Nirgundi (Vitex Negundo) – Nature's Gift to Mankind

Total Page:16

File Type:pdf, Size:1020Kb

Nirgundi (Vitex Negundo) – Nature's Gift to Mankind Full-length paper Asian Agri-History Vol. 19, No. 1, 2015 (5–32) 5 Nirgundi (Vitex negundo) – Nature’s Gift to Mankind SC Ahuja1, Siddharth Ahuja2, and Uma Ahuja3 1. Rice Research Station, Kaul 136 021, Kaithal, Haryana, India 2. Department of Pharmacology, Vardhman Mahavir Medical College, Safdarjung, New Delhi, India 3. College of Agriculture, CCS Haryana Agricultural University, Kaul 136 021, Haryana, India (email: [email protected]) Abstract Vitex negundo (nirgundi, in Sanskrit and Hindi) is a deciduous shrub naturalized in many parts of the world. Some consider it to have originated in India and the Philippines. There is no reference to nirgundi in the Vedas, while several references occur in post-Vedic works. In India, the plant has multifarious uses: basketry, dyeing, fuel, food, stored-grain protectant, fi eld pesticide, growth promoter, manure, as medicine for poultry, livestock, and humans. It is used in all systems of treatment – Ayurveda, Unani, Siddha, Homeopathy, and Allopathy. It is commonly used in folk medicine in India, Bangladesh, China, Philippines, Sri Lanka, and Japan. True to its meaning in Sanskrit (that which keeps the body free from all diseases), it is used to treat a plethora of ailments, ranging from headache to migraine, from skin affections to wounds, and swelling, asthmatic pains, male and female sexual and reproductive problems. Referred to as sindhuvara in Ayurveda, nirgundi has been used as medicine since ancient times. It is taken in a variety of ways, both internally and externally. The whole plant, leaves, leaf oil, roots, fruits, and seeds are administered in the treatment of specifi c diseases. However, in Ayurveda, the leaves, roots, and bark are the most important parts. The present paper deals with the distribution and history of nirgundi, and its uses in rituals, religious rites, as an insecticide and as medicine. The paper also presents a scientifi c validation of its traditional agricultural uses as storage, fi eld, and household insecticide, as well as pharmacological evidences on its use in folk medicine and Ayurveda. The word Vitex is derived from the Latin Verbenaceae. Later on, Vitex along with ‘vieo’ (meaning to tie or bind) because of several other genera was transferred from the fl exible nature of its stems and twigs. Of Verbenaceae to Lamiaceae in the 1990s on the 270 known species of the genus, about the basis of phylogenetic studies of DNA 18 are in cultivation and are referred to as sequences (Chantaranothai, 2011). ‘chaste tree’, or simply Vitex. The genus was established by Linnaeus in 1753 with four Chaste tree species are native to the species: Vitex agnus-castus, V. negundo, warm regions of the Old World. Vitex V. pinnata, and V. trifolia in the family agnus-castus grows naturally from the 6 Nirgundi (Vitex negundo) Mediterranean Sea eastward to central Asia. courses in wastelands and mixed open The leaves are composed of fi ve to seven forests. It often grows gregariously and is radiating leafl ets. Vitex negundo, the fi ve- abundant on sandy soils (Chowdhury et leaved chaste tree is more cold hardy than al., 2009). the Agnus species. Vitex occurs in Kenya, Tanzania, Mozambique, Madagascar (in Three varieties of V. negundo L. are Africa), and in Afghanistan, Bangladesh, currently recognized: (1) Vitex negundo L. Bhutan, Cambodia, China, India, Indonesia, var. cannabifolia (Siebold & Zucc.) Hand.