiae, Varshney et ale Rec. zool. Surv.lndia Dcc. Paper, No. 31 : 24-25. 1983. Pachliopta aristolochiae aristolochiae, MandaI and Nandi, Rec. zool. Surv. India, 81 : 367-368. Material examined : Sabar Kantha District, Himatnagar, 1 ex., 5.xi.1964 (R. N. Bhargava leg .); Bharuch District, Rajpipla, 1 ex., 31.i.1975, Dangs District, Ahwa, 1 ex., 5.ii.1975 (T G. - 
												
												Invasive Plants Established in the United States That Are Found In
Rosa multiflora Multiflora rose Introduction There are 200 members of the genus Rosa distributed widely in subtropical to cold temperate regions of Asia, Europe, North Africa and North America. In China, 95 species have been recorded[60]. Taxonomy Order: Rosales Suborder: Rosineae Family: Rosaceae Subfamily: Rosoideae Focke alternate, and composed of 3-9 sharp- Genus: Rosa L. toothed leaflets, 5-10 cm long including Subgenus: Rosa leafstalk. The leaflets are obovate, Section: Synthylae DC. oblong or ovate, 1.5-5 cm in length Series: Multiflorae Yü et Ku and 0.8-2.8 cm in width, acute or Species: Rosa multiflora obtuse apex, suborbicular or cuneate Thunb. base, with simple serrate or biserrate margins. A pair of stipules are adnate to Description the base of the leafstalk. The upper leaf Rosa multiflora is a climbing, perennial surface is glabrous and the underside is shrub. The branchlets are glabrous and pubescent. Flowers appear from May cylindrical with short curved prickles. through June, as clusters in a corymb The leaf axil, petiole and pedicel are inflorescence, 1.5-2 cm in diameter. glabrous or covered with glandular Each has white, broad-obovate petals hairs. The leaves are imparipinnate, that are glabrous outside and pubescent inside. The lanceolate calyx has a retuse apex and a cuneate base. Fruits are red, glabrous, subglobular hips, with a diameter of 6-8 mm, developing from July to August[59]. Habitat Related Species R. multiflora habitats include thickets, Three varieties of R. multiflora are forest margins, and along road sides and commonly cultivated in China: streams in mountainous areas[9, 88]. - 
												
												Nirgundi (Vitex Negundo) – Nature's Gift to Mankind
Full-length paper Asian Agri-History Vol. 19, No. 1, 2015 (5–32) 5 Nirgundi (Vitex negundo) – Nature’s Gift to Mankind SC Ahuja1, Siddharth Ahuja2, and Uma Ahuja3 1. Rice Research Station, Kaul 136 021, Kaithal, Haryana, India 2. Department of Pharmacology, Vardhman Mahavir Medical College, Safdarjung, New Delhi, India 3. College of Agriculture, CCS Haryana Agricultural University, Kaul 136 021, Haryana, India (email: [email protected]) Abstract Vitex negundo (nirgundi, in Sanskrit and Hindi) is a deciduous shrub naturalized in many parts of the world. Some consider it to have originated in India and the Philippines. There is no reference to nirgundi in the Vedas, while several references occur in post-Vedic works. In India, the plant has multifarious uses: basketry, dyeing, fuel, food, stored-grain protectant, fi eld pesticide, growth promoter, manure, as medicine for poultry, livestock, and humans. It is used in all systems of treatment – Ayurveda, Unani, Siddha, Homeopathy, and Allopathy. It is commonly used in folk medicine in India, Bangladesh, China, Philippines, Sri Lanka, and Japan. True to its meaning in Sanskrit (that which keeps the body free from all diseases), it is used to treat a plethora of ailments, ranging from headache to migraine, from skin affections to wounds, and swelling, asthmatic pains, male and female sexual and reproductive problems. Referred to as sindhuvara in Ayurveda, nirgundi has been used as medicine since ancient times. It is taken in a variety of ways, both internally and externally. The whole plant, leaves, leaf oil, roots, fruits, and seeds are administered in the treatment of specifi c diseases. - 
												
												Pests of Gingelly, Castor, Mustard and Linseed
Lecture No 9 PESTS OF GINGELLY, CASTOR, MUSTARD AND LINSEED Pests of Gingelly Though a dozen pests attack gingelly, only leaf webber, gall fly and leaf hopper as vector are important and cause economic damage in gingelly. Major pests 1. Leaf webber Antigastra catalaunalis Pyralidae Lepidoptera 2. Sphinx moth Acherontia styx Sphingidae Lepidoptera 3. Gall fly Asphondylia sesami Cecidomyiidae Diptera 4. Leaf hopper Orosius albicinctus Cicadallidae Hemiptera 5. Pod bug Elasmolomus sordidus Lygaeidae Hemiptera Minor pests 6. Aphid Aphis gossypii Aphididae Hemiptera I. Leaf feeders 1. Leaf webber: Antigastra catalaunalis (Pyralidae: Lepidoptera) Distribution and status: India, Africa, South Europe, Malta, Burma, Bangladesh, Indonesia, Sri Lanka and U.S.S.R. Host range: Sesame, Antirrhinum and Duranta. Damage symptoms Larva webs the top leaves together and bore the tender shoots in the vegetative phase. Flowers and young capsules are bored at reproductive stage. Bionomics Moth is brown with yellowish brown wings. It lays eggs on tender parts of plants. The egg period is 4-5 days. Fully grown pale green larva with black head and dots all over the body measures 20 mm in length. The larval period is 11-16 days. It pupates in leaf folds in a white silken cocoon for 4-7 days. ETL: 2 webbed leaves/sq.m. (or) 10% damage. Management 1. Culture of sesame like EH7, 57, 84, 105, 106 and 156 should be encouraged as these are observed to be completely resistant against A. catalaunalis. 2. Dusting the crop with 2% parathion. 3. Spraying with dimethoate 30 EC 500 ml or methyl parathion 50 EC 500 ml or endosulfan 35 EC 1.25 L or carbaryl 50% WP I kg in 700 L water per hectare.