Hemiptera: Psyllidae)

Total Page:16

File Type:pdf, Size:1020Kb

Hemiptera: Psyllidae) Arthropod Structure & Development 41 (2012) 79e86 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Morphological description of the mouthparts of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae) E. Garzo a, J.P. Bonani b, J.R.S. Lopes b, A. Fereres a,* a Departamento de Protección Vegetal, Instituto de Ciencias Agrarias (ICA, CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain b Departamento de Entomologia e Acarologia, ESALQ/Universidade de São Paulo, CP. 9, Piracicaba, SP 13418-900, Brazil article info abstract Article history: Scanning (SEM) and transmission (TEM) electron microscopy were used to elucidate the morphology of Received 14 April 2011 the rostrum, as well as the mandibular and maxillary stylets of the psyllid Diaphorina citri, vector of Accepted 24 July 2011 phloem-inhabiting bacteria associated with citrus huanglongbing (HLB) disease. D. citri has a cone- shaped rostrum that extends behind the pair of prothoracic coxae. The stylet bundle comprises a pair Keywords: of mandibular (Md) and maxillary (Mx) stylets with a mean length of 513.3 mm; when retracted, their Diaphorina citri proximal portions form a loop and are stored in the crumena (Cr). Serial cross-sections of the rostrum Electron microscopy revealed that the mandibles are always projected in front of the maxillary stylets. The two maxillary Mouthparts stylets form the food and salivary canals, with diameters of 0.9 mm and 0.4 mm respectively. These two HLB m Ca. Liberibacter canals merge at the end of the stylets forming a common duct with a length of 4.3 m and a mean Transmission diameter of 0.9 mm. The acrostyle, a distinct anatomical structure present in the common duct of aphid Disease maxillary stylets, was not observed by TEM in the ultrathin cross-sections of the common duct (CD) of D. citri. This study provides new information on D. citri mouthparts that may help to understand the feeding behaviour of this important vector of HLB-associated bacteria. Ó 2011 Elsevier Ltd. All rights reserved. 1. Introduction Rani and Madhavendra,1995; Feeman et al., 2000, 2001; Boyd et al., 2002; Boyd, 2003; Wiesenborn, 2004; Anderson et al., 2006; Uzest The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: et al., 2010; Zhao et al., 2010). Piercing-and-sucking mouthparts Psyllidae), is an invasive species that has emerged as the most show similar structures in the different hemipteran families. The important pest of world citriculture. It was discovered in Taiwan in mouthparts are composed of three different structures: a short and 1907 and is presently distributed across several countries of South triangular labrum, which covers the base of the stylet bundle; the Asia, regions of the Middle East, Réunion and Mauritius islands, the labium, which is a segmented and tubular organ with a complex Southern region of the United States, Central America, the Carib- musculature that contracts and shortens during insertion of the bean and South America (Halbert and Manjunath, 2004). D. citri is stylet into the plant tissue; and the stylet bundle inserted in vector of the phloem-inhabiting bacterium Candidatus Liberibacter a groove located along the length of the inner surface of the labium. asiaticus, which is associated with Asian ‘huanglongbing’ (HLB), The stylet bundle has two external mandibular stylets that commonly referred to as citrus greening disease in English- surround and protect two inner maxillary stylets (Pollard, 1973; speaking countries (Capoor et al., 1967; Bové, 2006). HLB is Rosell et al., 1995; Leopold et al., 2003; Zhao et al., 2010). a devastating disease that reduces fruit yield and quality and can The mouthparts of aphids (Hemiptera: Aphididae) have been kill or severely debilitate citrus trees. Therefore, D. citri may be one studied in detail by several authors because of the important role of of the most serious and economically important insect pests of aphids as virus vectors. These authors described the ultrastructure citrus where HLB occurs (Gottwald et al., 2007). of different aphid species using electron microscopy techniques Abundant information about the ultrastructure morphology of (TEM and SEM) in order to obtain information about the sensory the mouthparts of Hemiptera, based on light, transmission (TEM) neurones which innervate the mandibular stylets (Wensler, 1974), and scanning (SEM) electron microscopy is available (Pollard, 1973; the characteristic interlocking of the maxillary stylets, where the food and salivary canals are separated along the length of the stylets, and how both canals are fused into one common duct in the * Corresponding author. Tel.: þ34 91 7452500; fax: þ34 91 6540800. last few distal microns (Forbes, 1969; Mittler, 1957). Furthermore, E-mail address: [email protected] (A. Fereres). some authors described the labial tip receptors and speculated 1467-8039/$ e see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.asd.2011.07.005 80 E. Garzo et al. / Arthropod Structure & Development 41 (2012) 79e86 about the possible role they