- Malaysia, Myanmar, Nepal, Pakistan, Mazz. is prevalent in China (including Hong Philippines, Sri Lanka, Thailand, Taiwan Kong), India, Nepal, and Thailand; (2) Vitex and Vietnam (in Asia) (http://www.ars-grin. negundo L. var. incisa (Lam.) C.B. Clarke gov/cgi-bin/npgs/html/taxon.pl?41831). occurs in China, India, Indonesia, and the It is also found in similar habitats along Philippines; and (3) Vitex negundo L. var. the seashore throughout Mauritius, Japan negundo is found in China, Japan, Taiwan and southward through Malaya to tropical and in the Nallamala Hills (India). One may Australia and Polynesia. visit the website <http://fl orida.plantatlas. usf.edu/Plant.aspx?id=1485#synonym> for Vitex trifolia is native to southeastern Asia synonymy. and Melanesia (Meena et al., 2010). Vitex trifolia, the three-leaved chaste tree, also Habitat and cultivation called the Indian privet or Indian wild-pepper has similar properties of V. negundo. Vitex Vitex negundo is a much-branched shrub trifolia occurs in India along the seashore, up to 5 m tall or sometimes a small, known in Hindi as ‘pani-ki-sanbhalu’ and slender tree with thin, gray bark. Leaves ‘sufed-sanbhalu’ and ‘Lagunding-dagat’ in are palmately compound, 3–5 foliate; the Philippines (Kulkarni, 2011). leafl ets are lanceolate; margins are entire or crenate; terminal leafl ets are 5–10 cm Some consider Vitex negundo being native × 1–3 cm; lateral leafl ets are smaller; all to India and the Philippines (Orwa et al., nearly glabrous above, whitish tomentose 2009) and this fact can be corroborated on beneath and aromatic when crushed the basis of availability of a name in almost (Fig. 1). Flowers are bluish-purple, small, in all the local dialects and languages in the peduncled cymes, forming large, terminal, Philippines and India (Table 1). In India, the often compound, pyramidal panicles. In prevailing Vitex species include V. negundo, central India, fl owering occurs between June V. glabrata, V. leucoxylon, V. penduncularis, and December and fruiting from September V. pinnata, and V. trifolia (Kulkarni, 2011). to February. The fruit is a succulent drupe, Wild nirgundi (V. negundo) plants are black when ripe, 5–6 mm in diameter. Seeds found almost everywhere though mostly on are 5–6 mm in diameter. The mature seeds wastelands from the seashore to an altitude sown in nursery beds normally germinate of about 1,500 m in the outer Himalayas. within 2–3 weeks. Four- to six-month-old It thrives in humid places or along water seedlings are used for transplanting in the Asian Agri-History Vol. 19, No. 1, 2015 7 Table 1. Names of Vitex negundo in/among various languages/tribes. Language/ Language/ region/tribe Name region/tribe Name English Chinese chaste tree, fi ve-leaved Kannada Lakkingida, lakkigida, nakkilu, chaste tree, Indian privet nekki, nekka, nakkigida, lakki, Sanskrit Nirgundi, sindhuvara, indrasursa, karillalaki (Dharwad), bilenekki indranika, sinduka, nisinda, (Mysore), nochi, sinduka, shephali, indrani, nirgundika, sinduvara renuka, sindhuvaram, sinduya, Kumaon Sindwar, kharwar, shiwali, simali; sugandhika, surasa, vrikshaha, fruit = fi lfi l = bari nirgunda, shveta sephalika, Marathi Nirgundi, nisind, nigudi, ligur suvaha, nirgundi, nilika (kali (Konkan), samhalu (Amravati), newri), nilapushpi, nilanirgundi, lingur, nirgunda, nirgur, lingur shvetasurasa, bhootveshi (white- Malayalam Vellanocchi, vennocchi, indrani, fl owered newri), svetapuspa karinocchi, nocchi, vennochi, Assamese Pasutia, aggla-chita, pochatia, velnochchi aslok Manipuri Urik shibi Bengali Nisinda, samalu, nirgundi, Oriya Beyguna, begundia, nirgundi, sinduari, beguna, nishinda, laguni (Malkangiri), begna, nishinde beguniya Mumbai Katri, lingur, nargunda, nirgundi, Punjabi Banna, marwan, moraun, nirgur, nisinda, shiwari morann, sanoke, swanjan, shawar, Gujarati Nagoda, nagaol, nirgari bankahu, marwa, mawa, maura, Himachal Bana (Parvati valley) mora, biuna, binna, torbanna, Pradesh shwari, maura, torban, wana; root Hindi Bheudi, mewri, nengar, ningori, and leaves = amalu; fruits = fi lfi l nigandi, nirgandi, nirgundi, = bari nirgunda, nisinda, panikisambhalu, Telugu Vaavili, vaavilu, tellavavaati, sambhal, sambhalu, sanbhalu, tellavavilli, vaavilu, chirvaavili, samhalu, sanghalu, saubhalu, mella-vavili, vavalipadu, veyala, sawbhalu, shambalu, shriwari, vavilli, nalla vavili, vavilipadu newri, sanbhalu, shawalu, shiwali, Tamil Vellai-nochi, nirkkundi, shivari, shiwari, sinuar, sinduar, venmochi, notchi, nirnochi, sindhuca, sinduari, siwain, sirunochi, nirrukundi, vennochi, bannah, bana, banna, siwali, villai-noch-chi, nochchi, nir- nochi, nochi wana, banha, banana, veeru dhayad, nirgud, negad, veeru, Urdu Sambhalu, tukhm sambhalu kali-nirgundi, tarvan, shimalu, Uttar Somi (Jaunsar Bawar hills), mala shinduca, shiwari, sinduari, khanni Pradesh (Moradabad) (Rajasthan) continued 8 Nirgundi (Vitex negundo) Table 1. continued Language/ Language/ region/tribe Name region/tribe Name Uttarakhand Sambhaalu Bangladesh Sarsa, samalu, chasta, nirgundi (Garhwal) China Bugingiab Kuruku Nirgudi Guam Laoundi, lagundi Kol Ehuri, sindwar, hobaro, sinduari Javanese Katumpa empah Lodha Bengunia-bo Malay Lenggundi, legundi, lagundi, Gond Nirgiri lemuning, muning, demundi, Oraon Sinduhi lemuni Santhal Bengunia, luguni, sindwar (Chhota Myanmar Kiyow-bhan-bin, kiyuban-bin Nagpur), sinduari (Bihar) Nepal Gadaki, simali Asurs Bihar Sinduar Pakistan Marvandaey (Buner), nirgud Arabic Aslaq, aslag, fanangasht, (Margallah hills), kalgari (Siran zukhamsatilouraq, zuhamsate- valley) asabea Persian Sisban, panj-angasht, banj- Philippines Lagundi (Ibn., Tag., Bik., P. Bis.), angasht, panjngust (Fazan Khist) dabtan (If.), dangla (Ilk.), kamalan Pusthtu Marwandai, mehrwan, warwande (Tag.), liñgei (Bon.), limo-limo Sri Lanka Nilnikka, nika, sadu-nikka (Ilk.), sagarai (Bag.), turagay Vietnam Ngutrao (Bis.), agno-casto (Span.) Figure 1. Nirgundi (Vitex negundo): (left) plant in fl owering stage; and (right) infl orescence. Asian Agri-History Vol. 19, No. 1, 2015 9 fi eld. It can be reproduced readily from shoot BCE), Kautilya’s Arthashashtra (321–296 cuttings. Vitex negundo roots are strong and BCE),
Recommended publications
  • Weed Risk Assessment for Vitex Rotundifolia L. F. (Lamiaceae)
    Weed Risk Assessment for Vitex United States rotundifolia L. f. (Lamiaceae) – Beach Department of Agriculture vitex Animal and Plant Health Inspection Service June 4, 2013 Version 2 Left: Infestation in South Carolina growing down to water line and with runners and fruit stripped by major winter storm (Randy Westbrooks, U.S. Geological Survey, Bugwood.org). Right: A runner with flowering shoots (Forest and Kim Starr, Starr Environmental, Bugwood.org). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Vitex rotundifolia Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)—specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it.
    [Show full text]
  • Estrogen-Like Activities in Vitex Species from China Determined by a Cell Based Proliferation Assay
    ORIGINAL ARTICLES Department of Pharmacognosy1, School of Pharmacy, Second Military Medical University, Shanghai, China; School of Biomo- lecular Science2, Faculty of Sciences, Liverpool John Moores University, Liverpool, UK Estrogen-like activities in Vitex species from China determined by a cell based proliferation assay Y. Hu1, Q.-Y. Zhang1, T.-T. Hou1, H.-L. Xin1, H.-C. Zheng1, K. Rahman2, L.-P. Qin1 Received February 14, 2007, accepted March 29, 2007 Prof. Lu-Ping Qin, Departement of Pharmacognosy, School of Pharmacy, Second Military Medical Uni- versity, 325 Guohe Road, Shanghai 200433, China [email protected], [email protected] Pharmazie 62: 872–875 (2007) doi: 10.1691/ph.2007.11.7542 Ethanolic extracts of four Chinese medicinally used Vitex species were selected and tested for their estrogen-like activities, using an ERa-positive MCF-7 cell based proliferation assay (E-screen assay) and cell cycle analysis (flow cytometry). Vitex negundo displayed the highest estrogenic-like activity, and could be useful in hormone replacement therapy (HRT). 1. Introduction 2. Investigations, result and discussion Phytoestrogens are plant-derived compounds with estro- In the E-Screen assay using MCF-7 cells, the proliferative genic or antiestrogenic properties (Umland et al. 2000). effect of the extracts relative to that of estradiol (1 nM, They seem to be interesting by their possible use as al- 100%) is expressed as Relative Proliferative Effect (RPE) ternative medicines for treating hormonal disorders such (Fig. 1). The results clearly indicate that the extracts from as in hormone replacement therapy (HRT). Thus, phy- V. rotundifolia and V. negundo were able to significantly toestrogens could be beneficial in treatment of the symp- stimulate MCF-7 cell proliferation at concentrations of toms of menopause and hence help to prevent bone re- 50 mg/mL to100 mg/mL (P < 0.01).
