Distribution of Lichens and Penguins Across the Antarctic Peninsula

Total Page:16

File Type:pdf, Size:1020Kb

Distribution of Lichens and Penguins Across the Antarctic Peninsula ABSTRACT Title of Dissertation: NOVEL APPROACHES TO STUDYING BIODIVERSITY IN REMOTE AREAS: DISTRIBUTION OF LICHENS AND PENGUINS ACROSS THE ANTARCTIC PENINSULA. Paula Victoria Casanovas, Doctor of Philosophy 2013 Directed By: Dr. William F. Fagan, Department of Biology, University of Maryland and Dr. Heather J. Lynch, Department of Ecology & Evolution, Stony Brook University Biodiversity inventories are a critical resource, providing baseline information for assessing environmental changes over time. In many cases, the underlying datasets are generated by “opportunistic” sampling efforts or they are consolidated from diverse datasets collected for different purposes. These datasets are typically patchy and incomplete, requiring the use of sophisticated statistical analyses. The Antarctic Peninsula (AP) is one of those areas where direct observation of species distribution is difficult; it is also an area that in recent decades has been experiencing important environmental changes, which influence population and ecosystem dynamics. I addressed biogeographical questions in the AP archipelago, using remote sensing and opportunistic data sets for two very different groups of organisms: lichens and penguins. Although taxonomically different, both groups are key components of the AP terrestrial ecosystem, and share the need to couple biodiversity surveys with modeling to understand species distribution and abundance patterns in large areas of remote wilderness. The results of this dissertation work are interesting to polar biologists, because evidence suggests that the input of nutrients by seabirds can significantly impact floral diversity and abundance in nutrient-poor polar communities. The datasets and protocols for data collection and analyses generated in this project are valuable in themselves for the scientific community. They could be used as the basis for a valuable and practicable monitoring program and procedures for the evaluation of the data derived from it. In the Antarctic Peninsula in particular, this information will aid in the delineation and management of protected areas, as well as in the evaluation of the impacts of climate change and human visitation to the most traveled locations. Furthermore, this research provided an example of how an approach that integrates the use of existing remote-sensing products with independent ongoing field sampling efforts, “citizen scientist” data collection, and historical datasets can yield low- cost, high-benefit studies that can be useful both to understand how species respond to their environment, and to help environmental managers to predict and cope with imminent changes due to global warming. NOVEL APPROACHES TO STUDYING BIODIVERSITY IN REMOTE AREAS: DISTRIBUTION OF LICHENS AND PENGUINS ACROSS THE ANTARCTIC PENINSULA. By Paula Victoria Casanovas Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2013 Advisory Committee: Professor William F. Fagan, Chair Dr. Heather J. Lynch, Co-chair Dr. Marjorie L. Reaka Dr. Carlos Machado Dr. Paula DePriest Dr. Stephen Prince © Copyright by Paula Victoria Casanovas 2013 Preface Antarctica: the windiest, coldest, driest, wildest continent on earth. Antarctica is immense in all possible dimensions. the silence is immense, everything seems suspended in time by layers of ancient snow. the noise is immense, glaciers calving, penguin calling each other in organized cacophony. the smell is immense, guano and elephant seals. the sky is immense, deep blue or orange or red, it extents infinite above as it does the sea below. Antarctica is powerful in all possible dimensions. from peace to torment in hours or minutes. Proud mountains stand stoically againts the fuiry of the wind. the wind has no mercy and nor does the ice. it expands crashing rocks and covering the ocean with its thick and cold skin. life and death are subject to this power. Antarctica is beautiful in all possible dimensions. beautiful because it is immense and because is powerful. beautiful because is full of mysteries and contradictions. beautiful because is simple but is complex. as with all beautiful things it is painful to think that she could be subdue by the hands of my kind. ii I have been very lucky, and I have always the luxury of having exceptional good and dedicated mentors. I am