played (Wensler, 1977; Tjallingii, 1978), binocular microscope using very fine dissecting needles obtained and others have studied the movement and penetration of aphid by sharpening tungsten wire electrolytically (Brady, 1965). The stylets (Weber, 1930; Bradley, 1962; Evert et al., 1973). The most samples were carefully mounted on a gold specimen holder using recent study of the ultrastructure of the aphid mouthparts was OCT compound (Tissue-Tek, Sakura, USA). The specimen holder was made by Uzest et al. (2010), who described the ultrastructure of the then plunged into liquid nitrogen slush at approximately À210 C. tips of aphid maxillary stylets and demonstrated the existence of The sample was immediately transferred in a closed-air transfer a distinct and well-defined anatomical structure, named the device onto the cryostage of a CT1500 Oxford attached to a Zeiss "acrostyle", which is a swollen part of the cuticle present in the DSM960 scanning electron microscope. Sublimation of surface frost common duct of all aphid species observed. was performed at À90 C for 2 min before sputter-coating the Compared with aphids, there is less information available about sample with gold for 2 min at 10 mA. After sputter-coating, the the morphology and fine structure of the mouthparts of leafhoppers sample was imaged at 15 kV in the precooled chamber at À150 C. (Hemiptera: Cicadellidae), another important group of vectors of plant pathogens. There is some published information on how the 2.3. Transmission electron microscope (TEM) structure of Homalodisca coagulata (Say) mouthparts relates to the function of locating the xylem tissue within the plant host (Leopold The insects were fixed in 3% glutaraldehyde, 0.1 M sodium et al., 2003). Backus and McLean (1982, 1983) studied the ultra- cacodylate buffer pH 7, 1.8% saccharose, 0.001 M CaCl2, and after structure of the sensilla and other structures within the stylets and 24 h the insect mouthparts, with the clypeus, labium and stylets, the precibarium of Macrosteles fascifrons (Stål) and other leafhop- were removed using two fine tungsten dissecting needles under pers. Backus (1985) presents a review on anatomy of mouthparts, binocular microscopy. foregut and associated sensory organs of leafhoppers (Cicadellidae) The samples were washed and left for 1 h in the sodium caco- and planthoppers (Fulgoroidea). More recently, Zhao et al. (2010) dylate buffer. In order to obtain transversal sections the samples has used microscopic analysis to study the reputed functions of were embedded in 1% agar to simplify specimen orientation during the mouthparts of the leafhopper Psammotettix striatus (L.). inclusion in the resin. After washing in distilled water, the samples However, within the Psyllidae, all studies have been restricted to were post-fixed in 1% osmium tetroxide for 2 h and the block with the genus Cacopsylla. Some anatomical studies of the head and the tissue was left for 1 h in 0.5% uranyl acetate at 4 C. The samples feeding structures of the apple psylla, Cacopsylla (Psylla) mali were dehydrated in ethanol series, infiltrated and embedded in (Schmidberger), have been made by Grove (1920). Forbes (1972) Spurr-type resin. Ultrathin sections (70e80 nm) of the labium and observed dendrites in the mandibular stylets of the pear psylla, stylet bundle were cut using an ultramicrotome and placed on Cacopsylla (Psylla) pyricola (Foerster) and Pollard (1970) examined pioloform-coated copper grids (50 mesh) and stained with 2% stylet movement in the apple psyllid. Furthermore, Ullman and aqueous uranyl acetate (Reynolds, 1963). The samples were McLean (1986) studied the anterior food canal of the pear psylla. examined under a STEM LEO EM910 transmission microscope Recently, detailed information on the probing and feeding (Oberkochen, Germany), equipped with a digital Gatan Bioscan 792 behaviour of D. citri has been collected to understand the trans- camera (Pleasanton, CA, USA). mission process of Ca L. asiaticus (Bonani et al., 2010). However, no studies on the ultrastructure of D. citri mouthparts have been made 3. Results to date. Hemipteran mouthparts play an essential role in the transmission of plant pathogenic bacteria and viruses, and there- The mouthparts of D. citri are similar to those of other piercing- fore, a detailed study of the structure and function of D. citri may sucking insect pests. In Fig. 1D, the different structures that provide new insights into the behavioural events associated with constitute the mouthparts can be seen: the clypeus (Cp), which the transmission of Ca L. asiaticus and related bacteria by its vector. contains the cibarium dilator muscles (CbDm), the cibarium (Cb), The focus of this study was to examine the ultrastructure of followed by the labium or rostrum (Lb). It is important to note that D. citri mouthparts, including the labium and the mandibular, when the stylets are retracted, the distal part is kept inside the maxillary stylets and the common duct, using transmission (TEM) labium and the proximal part returns in a loop so that the stylets and scanning electron microscopy (SEM).