    [Show full text]
  • Medicinal Plants Research
    V O L U M E -III Glimpses of CCRAS Contributions (50 Glorious Years) MEDICINAL PLANTS RESEARCH CENTRAL COUNCIL FOR RESEARCH IN AYURVEDIC SCIENCES Ministry of AYUSH, Government of India New Delhi Illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll Glimpses of CCRAS contributions (50 Glorious years) VOLUME-III MEDICINAL PLANTS RESEARCH CENTRAL COUNCIL FOR RESEARCH IN AYURVEDIC SCIENCES Ministry of AYUSH, Government of India New Delhi MiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiM Illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll © Central Council for Research in Ayurvedic Sciences Ministry of AYUSH, Government of India, New Delhi - 110058 First Edition - 2018 Publisher: Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, New Delhi, J. L. N. B. C. A. H. Anusandhan Bhavan, 61-65, Institutional Area, Opp. D-Block, Janakpuri, New Delhi - 110 058, E-mail: [email protected], Website : www.ccras.nic.in ISBN : 978-93-83864-27-0 Disclaimer: All possible efforts have been made to ensure the correctness of the contents. However Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, shall not be accountable for any inadvertent error in the content. Corrective measures shall be taken up once such errors are brought
    [Show full text]
  • Vitex Agnus-Castus Extracts for Female Reproductive Disorders: a Systematic Review of Clinical Trials
    562 Reviews Vitex agnus-castus Extracts for Female Reproductive Disorders: A Systematic Review of Clinical Trials Authors M. Diana van Die1, Henry G. Burger2, Helena J. Teede3, Kerry M. Bone 4 Affiliations 1 Royal Melbourne Institute of Technology-University, Bundoora, Victoria, Australia 2 Prince Henryʼs Institute of Medical Research, Clayton, Victoria, Australia 3 Monash University, Clayton; Southern Health, Dandenong, Victoria, Australia 4 University of New England, Armidale, New South Wales; MediHerb/Integria, Warwick, Queensland, Australia Key words Abstract (1), and magnesium oxide (1). In premenstrual l" Vitex agnus‑castus ! dysphoric disorder, one study reported Vitex to l" Verbenaceae Vitex agnus-castus L. (chaste tree; chasteberry) is be equivalent to fluoxetine, while in the other, l" premenstrual a popular herbal treatment, predominantly used fluoxetine outperformed Vitex. In latent hyper- l" mastalgia for a range of female reproductive conditions in prolactinaemia, one trial reported it to be superi- l" hyperprolactinaemia l" systematic review Anglo-American and European practice. The ob- or to placebo for reducing TRH-stimulated prolac- jective of this systematic review was to evaluate tin secretion, normalising a shortened luteal the evidence for the efficacy and safety of Vitex phase, increasing mid-luteal progesterone and extracts from randomised, controlled trials inves- 17β-oestradiol levels, while the other found Vitex tigating womenʼs health. comparable to bromocriptine for reducing serum Eight databases were searched using Latin and prolactin levels and ameliorating cyclic mastalgia. common names for Vitex and phytotherapeutic Adverse events with Vitex were mild and gener- preparations of the herb as a sole agent, together ally infrequent. The methodological quality of with filters for randomised, controlled trials or the included studies varied, but was generally clinical trials.