writing this today because my two mentors, Heather Lynch and Bill Fagan, believed in me. I am deeply thankful to both of them for guiding me with knowledge, patience and freedom of following my own questions and ideas. I would have been lost many times in the world of graduate school if I did not such good lab mates. They not only made my life through this last chapter of being a student much easier, but also fun. I thank them and I am happy to have now very good friends on them. And I would have been lost many times in the white continent and its deep waters if I did not have such good ship mates, not to mention that I could have been left alone in an isolated island if it was not for them to remember picking me up. Many thanks to all of them, for their support and friendship. I also want to thank the students who worked with me all these years. They taught me, of course, much more than what they learned from me. Their help was invaluable. I deeply thank my parents for, in one way or another, giving me the tools for being a free thinker. I always have their unconditional support, as I have the unconditional support and love of my siblings. They are always with me when I need them most, no matter how many kilometers there are between the US East coast or Marguerite Bay and Northern Patagonia. And I thank Eduardo, from the bottom of my heart. For his love and support I started this adventure, and because of his love and support is it that I am writing this now. iii Dedication A Eduardo Zattara, compañero de aventuras iv Acknowledgements General dissertation acknowledgements: My work was supported by NASA Headquarters under the NASA Earth and Space Fellowship Program – Grant NNX10AN55H. This research was also supported by the US National Science Foundation Office of Polar Programs (Award No NSF/OPP – 0739515 to H. J. Lynch and W. F. Fagan). I am grateful to Oceanites Inc., and Ron Naveen for all his support, especially on field logistics. Chapter 2 acknowledgements: I thank Ron I. Lewis-Smith, Helen Peat, Valdon Smith and an anonymous reviewer for their useful comments and suggestions to this manuscript. This chapter has been published in its entirety in Ecography, 36 (2), 209–219. Chapter 3 acknowledgements: I thank Dr. James Lawrey for allowing the use of the data from the Lichen Biomonitoring Project for this work, and for his useful comments on the manuscript. I thank Dr. Paula DePriest for her insight and comments throughout the development of this project. Also, I thank the field photographers and the undergrad researchers (especially Beth Stevenson and Julien Buchbinder) involve in the identification and preparation of the specimens. I am grateful to Dr. Elise Zipkin for providing assistance on the detection modeling. Chapter 4 acknowledgements: I thank all the field photographers and the undergrad researchers involve in the identification and preparation of the specimens, especially Beth Stevenson (for her work at the Smithsonian Institution) and Julien Buchbinder (for his work on identification of digital specimens and assistant on the development of the database). I thank the support of Linblad Expeditions on board the National Geographic Explorer, and OneOcean Expeditions on board the Akademik Ioffe. v Chapter 5 acknowledgements: I thank Oceanites, Inc. and the Antarctic Site Inventory project, for allowing the use of its biodiversity database. For the use of ocean color image products, I acknowledge the Ocean Biology Processing Group (OBPG) at the NASA Goddard Space Flight Center, Greenbelt, MD, USA. vi Table of Contents Preface........................................................................................................................... ii Dedication .................................................................................................................... iv Acknowledgements ........................................................................................................v Table of Contents ........................................................................................................ vii List of Tables ..................................................................................................................x List of Figures .............................................................................................................. xi Chapter 1: Introduction ..................................................................................................1 Chapter 2: Multi-scale patterns of moss and lichen richness on the Antarctic Peninsula ......................................................................................................................10 Abstract ....................................................................................................................10 Introduction .............................................................................................................. 