Recommended publications
  • Morphology and Adaptation of Immature Stages of Hemipteran Insects
    © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Morphology and Adaptation of Immature Stages of Hemipteran Insects Devina Seram and Yendrembam K Devi Assistant Professor, School of Agriculture, Lovely Professional University, Phagwara, Punjab Introduction Insect Adaptations An adaptation is an environmental change so an insect can better fit in and have a better chance of living. Insects are modified in many ways according to their environment. Insects can have adapted legs, mouthparts, body shapes, etc. which makes them easier to survive in the environment that they live in and these adaptations also help them get away from predators and other natural enemies. Here are some adaptations in the immature stages of important families of Hemiptera. Hemiptera are hemimetabolous exopterygotes with only egg and nymphal immature stages and are divided into two sub-orders, homoptera and heteroptera. The immature stages of homopteran families include Delphacidae, Fulgoridae, Cercopidae, Cicadidae, Membracidae, Cicadellidae, Psyllidae, Aleyrodidae, Aphididae, Phylloxeridae, Coccidae, Pseudococcidae, Diaspididae and heteropteran families Notonectidae, Corixidae, Belastomatidae, Nepidae, Hydrometridae, Gerridae, Veliidae, Cimicidae, Reduviidae, Pentatomidae, Lygaeidae, Coreidae, Tingitidae, Miridae will be discussed. Homopteran families 1. Delphacidae – Eg. plant hoppers They comprise the largest family of plant hoppers and are characterized by the presence of large, flattened spurs at the apex of their hind tibiae. Eggs are deposited inside plant tissues, elliptical in shape, colourless to whitish. Nymphs are similar in appearance to adults except for size, colour, under- developed wing pads and genitalia. 2. Fulgoridae – Eg. lantern bugs They can be recognized with their antennae inserted on the sides & beneath the eyes.
    [Show full text]
  • Asian Citrus Psyllid, Diaphorina Citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F
    EENY-033 Asian Citrus Psyllid, Diaphorina citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F. W. Mead and T. R. Fasulo2 Introduction In June 1998, the insect was detected on the east coast of Florida, from Broward to St. Lucie counties, and was The Asian citrus psyllid, Diaphorina citri Kuwayama, is apparently limited to dooryard host plantings at the time of widely distributed in southern Asia. It is an important pest its discovery. By September 2000, this pest had spread to 31 of citrus in several countries as it is a vector of a serious Florida counties (Halbert 2001). citrus disease called greening disease or Huanglongbing. This disease is responsible for the destruction of several Diaphorina citri is often referred to as citrus psylla, but this citrus industries in Asia and Africa (Manjunath 2008). is the same common name sometimes applied to Trioza Until recently, the Asian citrus psyllid did not occur in erytreae (Del Guercio), the psyllid pest of citrus in Africa. North America or Hawaii, but was reported in Brazil, by To avoid confusion, T. erytreae should be referred to as the Costa Lima (1942) and Catling (1970). African citrus psyllid or the two-spotted citrus psyllid (the latter name is in reference to a pair of spots on the base of the abdomen in late stage nymphs). These two psyllids are the only known vectors of the etiologic agent of citrus greening disease (Huanglongbing), and are the only eco- nomically important psyllid species on citrus in the world. Six other species of Diaphorina are reported on citrus, but these are non-vector species of relatively little importance (Halbert and Manjunath 2004).