    [Show full text]
  • Hymenoptera: Ichneumonidae: Ophioninae) Newly Recorded from Japan
    Japanese Journal of Systematic Entomology, 22 (2): 203–207. November 30, 2016. Three Oriental Species of the Genus Enicospilus Stephens (Hymenoptera: Ichneumonidae: Ophioninae) Newly Recorded from Japan So SHIMIZU 1), 2) and Kaoru MAETO 1) 1) Laboratory of Insect Biodiversity and Ecosystem Science, Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1–1, Nada, Kobe, Hyogo 657–8501, Japan. 2) Corresponding author: [email protected] Abstract Three species of the ophionine genus Enicospilus Stephens, 1835 collected in the Ryukyu Islands, E. abdominalis (Szépligeti, 1906), E. nigronotatus Cameron, 1903, and E. xanthocephalus Cameron, 1905, were newly recorded from Japan. E. abdominalis and E. xanthocephalus are widely distributed in the Oriental region and its neighbouring areas, however E. nigronota- tus is endemic to the Oriental region. Most of the specimens were collected in light traps, and thus the species are presumed to be nocturnal. Introduction (SMZ1500, Nikon, Tokyo, Japan) was used for morphological observation. Multi-focus photographs for figure 1 were taken The genus Enicospilus Stephens, belonging to the tribe using a single-lens reflex camera (D90, Nikon, Tokyo, Japan) Enicospilini Townes of the ichneumonid subfamily Ophioninae and were stacked by using Zeren Stacker. Figure 2 was taken Shuckard (Townes, 1971; Rousse et al., 2016), comprises over using a digital microscope (VHX-600, Keyence, Osaka, 700 species that are distributed in all biogeographical regions Japan). All figures were edited by Adobe Photoshop© CS5. except for the Arctic (e.g., Yu et al., 2012; Broad & Shaw, 2016). The morphological terminology mainly follows Gauld It is the solitary koinobiont endoparasitoid of middle- to large- (1991) and Gauld & Mitchell (1981).
    [Show full text]
  • Studies on Analysis of Antioxidant and Enzyme Inhibitory Activity of Vitex Negundo Linn
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2017; 9(6); 833-839 DOI number: 10.25258/phyto.v9i6.8187 ISSN: 0975-4873 Research Article Studies on Analysis of Antioxidant and Enzyme Inhibitory Activity of Vitex negundo Linn. Ved Prakash*, Shelly Rana, Anand Sagar Department of Biosciences, Himachal Pradesh University, Shimla, (H.P.) 171005, India Received: 19th April, 17; Revised 3rd June, 17, Accepted: 15th June, 17; Available Online:25th June, 2017 ABSTRACT The current study was designed to investigate the leaf extracts of Vitex negundo Linn. for their antioxidant and enzyme inhibitory (α-amylae and urease) activity. The antioxidant capacity of the different extracts (methanol, acetone and aqueous) of this plant was evaluated by DPPH (1,1-diphenyl-2-picrylhydrazyl) and reducing power tests. The plant exhibited good DPPH radical scavenging activity and moderate reducing power potential Further, all the extracts of V. negundo were reported to possess good anti-alpha amylase and anti-urease activity of greater than 50% in all the solvents used at a concentration of 1 mg/mL. Thus the study provided scientific evidence to the traditional uses of this plant in the treatment of obesity, diabetes, ulcers, kidney stones etc. Therefore, the leaf extracts of this plant can be selected for further investigation to determine their therapeutic potential. Keywords: Vitex negundo, leaf extracts, DPPH, reducing power, α-amylase, urease. INTRODUCTION mainly attributed to phenolic compounds such as Nature has been a source of medicinal agents for thousands flavonoids and phenolic acids9. Phenolic compounds from of years and a sufficient number of modern drugs have medicinal plants exhibit strong antioxidant activity and been derived from natural sources, many of these may help to protect the cells against the oxidative damage isolations were based on the use of these agents in caused by free radicals10.
    [Show full text]
  • Vitex Rotundifolia L.F
    NEW YORK NON -NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Vitex rotundifolia L.f. USDA Plants Code: VIRO80 Common names: Roundleaf chastetree, beach vitex, chasteberry, monk's pepper Native distribution: Asia (China, Japan), India, Sri Lanka, Mauritius, Australia, Pacific Islands (inlcuding Hawaii) Date assessed: 3 June 2009; edited August 19, 2009 Assessors: Steve Glenn, Gerry Moore Reviewers: LIISMA SRC Date Approved: August 19, 2009 Form version date: 3 March 2009 New York Invasiveness Rank: High (Relative Maximum Score 70.00-80.00) Distribution and Invasiveness Rank ( Obtain from PRISM invasiveness ranking form ) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Not Present Moderate 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 ( 40 ) 37 2 Biological characteristic and dispersal ability 25 ( 25 ) 20 3 Ecological amplitude and distribution 25 ( 25 ) 4 4 Difficulty of control 10 ( 10 ) 8 Outcome score 100 ( 100 )b 73.00 a † Relative maximum score 73.00 § New York Invasiveness Rank High (Relative Maximum Score 70.00-80.00) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places.