11 Materials and Methods .............................................................................................14 Study Area ............................................................................................................14
Recommended publications
  • Discovery Reports
    9<S Q 7.*// DISCOVERY REPORTS Issued by the Discovery Committee Colonial Office, London on behalf of the Government of the Dependencies of the Falkland Islands VOLUME XXII CAMBRIDGE AT THE UNIVERSITY PRESS r 943 [Discovery Reports. Vol. XXII, pp. 301-510, Plates V-XIII, September 1943] POLYZOA (BRYOZOA) I. SCRUPOCELLARIIDAE, EPISTOMIIDAE, FARCIMINARIIDAE, BICELLARIELLIDAE, AETEIDAE, SCRUPARIIDAE By ANNA B. HASTINGS, M.A., Ph.D. British Museum (Natural History) CONTENTS Introduction PaSe 3°3 Interpretation of Busk's work 303 Acknowledgements 304 List of stations, and of the species collected at each 305 List of species discussed 318 Systematic descriptions 319 Geographical distribution of species 477 The relation between hydrological conditions and the distribution of the species 491 Geographical distribution of genera 492 Seasonal distribution of ancestrulae 497 Note on the vermiform bodies found in some Polyzoa 499 Addendum 501 References 501 Index 506 Plates V-XIII following page 510 ; POLYZOA (BRYOZOA) I. SCRUPOCELLARIIDAE, EPISTOMIIDAE, FARCIMINARI1DAE, BICELLARIELLIDAE, AETEIDAE, SCRUPARIIDAE By Anna B. Hastings, M.A., Ph.D. British Museum (Natural History) (Plates V-XIII ; Text-figs. 1-66) INTRODUCTION Discovery Investigations an exceptionally fine collection of In the course of the Antarctic and sub-Antarctic Polyzoa has been made, as well as small collections from South Africa, New Zealand and certain islands in the tropical Atlantic. Together with this Discovery material I have studied the collections made by the National 1 Antarctic Expedition (190 1-4) and the British Antarctic ('Terra Nova') Expedition; the South Georgian Polyzoa collected by the Shackleton-Rowett (' Quest ') Expedition and collections from the Falkland Islands lent to me by the Hamburg Museum and the U.S.
    [Show full text]
  • Biparental Care of Chinstrap Penguin: Molecular Sexing and Life History in the South Shetland Islands, Antarctica
    BIPARENTAL CARE OF CHINSTRAP PENGUIN: MOLECULAR SEXING AND LIFE HISTORY IN THE SOUTH SHETLAND ISLANDS, ANTARCTICA Jaqueline Brummelhaus, Victor Hugo Valiati, Maria Virginia Petry Pós Graduação em Biologia, Laboratório de Ornitologia e Animais Marinhos, Laboratório de Biologia Molecular, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil Chinstrap penguin breeding season Figure 1: Pygoscelis antarctica Return to Incubation Guard Creche Fledging Introduction breeding stage stage stage stage Pygoscelis antarctica (Figure 1) breeds during the austral summer (Figure 2) in colonies colonies on ice-free areas of coast (sub-Antarctic islands and Antarctic Peninsula). Is a monogamous species and fairly equal parental investment is made ​​by both members of the pair 1, 2, 3. Late October – 30 days after Late February early November hatching – early March We investigated tertiary sex ratio (adult stage) in breeding colonies during guard and creche stages of P. antarctica in King George and Elephant Islands Both parents are in the 2010/2011 breeding season, by molecular sexing. Our goal was to gain Adults remaining at the nest for extended foraging and returning a better insight into behavioral parameters of breeding success for the periods at intervals species. Figure 2: Pygoscelis antarctica breeding season in Antarctica 1,2. Methods Chinstrap penguin adults were sampled while away from their nests at Admiralty Bay (King George Island) (62°05’S; 58°23’W) and Stinker Point (Elephant Island) (61°08’S; 55°07’W), South Shetland Islands, Antarctic, in the 2010/2011 breeding season (Table I). Genomic DNA was isolated from blood samples through standard phenol/chloroform technique and sex identification is determined by chromosomes Z and W (CHD-Z or CHD-W genes )4.