    [Show full text]
  • Effects of Lethal Bronzing Disease, Palm Height, and Temperature On
    insects Article Effects of Lethal Bronzing Disease, Palm Height, and Temperature on Abundance and Monitoring of Haplaxius crudus De-Fen Mou 1,* , Chih-Chung Lee 2, Philip G. Hahn 3, Noemi Soto 1, Alessandra R. Humphries 1, Ericka E. Helmick 1 and Brian W. Bahder 1 1 Fort Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, 3205 College Ave., Ft. Lauderdale, FL 33314, USA; sn21377@ufl.edu (N.S.); ahumphries@ufl.edu (A.R.H.); ehelmick@ufl.edu (E.E.H.); bbahder@ufl.edu (B.W.B.) 2 School of Biological Sciences, University of Nebraska-Lincoln, 412 Manter Hall, Lincoln, NE 68588, USA; [email protected] 3 Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32608, USA; hahnp@ufl.edu * Correspondence: defenmou@ufl.edu; Tel.: +1-954-577-6352 Received: 5 October 2020; Accepted: 28 October 2020; Published: 30 October 2020 Simple Summary: Phytopathogen-induced changes often affect insect vector feeding behavior and potentially pathogen transmission. The impacts of pathogen-induced plant traits on vector preference are well studied in pathosystems but not in phytoplasma pathosystems. Therefore, the study of phytoplasma pathosystems may provide important insight into controlling economically important phytoplasma related diseases. In this study, we aimed to understand the impacts of a phytoplasma disease in palms on the feeding preference of its potential vector. We investigated the effects of a palm-infecting phytoplasma, lethal bronzing (LB), on the abundance of herbivorous insects. These results showed that the potential vector, Haplaxius crudus, is more abundant on LB-infected than on healthy palms.
    [Show full text]
  • Diversity and Abundance of Insect Herbivores Foraging on Seedlings in a Rainforest in Guyana
    R Ecological Entomology (1999) 24, 245±259 Diversity and abundance of insect herbivores foraging on seedlings in a rainforest in Guyana YVES BASSET CABI Bioscience: Environment, Ascot, U.K. Abstract. 1. Free-living insect herbivores foraging on 10 000 tagged seedlings representing ®ve species of common rainforest trees were surveyed monthly for more than 1 year in an unlogged forest plot of 1 km2 in Guyana. 2. Overall, 9056 insect specimens were collected. Most were sap-sucking insects, which represented at least 244 species belonging to 25 families. Leaf-chewing insects included at least 101 species belonging to 16 families. Herbivore densities were among the lowest densities reported in tropical rainforests to date: 2.4 individuals per square metre of foliage. 3. Insect host speci®city was assessed by calculating Lloyd's index of patchiness from distributional records and considering feeding records in captivity and in situ. Generalists represented 84 and 78% of sap-sucking species and individuals, and 75 and 42% of leaf-chewing species and individuals. In particular, several species of polyphagous xylem-feeding Cicadellinae were strikingly abundant on all hosts. 4. The high incidence of generalist insects suggests that the Janzen±Connell model, explaining rates of attack on seedlings as a density-dependent process resulting from contagion of specialist insects from parent trees, is unlikely to be valid in this study system. 5. Given the rarity of ¯ushing events for the seedlings during the study period, the low insect densities, and the high proportion of generalists, the data also suggest that seedlings may represent a poor resource for free-living insect herbivores in rainforests.
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
    /«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J.