    [Show full text]
  • (Lamiaceae and Verbenaceae) Using Two DNA Barcode Markers
    J Biosci (2020)45:96 Ó Indian Academy of Sciences DOI: 10.1007/s12038-020-00061-2 (0123456789().,-volV)(0123456789().,-volV) Re-evaluation of the phylogenetic relationships and species delimitation of two closely related families (Lamiaceae and Verbenaceae) using two DNA barcode markers 1 2 3 OOOYEBANJI *, E C CHUKWUMA ,KABOLARINWA , 4 5 6 OIADEJOBI ,SBADEYEMI and A O AYOOLA 1Department of Botany, University of Lagos, Akoka, Yaba, Lagos, Nigeria 2Forest Herbarium Ibadan (FHI), Forestry Research Institute of Nigeria, Ibadan, Nigeria 3Department of Education Science (Biology Unit), Distance Learning Institute, University of Lagos, Akoka, Lagos, Nigeria 4Landmark University, Omu-Aran, Kwara State, Nigeria 5Ethnobotany Unit, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria 6Department of Ecotourism and Wildlife Management, Federal University of Technology, Akure, Ondo State, Nigeria *Corresponding author (Email, [email protected]) MS received 21 September 2019; accepted 27 May 2020 The families Lamiaceae and Verbenaceae comprise several closely related species that possess high mor- phological synapomorphic traits. Hence, there is a tendency of species misidentification using only the mor- phological characters. Herein, we evaluated the discriminatory power of the universal DNA barcodes (matK and rbcL) for 53 species spanning the two families. Using these markers, we inferred phylogenetic relation- ships and conducted species delimitation analysis using four delimitation methods: Automated Barcode Gap Discovery (ABGD), TaxonDNA, Bayesian Poisson Tree Processes (bPTP) and General Mixed Yule Coalescent (GMYC). The phylogenetic reconstruction based on the matK gene resolved the relationships between the families and further suggested the expansion of the Lamiaceae to include some core Verbanaceae genus, e.g., Gmelina.
    [Show full text]
  • Crop and Stored Grain Pest and Their Management. (ENTO-4311)
    Lec. 1(p.1 – 2): Introduction of Economic Entomology and Economic Classification of Insect Pests Lec. 2-5 (p.3- 15) Rice: Yellow stem borer, gallmidge, brown planthopper, green leafhopper, hispa, leaf folder, ear head bug, grasshoppers, root weevil, swarming caterpillar, climbing cutworm, case worm, whorl maggot, leaf mite, panicle mite, IPM practices in rice. Lec. 6-8 (p.16- 25) Sorghum and other millets: Sorghum shoot fly, stem borer, pink borer, sorghum midge, ear head bug, red hairy caterpillar, deccan wingless grasshopper, aphids, maize shoot bug, flea beetle, blister beetles, ragi cutworm, ragi root aphid, army worm. Wheat: Ghujia weevil, ragi pink borer, termites. Lec. 9-11 (p. 26- 33) Sugarcane: Early shoot borer, internodal borer, top shoot borer, scales, leafhoppers, white grub, mealy bugs, termites, whiteflies, woolly aphid, yellow mite. Lec 12- 14 (p.34- 47) Cotton: Spotted bollworm, american bollworm, pink bollworm, tobacco caterpillar, leafhopper, whiteflies, aphid, mites , thrips, red cotton bug, dusky cotton bug, leaf roller, stem weevil, grasshoppers, mealybug, IPM in cotton. Lec. 15 (p.48 - 51) Jute: jute semilooper, jute stem weevil, jute stem girdler, Bihar hairy caterpillar Mesta: Hairy caterpillars, stem weevil, mealy bugs, leafhopper, aphid. Sunhemp: Hairy caterpillars, stem borer, flea beetle. Lec. 16-17 (p.52- 59) Pulses: Gram caterpillar, plume moth, pod fly, stem fly, spotted pod borer, cowpea aphid, cow bug, pod bug, leafhopper, stink bug, green pod boring caterpillar, blue butterflies, redgram mite. Pea: pea leaf miner and pea stem fly Soyabean: Stem fly, ragi cutworm, leaf miner, whitefly. Lec. 18 (p.60- 63) Castor: Semilooper, shoot and capsule borer, tobacco caterpillar, leafhopper, butterfly, whitefly, thrips, castor slug, mite.