    [Show full text]
  • Final Report of the Fortieth Antarctic Treaty Consultative Meeting
    )LQDO5HSRUWRIWKH)RUWLHWK $QWDUFWLF7UHDW\ &RQVXOWDWLYH0HHWLQJ $17$5&7,&75($7< &2168/7$7,9(0((7,1* )LQDO5HSRUW RIWKH)RUWLHWK $QWDUFWLF7UHDW\ &RQVXOWDWLYH0HHWLQJ %HLMLQJ&KLQD 0D\ -XQH 9ROXPH,, 6HFUHWDULDWRIWKH$QWDUFWLF7UHDW\ %XHQRV$LUHV 3XEOLVKHGE\ 6HFUHWDULDWRIWKH$QWDUFWLF7UHDW\ 6HFUpWDULDWGX7UDLWpVXUO¶$QWDUFWLTXH ɋɟɤɪɟɬɚɪɢɚɬȾɨɝɨɜɨɪɚɨɛȺɧɬɚɪɤɬɢɤɟ 6HFUHWDUtDGHO7UDWDGR$QWiUWLFR 0DLS~3LVR &$&,&LXGDG$XWyQRPD %XHQRV$LUHV$UJHQWLQD 7HO )D[ 7KLVERRNLVDOVRDYDLODEOH IURP www.ats.aq GLJLWDOYHUVLRQ DQGRQOLQHSXUFKDVHGFRSLHV ,661 ,6%1 YRO,, ,6%1 FRPSOHWHZRUN &RQWHQWV 92/80(, $FURQ\PVDQG$EEUHYLDWLRQV 3$57,),1$/5(3257 )LQDO 5HSRUW &(3;; 5HSRUW $SSHQGLFHV $SSHQGL[3UHOLPLQDU\$JHQGDIRU$7&0;/,:RUNLQJ*URXSVDQG $OORFDWLRQRI,WHPV $SSHQGL[+RVW&RXQWU\&RPPXQLTXH 3$57,,0($685(6'(&,6,216$1'5(62/87,216 0HDVXUHV 0HDVXUH $QWDUFWLF6SHFLDOO\3URWHFWHG$UHD1R 0RH,VODQG 6RXWK2UNQH\,VODQGV 5HYLVHG0DQDJHPHQW3ODQ 0HDVXUH $QWDUFWLF6SHFLDOO\3URWHFWHG$UHD1R /\QFK,VODQG 6RXWK2UNQH\,VODQGV 5HYLVHG0DQDJHPHQW3ODQ 0HDVXUH $QWDUFWLF6SHFLDOO\3URWHFWHG$UHD1R 6RXWKHUQ3RZHOO ,VODQGDQGDGMDFHQWLVODQGV6RXWK2UNQH\,VODQGV 5HYLVHG0DQDJHPHQW3ODQ 0HDVXUH $QWDUFWLF6SHFLDOO\3URWHFWHG$UHD1R /DJRWHOOHULH,VODQG 0DUJXHULWH%D\*UDKDP/DQG 5HYLVHG0DQDJHPHQW3ODQ 0HDVXUH $QWDUFWLF6SHFLDOO\3URWHFWHG$UHD1R 5RWKHUD3RLQW $GHODLGH,VODQG 5HYLVHG0DQDJHPHQW3ODQ 0HDVXUH $QWDUFWLF6SHFLDOO\3URWHFWHG$UHD1R 3DUWVRI'HFHSWLRQ ,VODQG6RXWK6KHWODQG,VODQGV 5HYLVHG0DQDJHPHQW3ODQ 0HDVXUH $QWDUFWLF6SHFLDOO\3URWHFWHG$UHD1R (GPRQVRQ3RLQW :RRG%D\5RVV6HD 5HYLVHG0DQDJHPHQW3ODQ 0HDVXUH $QWDUFWLF 6SHFLDOO\ 0DQDJHG $UHD 1R
    [Show full text]
  • CCAMLR Ecosystem Monitoring Program Standard Methods
    COMMISSION FOR THE CONSERVATION OF ANTARCTIC MARINE LIVING RESOURCES CCAMLR ECOSYSTEM MONITORING PROGRAM STANDARD METHODS CCAMLR PO Box 213 North Hobart Tasmania 7002 AUSTRALIA ________________________ Telephone: 61 3 6231 0366 Facsimile: 61 3 6234 9965 Email: [email protected] Website: www.ccamlr.org January 2004 (revised) ___________________________________________________________________________________ This document is produced in the official languages of the Commission: English, French, Russian and Spanish. Copies are available from the CCAMLR Secretariat at the above address. CONTENTS Page INTRODUCTION ....................................................... (iii) SUMMARY TABLES AND MAPS....................................... (v) PART I: STANDARD METHODS FOR MONITORING