    [Show full text]
  • Insect Vectors of Phytoplasmas - R
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Insect Vectors of Phytoplasmas - R. I. Rojas- Martínez INSECT VECTORS OF PHYTOPLASMAS R. I. Rojas-Martínez Department of Plant Pathology, Colegio de Postgraduado- Campus Montecillo, México Keywords: Specificity of phytoplasmas, species diversity, host Contents 1. Introduction 2. Factors involved in the transmission of phytoplasmas by the insect vector 3. Acquisition and transmission of phytoplasmas 4. Families reported to contain species that act as vectors of phytoplasmas 5. Bactericera cockerelli Glossary Bibliography Biographical Sketch Summary The principal means of dissemination of phytoplasmas is by insect vectors. The interactions between phytoplasmas and their insect vectors are, in some cases, very specific, as is suggested by the complex sequence of events that has to take place and the complex form of recognition that this entails between the two species. The commonest vectors, or at least those best known, are members of the order Homoptera of the families Cicadellidae, Cixiidae, Psyllidae, Cercopidae, Delphacidae, Derbidae, Menoplidae and Flatidae. The family with the most known species is, without doubt, the Cicadellidae (15,000 species described, perhaps 25,000 altogether), in which 88 species are known to be able to transmit phytoplasmas. In the majority of cases, the transmission is of a trans-stage form, and only in a few species has transovarial transmission been demonstrated. Thus, two forms of transmission by insects generally are known for phytoplasmas: trans-stage transmission occurs for most phytoplasmas in their interactions with their insect vectors, and transovarial transmission is known for only a few phytoplasmas. UNESCO – EOLSS 1. Introduction The phytoplasmas are non culturable parasitic prokaryotes, the mechanisms of dissemination isSAMPLE mainly by the vector insects.
    [Show full text]
  • 46601932.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OAR@UM BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2012) Vol. 5 : 57-72 A preliminary account of the Auchenorrhyncha of the Maltese Islands (Hemiptera) Vera D’URSO1 & David MIFSUD2 ABSTRACT. A total of 46 species of Auchenorrhyncha are reported from the Maltese Islands. They belong to the following families: Cixiidae (3 species), Delphacidae (7 species), Meenoplidae (1 species), Dictyopharidae (1 species), Tettigometridae (2 species), Issidae (2 species), Cicadidae (1 species), Aphrophoridae (2 species) and Cicadellidae (27 species). Since the Auchenorrhyncha fauna of Malta was never studied as such, 40 species reported in this work represent new records for this country and of these, Tamaricella complicata, an eastern Mediterranean species, is confirmed for the European territory. One species, Balclutha brevis is an established alien associated with the invasive Fontain Grass, Pennisetum setaceum. From a biogeographical perspective, the most interesting species are represented by Falcidius ebejeri which is endemic to Malta and Tachycixius remanei, a sub-endemic species so far known only from Italy and Malta. Three species recorded from Malta in the Fauna Europaea database were not found during the present study. KEY WORDS. Malta, Mediterranean, Planthoppers, Leafhoppers, new records. INTRODUCTION The Auchenorrhyncha is represented by a large group of plant sap feeding insects commonly referred to as leafhoppers, planthoppers, cicadas, etc. They occur in all terrestrial ecosystems where plants are present. Some species can transmit plant pathogens (viruses, bacteria and phytoplasmas) and this is often a problem if the host-plant happens to be a cultivated plant.
    [Show full text]
  • Volume 28, No. 2, Fall 2009
    Fall 2009 Vol. 28, No. 2 NEWSLETTER OF THE BIOLOGICAL SURVEY OF CANADA (TERRESTRIAL ARTHROPODS) Table of Contents General Information and Editorial Notes ..................................... (inside front cover) News and Notes News from the Biological Survey of Canada ..........................................................27 Report on the first AGM of the BSC .......................................................................27 Robert E. Roughley (1950-2009) ...........................................................................30 BSC Symposium at the 2009 JAM .........................................................................32 Demise of the NRC Research Press Monograph Series .......................................34 The Evolution of the BSC Newsletter .....................................................................34 The Alan and Anne Morgan Collection moves to Guelph ......................................34 Curation Blitz at Wallis Museum ............................................................................35 International Year of Biological Diversity 2010 ......................................................36 Project Update: Terrestrial Arthropods of Newfoundland and Labrador ..............37 Border Conflicts: How Leafhoppers Can Help Resolve Ecoregional Viewpoints 41 Project Update: Canadian Journal of Arthropod Identification .............................55 Arctic Corner The Birth of the University of Alaska Museum Insect Collection ............................57 Bylot Island and the Northern Biodiversity
    [Show full text]
  • Enhancing Biological Control in Apple Orchards Jaume Lordan Sanahuja
    Enhancing biological control in apple orchards Jaume Lordan Sanahuja Dipòsit Legal: L.1233-2014 http ://hdl.handle.net/10803/275941 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora.