    [Show full text]
  • Vitex Trifolia ‘Variegata’1
    Fact Sheet FPS-611 October, 1999 Vitex trifolia ‘Variegata’1 Edward F. Gilman2 Introduction This fast growing shrub is popular for its variegated foliage and pretty blue flowers (Fig. 1). Vitex will reach a height of 10 to 12 feet and quickly becomes tree-like if neglected or trained to encourage multi-trunk development. However, this plant creates a nice, dense shrub if it is properly pruned and will be nearly prostrate if planted on a sandy beach. The trifoliate evergreen leaves are gray-green with white marginal variegation. These soft leaves have grayish pubescence on their underside and smell pungent when crushed. Attractive blue or lavender flowers with white spots appear in terminal clusters during the summertime. These beautiful flowers are followed by small, brown drupes. General Information Scientific name: Vitex trifolia ‘Variegata’ Pronunciation: VYE-tecks try-FOLE-lee-uh Common name(s): Variegated Vitex Family: Verbenaceae Plant type: shrub Figure 1. Variegated Vitex. USDA hardiness zones: 9B through 11 (Fig. 2) Planting month for zone 9: year round Planting month for zone 10 and 11: year round Description Origin: not native to North America Height: 10 to 20 feet Uses: hedge; border; mass planting; container or above-ground Spread: 8 to 12 feet planter; trained as a standard Plant habit: round Availablity: somewhat available, may have to go out of the Plant density: dense region to find the plant Growth rate: fast Texture: fine 1.This document is Fact Sheet FPS-611, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • Florida Exotic Pest Plant Councils 2017 List Of
    CATEGORY II (continued) Gov. The 2017 list was prepared by the Scientific Name** Common Name List Zone FLEPPC List Definitions: Exotic – a species FLEPPC Plant List Committee Florida Exotic Pest Plant Tradescantia spathacea oyster plant C, S introduced to Florida, purposefully or accidentally, from a (Rhoeo spathacea, Rhoeo discolor) natural range outside of Florida. Native – a species Patricia L. Howell, Chair 2012-2017, Broward Tribulus cistoides puncture vine, burr-nut N, C, S Council’s 2017 List of whose natural range includes Florida. Naturalized County Parks, Natural Resources and Land Vitex trifolia simple-leaf chaste tree C, S Management Section, [email protected] Washingtonia robusta Washington fan palm C, S exotic – an exotic that sustains itself outside cultivation Invasive Plant Species Wisteria sinensis Chinese wisteria N, C (it is still exotic; it has not “become” native). Invasive Stephen H. Brown, UF / IFAS Lee County Xanthosoma sagittifolium malanga, elephant ear N, C, S exotic – an exotic that not only has naturalized, Extension, Parks and Recreation Division, The mission of the Florida Exotic Pest Plant but is expanding on its own in Florida native plant [email protected] Council is to support the management of invasive Recent changes to plant names exotic plants in Florida’s natural areas by communities. Janice Duquesnel, Florida Park Service, Florida providing a forum for the exchange of scientific, Department of Environmental Protection, educational and technical information. Old Name New Name Abbreviations: Government List (Gov. List): [email protected] www.fleppc.org Possession, propagation, sale, and/or transport of Aleurites fordii Vernicia fordii David W.
    [Show full text]
  • Herbs, Spices and Essential Oils
    Printed in Austria V.05-91153—March 2006—300 Herbs, spices and essential oils Post-harvest operations in developing countries UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Telephone: (+43-1) 26026-0, Fax: (+43-1) 26926-69 UNITED NATIONS FOOD AND AGRICULTURE E-mail: [email protected], Internet: http://www.unido.org INDUSTRIAL DEVELOPMENT ORGANIZATION OF THE ORGANIZATION UNITED NATIONS © UNIDO and FAO 2005 — First published 2005 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: - the Director, Agro-Industries and Sectoral Support Branch, UNIDO, Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria or by e-mail to [email protected] - the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the United Nations Industrial Development Organization or of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]