PARAMETERS OF PREDATOR SPECIES Section 1: Penguins Part I, Section 1: Method A1 – Adult weight on arrival at breeding colony .............. A1.1–A1.5 Method A2 – Duration of the first incubation shift .................... A2.1–A2.4 Method A3 – Breeding population size: A Ground count....................................... A3.1–A3.5 B Aerial count......................................... A3.7–A3.10 Method A4 – Age-specific annual survival and recruitment ............ A4.1–A4.9 Method A5 – Duration of foraging trips .............................. A5.1–A5.8 Method A6 – Breeding success...................................... A6.1–A6.7 Method A7 – Chick weight at fledging ............................... A7.1–A7.5 Method A8 – Chick diet............................................
    [Show full text]
  • Crecimiento De Hielo (Forst Heave) Y Montículos De Hielo (Ice Mound) En
    Land Degradation and Development 2 (9): 3141-3158 (2018) 1 INTERPRETING ENVIRONMENTAL CHANGES FROM 2 RADIONUCLIDES AND SOIL CHARACTERISTICS IN 3 DIFFERENT LANDFORM CONTEXTS OF ELEPHANT ISLAND 4 (MARITIME ANTARCTICA) 5 6 A. Navas1, E. Serrano2, J. López-Martínez3, L. Gaspar1, I. Lizaga1 7 8 1Estación Experimental de Aula Dei, EEAD-CSIC. Avenida Montañana 1005, 50059 9 Zaragoza, Spain. [email protected], [email protected], [email protected] 10 2 Departamento de Geografía, Universidad de Valladolid, 47011, Valladolid, Spain. 11 [email protected] 12 3Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad 13 Autónoma de Madrid, 28049 Madrid. Spain. [email protected] 14 15 16 17 18 19 20 21 22 23 1 Land Degradation and Development 2 (9): 3141-3158 (2018) 24 ABSTRACT 25 Soils in ice-free areas of Elephant Island (South Shetland Islands) have been 26 forming since the last deglaciation following the glacial retreat that started in the area 27 probably later than 9.7-5.5ka. In paraglacial landscapes landforms and processes in 28 transition from glacial to non-glacial conditions, are experiencing rapid environmental 29 adjustments under conditions of climate change. Soils are highly sensitive and can be 30 good descriptors of these transitional changes. A soil sampling campaign was 31 undertaken for characterizing soils developed on moraines and marine platforms, 32 underlain by metamorphic rocks and with distinctive periglacial features. Eight soil 33 profiles were sampled to investigate the processes involved in their development and 34 the relations with main landforms and processes of ice retreat.
