The Oralome and Its Dysbiosis: New Insights Into Oral Microbiome-Host Interactions

Total Page:16

File Type:pdf, Size:1020Kb

The Oralome and Its Dysbiosis: New Insights Into Oral Microbiome-Host Interactions UCSF UC San Francisco Previously Published Works Title The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Permalink https://escholarship.org/uc/item/68k197wb Authors Radaic, Allan Kapila, Yvonne L Publication Date 2021 DOI 10.1016/j.csbj.2021.02.010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Computational and Structural Biotechnology Journal 19 (2021) 1335–1360 journal homepage: www.elsevier.com/locate/csbj Review The oralome and its dysbiosis: New insights into oral microbiome-host interactions ⇑ Allan Radaic, Yvonne L. Kapila Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA article info abstract Article history: The oralome is the summary of the dynamic interactions orchestrated between the ecological community Received 15 October 2020 of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, Received in revised form 13 February 2021 archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorgan- Accepted 16 February 2021 isms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship Available online 27 February 2021 with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this Keywords: review, we discuss the composition of the oralome and inter-species and host-microbial interactions that Dysbiosis take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to dis- Host-microbe interactions Complex diseases ease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and car- Oral microbiome ies and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these Oral biofilm oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer’s disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, pro- biotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) dis- ruption, and host response modulators. Ó 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative- commons.org/licenses/by-nc-nd/4.0/). Contents 1. Introduction . ..................................................................................................... 1336 2. Microbial habitats in the human body . .................................................................................. 1336 3. The oral microbiome and the oralome . .................................................................................. 1336 3.1. Oral bacterial microbiome – the bacteriome. ........................................................................ 1336 3.1.1. The oral bacterial biofilm. ............................................................................. 1336 3.2. Oral viral biome – the virobiome/virome . ........................................................................ 1337 3.3. Oral fungal microbiome - the mycobiome. ........................................................................ 1337 3.4. Oral protozoa biome – the protozoome. ........................................................................ 1338 3.5. Oral archaea biome – the archaeome . ........................................................................ 1338 3.6. Interspecies interactions . ........................................................................................ 1338 3.7. Oral host-microbial interactions – the oralome . ..................................................... 1340 3.7.1. Eubiosis . ............................................................................................. 1340 4. Oral biofilm dysbiosis signatures of common diseases . ............................................................... 1341 4.1. Dental caries and periodontal disease . ........................................................................ 1341 4.2. Atherosclerosis . ........................................................................................ 1344 4.3. Alzheimer’s disease . ........................................................................................ 1344 ⇑ Corresponding author at: Department of Orofacial Sciences, University of California San Francisco, School of Dentistry, 513 Parnassus Avenue, S616C, Box 0422, San Francisco, CA 94143, USA. E-mail address: [email protected] (Y.L. Kapila). https://doi.org/10.1016/j.csbj.2021.02.010 2001-0370/Ó 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). A. Radaic and Y.L. Kapila Computational and Structural Biotechnology Journal 19 (2021) 1335–1360 4.4. Diabetes . ........................................................................................ 1345 4.5. Pregnancy complications ........................................................................................ 1345 4.6. Head and neck cancer . ........................................................................................ 1346 4.7. Other cancers. ........................................................................................ 1348 4.7.1. Pancreatic cancer . ............................................................................. 1348 4.7.2. Colorectal cancer . ............................................................................. 1348 5. Current computational techniques to evaluate oral biofilm dysbiosis . ............................................ 1348 6. Current and novel techniques for modulating oral biofilm dysbiosis . ............................................ 1350 6.1. Oral hygiene . ........................................................................................ 1350 6.2. Antimicrobial peptides (AMPs). ........................................................................ 1350 6.3. Use of nanosized-drug delivery systems . ........................................................................ 1351 6.4. Prebiotics . ........................................................................................ 