    [Show full text]
  • Identifying Dryinidae (Hymenoptera) - Auchenorrhyncha (Hemiptera) Host Associations Using Phylogenetics
    IDENTIFYING DRYINIDAE (HYMENOPTERA) - AUCHENORRHYNCHA (HEMIPTERA) HOST ASSOCIATIONS USING PHYLOGENETICS BY CHRISTIAN ABEL MILLÁN-HERNÁNDEZ THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Master's Committee: Dr. Christopher H. Dietrich, Chair, Director of Research Professor May R. Berenbaum Professor Andrew V. Suarez ABSTRACT Dryinidae is a family of ectoparasitoid wasps with cosmopolitan distribution that exclusively preys on and parasitizes members of the suborder Auchenorrhyncha (Hemiptera). Host records of these important biocontrol agents are fragmentary because previous records have been based on tedious laboratory rearing of parasitized individuals requiring environmental control and long waiting periods, usually with limited success. Molecular phylogenetic methods provide an alternative to expand knowledge of dryinid host breadth by DNA sequencing of host attached parasitoid larvae. For this study, 142 late-stage dryinid larvae were removed from parasitized individuals of Auchenorrhyncha (Hemiptera), mostly from a wet insect collection at the Illinois Natural History Survey representing all major biogeographic regions. The 28S D2-D3 nuclear ribosomal gene region was amplified using PCR and sequenced. Attempts to sequence Cytochrome c oxidase subunit 1, Cytochrome B and 18S DNA regions were unsuccessful due to contamination with host DNA. Sequence data were combined with data from a previous phylogenetic study based on adults and a maximum likelihood tree search was performed in the IQ-Tree webserver. The best tree was used to explore the significance of natural history traits including distribution, host taxonomy and habitat, for explaining host association patterns.
    [Show full text]
  • Crop Agroecosystem Health M
    Crop and Agroecosystem Health Management Annual Report 2006 Project PE-1 Centro Internacional de Agricultura Tropical (CIAT) Apartado aéreo 6713 Cali, Colombia, S.A. Crop and Agroecosystem Health Management (Project PE-1) Project Manager: Segenet Kelemu Fax: (572) 445 0073 Email: [email protected] Adminsitrative Assistant: Melissa Garcia Email: [email protected] Crop and Agroecosystem Health Management (Project PE-1). 2006. Annual Report, Centro Internacional de Agricultura Tropical, (CIAT), Cali, Colombia, 222 pp. TABLE OF CONTENTS Page Project Description and Log Frame……………………………………………………….. 1 Narrative project description…………………………………………………………….…... 1 Project log Frame ( 2006 – 2008 ) .......................................................................................... 8 CGIAR Output template 2006 ……………………………………………………………….. 11 Output 1: Pest and pathogen complexes in key crops described and analyzed (779 kb) 12 1.1. Identification of commonbean genotypes and interspecific lines resistant to Rhizoctonia solani 12 1.2. Virulence characterization of Colletotrichum lindemuthianum isolates collected from different bean growing departments of Colombia 15 1.3. Identifying and developing molecular markers linked to ALS resistance genes in common bean 17 1.4. Identifying and developing molecular markers linked Pythium root rot resistance 22 1.5. Identification of molecular markers linked to rice blast resistance genes 26 1.6. Characterization of strains of cassava frogskin virus 32 1.7. Monitoring of whitefly populations in the Andean zone 38 1.8. Mortality levels of new pesticides for the control of whitefly populations 40 1.9. Molecular characterization of isolates of Colletotrichum spp. infecting tree 44 tomato, mangoand lemon Tahiti in Colombia 1.10. Identifying strategies for managing anthracnose (Glomerella cingulata) (Anamorph Colletotrichum gloeosporioides) of soursop ( Anona muricata L.) emphasizing varietal resistance 54 1.11.
    [Show full text]