    [Show full text]
  • Report on the Polish Geological Investigations in the Antarctic Peninsula Sector, 1987—1988
    POLISH POLAR RESEARCH 9 4 505—519 1988 Krzysztof BIRKENMAJER Institute of Geological Sciences Polish Academy of Sciences Senacka 3 31-002 Kraków, POLAND Report on the Polish geological investigations in the Antarctic Peninsula sector, 1987—1988 ABSTRACT. Geological investigations of the 3rd Polish Geodynamic Expedition to West Antarctica, 1987—1988, covered the following topics: sedimentological and meso- structural studies of the Trinity Peninsula Group (?Carboniferous — Triassic) at Hope Bay, Cape Legoupil and Andvord Bay, Antarctic Peninsula, and at South Bay. Livingston Island (South Shetland Islands); late Mesozoic plant-bearing terrestrial sediments at Hope Bay; Antarctic Peninsula Volcanic Group, Andean-type plutons and systems of acidic and basic dykes (Upper Cretaceous and ?Tertiary) at Trinity Peninsula and around Gerlache Strait (Arctowski Peninsula, Anvers and Brabant islands); basalts and hyaloclastites within Tertiary glacigenic successions of King George Island; volcanic succession of the Deception Island caldera. Key words: West Antarctica, regional geology, stratigraphy, tectonics, sedimentology, volcanology. Introduction The Polish geological investigations in the Antarctic Peninsula sector carried out during the austral summer of 1987—1988 formed a part of scientific programme of the 3rd Polish Geodynamic Expedition to West Antarctica led by Professor Aleksander Guterch. The expedition programme included, moreover, deep-seismic sounding of the Antarctic lithosphere, stationary recording of seismic activity in the area, seismoacoustic profiling and sampling of sea-bottom sediments. This was a direct continuation of the programmes carried out during the first (1979—1980) and the second (1984—1985) Polish Geodynamic Expeditions to West Antarctica organized by the Polish Academy of Sciences {see Guterch et al. 1985; Birkenmajer 1987).
    [Show full text]
  • Scottish Universities Research and Reactor Centre Radiocarbon Measurements III
    Scottish Universities Research and Reactor Centre Radiocarbon Measurements III Item Type Article; text Authors Harkness, D. D.; Wilson, H. W. Citation Harkness, D. D., & Wilson, H. (1979). Scottish universities research and reactor centre radiocarbon measurements III. Radiocarbon, 21(2), 203-256. DOI 10.1017/S0033822200004380 Publisher American Journal of Science Journal Radiocarbon Rights Copyright © The American Journal of Science Download date 29/09/2021 13:31:18 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/652469 [RADIOCARBON, VOL. 21, No. 2, 1979, P. 203-256] SCOTTISH UNIVERSITIES RESEARCH AND REACTOR CENTRE RADIOCARBON MEASUREMENTS III D D HARKNESS and H W WILSON Scottish Universities Research and Reactor Centre, East Kilbride, Scotland INTRODUCTION Results reported here are for samples of geologic context. Through- out the period of these analyses, viz, 1973 through 1975, the preparation of samples and operation of counting systems remained essentially as de- scribed in Radiocarbon, 1973, v 15, p 554 to 565. 613C is determined for all samples dated and these values are quoted at ± 0.5% (2o-) precision and relative to the PDB limestone standard. Age calculation is based on the Lamont formulae using the Libby half-life (5568 years) and 950 of the isotopically corrected activity of NBS oxalic acid as the modern reference standard. Analytical confidence is expressed at the lo- level and reflects a summation of those uncertainties incurred at each component stage in the physiochemical assay. Extremes of the experimental time-scale are defined as follows: 1) measured radio- metric enrichment (8140) in the range 0 to -40% is interpreted as `Mod- ern', 2) measured sample activities indistinguishable from background at the 4o- confidence level are reported in infinite format, ie, > x years where x is calculated on the basis of 814C% = (-1000 + 4cr(614c)).
    [Show full text]
  • Sensitivity Analysis Identifies High Influence Sites for Estimates of Penguin Krill Consumption on the Antarctic Peninsula
    Antarctic Science 25(1), 19–23 (2013) & Antarctic Science Ltd 2012 doi:10.1017/S0954102012000600 Sensitivity analysis identifies high influence sites for estimates of penguin krill consumption on the Antarctic Peninsula HEATHER J. LYNCH1, NORMAN RATCLIFFE2, JENNIFER PASSMORE2, EMMA FOSTER2 and PHILIP N. TRATHAN2 1Ecology & Evolution Department, 640 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794, USA 2British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK [email protected] Abstract: Krill consumption by natural predators represents a critical link between surveys and models of standing krill biomass and the design of a sustainable krill fishery for the Scotia Sea. Antarctic krill (Euphausia superba) is a significant component of diet for penguins breeding in this region and, consequently, uncertainties regarding penguin population abundances contribute to uncertainties in krill predation estimates. We use a comprehensive database of Antarctic penguin abundances to identify 14 breeding colonies that contribute most significantly to uncertainty regarding the total number of pygoscelid penguins breeding in this region. We find that a high quality survey of Zavodovski Island alone would decrease uncertainty in total population by 24.8%, whereas high quality surveys of all 14 ‘‘high-influence’’ locations would decrease uncertainty by almost 72%. Updated population estimates at these sites should be considered top priority for future fieldwork in the region. Our results are based on a robust
    [Show full text]
  • Annual Activity Report 2014
    6 DISTRIBUTION OF SEABIRD COLONIES IN STINKER POINT, ELEPHANT ISLAND Maria Virginia Petry1*, Aparecida Brusamarello Basler1, Elisa de Souza Petersen1, Gustavo Francisco Aver1, Lucas Krüger1,2, Fernanda Caminha Leal Valls1 & Liana Chesini Rossi1 1Universidade do Vale do Rio dos Sinos – UNISINOS. Laboratório de Ornitologia e Animais Marinhos. Av. Unisinos, nº 950, Cristo Rei, 93.022-000, São Leopoldo, Rio Grande do Sul, Brazil. ²IMAR-Centro do Mar e Ambiente Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-517 Coimbra, Portugal. *e-mail: [email protected] https://doi.org/10.4322/apa.2016.005 Abstract: Stinker Point is located on Elephant Island. It presents an ice-free area where di erent seabird species breed during the austral summer. To evaluate the distribution of Antarctic seabird breeding sites, colonies and breeding groups were mapped into the study area. ere are breeding colonies of 13 species. Southern Giant Petrel Macronectes giganteus and Wilson’s Storm-petrel Oceanites oceanicus are the species with most breeding groups mapped, totaling 10 of both species, followed by Cape Petrel Daption capense with nine breeding groups recorded. e high number of species observed in Stiker Point con rms the signi cance of this area as an Important Bird Area in Antarctica (IBA 071). Keywords: Mapping, Breeding Groups, South Shetlands, Antarctic Introduction Elephant Island belongs to the northern group of South Materials and Methods Shetland Islands. It presents a slightly di erent climate During austral summers, from 2009 to 2012, the breeding situation, in uenced by cold winds and storms from the areas of seabird species were mapped using a handheld GPS Weddel Sea.
    [Show full text]
  • Population Trends of Seabirds at Stinker Point, Elephant Island, Maritime Antarctica
    Antarctic Science 30(4), 220–226 (2018) © Antarctic Science Ltd 2018 doi:10.1017/S0954102018000135 Population trends of seabirds at Stinker Point, Elephant Island, Maritime Antarctica MARIA V. PETRY1,2, FERNANDA C.L. VALLS1,2, ELISA S. PETERSEN1,2, JÚLIA V.G. FINGER1,2 and LUCAS KRÜGER1,2 1Laboratório de Ornitologia e Animais Marinhos, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos – UNISINOS, Av. Unisinos, no 950, Cristo Rei, 93.022-000, São Leopoldo, Rio Grande do Sul, Brazil 2National Institute of Science and Technology Antarctic Environmental Research - INCT-APA [email protected] Abstract: Available information about seabird breeding population trends on Stinker Point (Elephant Island, Maritime Antarctic Peninsula) is outdated by decades. This study reports current numbers of breeding species, and evaluates population trends over 28 years. We counted breeding pairs of seabirds along all ice-free areas on Stinker Point during two distinct periods (summers of 1985/86–1991/92 and 2009/ 10–2013/14). Thirteen species currently breed in the area: four Sphenisciformes, four Procellariiformes, one Suliforme and four Charadriiformes. Chinstrap penguin Pygoscelis antarcticus has the highest number of breeding pairs (4971 ± 590), followed by gentoo penguin Pygoscelis papua (1242 ± 339). Comparisons between the two intervals showed declining trends for almost all breeding populations, although southern giant petrels Macronectes giganteus are experiencing a subtle population growth. Population decreases in locations with low human disturbance, such as Stinker Point, may indicate sensibility to climate and environmental change and need further investigation. Received 5 October 2017, accepted 6 March 2018, first published online 3 May 2018 Key words: breeding site, colonies, Important Bird Area, mapping, population status, South Shetland Islands Introduction recommends annual censuses as a method of monitoring breeding populations in the region.
    [Show full text]
  • Geoprocessamento Aplicado Ao Monitoramento Ambiental Da Antártica Marítima: Solos, Geomorfologia E Cobertura Vegetal Da Península Keller
    MÁRCIO ROCHA FRANCELINO GEOPROCESSAMENTO APLICADO AO MONITORAMENTO AMBIENTAL DA ANTÁRTICA MARÍTIMA: SOLOS, GEOMORFOLOGIA E COBERTURA VEGETAL DA PENÍNSULA KELLER Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Solos e Nutrição de Plantas, para obtenção do título de Doctor Scientiae. VIÇOSA MINAS GERAIS - BRASIL 2004 MÁRCIO ROCHA FRANCELINO GEOPROCESSAMENTO APLICADO AO MONITORAMENTO AMBIENTAL DA ANTÁRTICA MARÍTIMA: SOLOS, GEOMORFOLOGIA E COBERTURA VEGETAL DA PENÍNSULA KELLER Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Solos e Nutrição de Plantas, para obtenção do título de Doctor Scientiae. APROVADA: 29 de março de 2004. Prof. Carlos Ernesto G.R. Schaefer Prof. Walter Antônio Pereira Abrahão (Conselheiro) Prof. Norberto Dani Prof. Carlos Antônio O. Vieira Prof. Elpídio Inácio Fernandes Filho (Orientador) ii À minha esposa Kelia e ao meu filho Gabriel, pelo amor e incentivo. iii AGRADECIMENTO À Universidade Federal de Viçosa, pela oportunidade de realização do curso. À CAPES, pela concessão da bolsa. Ao professor Elpídio Inácio Fernandes Filho, pela orientação e amizade. Ao professor Carlos Ernesto Schaefer, pela oportunidade dada de participar do Projeto Criossolos, pela co-orientação e pela amizade. À Marinha do Brasil, ao Ministério do Meio Ambiente e ao CNPq, pelo apoio dado durante as XXI e XXII Operação Antártica Brasileira (OPERANTAR). À minha esposa Kelia e ao meu filho Gabriel, pelo apoio, incentivo e amor ofertado a todo instante, inclusive nas muitas horas ausente. Aos meus pais e irmãos, pelo apoio e incentivo. Ao Núcleo de Estudo de Planejamento e Uso da Terra – NEPUT e toda a sua equipe, pelo apoio incondicional.
    [Show full text]
  • The Antarctic Treaty
    The Antarctic Treaty Measures adopted at the Thirty-fifth Consultative Meeting held at Hobart, 11 – 20 June 2012 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty January 2014 Cm 8810 £29.25 © Crown copyright 2014 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence or email. [email protected] Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commonwealth Office, King Charles Street, London, SW1A 2AH. ISBN: 9780101881029 Printed in the UK by The Stationery Office Limited on behalf of the Controller of Her Majesty’s Stationery Office ID P002619615 01/14 36732 19585 Printed on paper containing 30% recycled fibre content minimum. MEASURES ADOPTED AT THE THIRTY-FIFTH ANTARCTIC TREATY CONSULTATIVE MEETING Hobart, Australia, 11-20 June 2012 The Measures1 adopted at the Thirty-fifth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents.
    [Show full text]