1351 6.5. Probiotics . ........................................................................................ 1352 6.6. Extracellular polymeric matrix (EPM) disruption . ..................................................... 1352 6.7. Host response modulators (HRM) . ........................................................................ 1353 7. Clinical trials. ..................................................................................................... 1353 8. Summary and future outlook . .................................................................................. 1354 CRediT authorship contribution statement . ............................................................... 1354 Declaration of Competing Interest . .................................................................................. 1354 Acknowledgements . .................................................................................. 1354 References . ..................................................................................................... 1354 1. Introduction on the oral bacteria within the microbiome, while other oral biomes (i.e. fungi, archaea, protozoa and the viral biomes) receive More than three centuries ago, Antony van Leeuwenhoek was much less attention. Although there is limited literature on these the first person to observe microbes, possibly bacteria, from his other biomes, they remain relevant [1,9,13,14]. Thus, we will own dental plaque with the use a microscope that he constructed discuss each of these biomes in the context of the oral cavity. [1]; thereby laying down the foundations of microbiology. Since then, new discoveries have highlighted that these microbes inter- 3.1. Oral bacterial microbiome – the bacteriome act with their human host. A recent estimate shows that 3.8 Â 1013 microorganisms colonize the human body, accounting Due to changes in shear forces, nutrient/energy supply, temper- for about half of the total cells on a human body [2]. In aggregate, ature, pH, and oxygen content in different environments, bacteria these organisms are known as the human microbiome [3,4]. have evolved by leveraging specific survival strategies, including co-aggregation of different cells into communities embedded in 2. Microbial habitats in the human body extracellular matrices –biofilms [10]. Despite the existence of planktonic bacteria in the oral cavity, most of the oral microbiome The NIH Human Microbiome Project (HMP), which was exists in a biofilm state, known as the oral biofilm. launched in 2007, comprised 18 different studies to map and characterize the human microbiome and its role in human health 3.1.1. The oral bacterial biofilm and disease. It is well appreciated that the
Recommended publications
  • Enantioselektive Biotransformationen Zur Synthese Von Molekülen Mit
    Untersuchung zur Produktion und gerichteten Immobilisierung einer Alginat Lyase aus Sphingomonas sp. A1 Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Herrn Dipl.-Biol. Christian Beyerodt geboren am 15.12.1982 in Halle an der Saale Halle (Saale) 2015 Gutachter/in: 1. Prof. Dr. Markus Pietzsch 2. Prof. Dr. Reinhard Neubert 3. Prof. Dr. Christoph Syldatk Tag der öffentlichen Verteidigung: 30.03.2016 2 Selbstständigkeitserklärung Hiermit erkläre ich, Christian Beyerodt, dass ich die vorliegende Arbeit - mit Ausnahme der aufgeführten Personen, Unterlagen bzw. Literaturstellen - selbstständig und ohne fremde Hilfe angefertigt habe, _________________ Halle, Datum 3 Danksagung Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitar- beiter in der Arbeitsgruppe „Aufarbeitung biotechnischer Produkte“ des Institutes für Phar- mazie an der Martin-Luther-Universität Halle-Wittenberg. Viele Menschen haben mich wäh- rend dieser Zeit unterstützt und dazu beigetragen, dass ich diese Zeit der Promotion als ei- nen positiven Lebensabschnitt in Erinnerung behalten werde. Diesen Personen möchte ich im Folgenden danken. Zuerst möchte ich mich bei Prof. Dr. Markus Pietzsch für das entgegengebrachte Vertrauen, mir das Thema zu überlassen, bedanken. Auch danke ich für die vielen konstruktiven Dis- kussionen, Kritiken und Hilfestellungen, welche diese Arbeit erst ermöglichten. Weiterhin danke ich der Firma Lanxess, im speziellen Frau Dr. Hermsdorf und Herrn Dr. Schellenberg. Das interdisziplinäre Projekt wurde die Grundlage für meine Forschungen. Ich danke natürlich auch der gesamten Arbeitsgruppe „AG-Pietzsch“ für die schöne Zeit und die zahlreichen Aktivitäten neben der Arbeit. Die Sommerfeste waren immer ein riesen Spaß.
    [Show full text]
  • Assessment of Efficacy of Chlorhexidine Chip As an Adjunct to Scaling and Root Planning Using N-Benzoyl- DL-Arginine-2-Naphthylamide Test Kit
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Asian Pacific Journal of Health Sciences e-ISSN: 2349-0659 p-ISSN: 2350-0964 ORGINAL ARTICLE doi: 10.21276/apjhs.2018.5.2.21 Assessment of efficacy of chlorhexidine chip as an adjunct to scaling and root planning using N-benzoyl- DL-arginine-2-naphthylamide test kit Malvika Singh*, Rajan Gupta, Parveen Dahiya, Mukesh Kumar, Rohit Bhardwaj Department of Periodontics, Himachal Institute of Dental Sciences, Paonta Sahib, Sirmaur, Himachal Pradesh, India ABSTRACT Background: With increasing advances in the field of medicine, diagnosing a disease has been an easy task and periodontitis is no exception to this. N-benzoyl-DL-arginine-2-naphthylamide (BANA) test is a modern chair-side paraclinical method designed to detect the presence of one or more anaerobic bacteria commonly associated with periodontal disease, namely Treponema denticola, Porphyromonas gingivalis, and Tannerella forsythia in subgingival plaque samples taken from periodontally diseased teeth. Aim: The aim of the study was to assess the efficacy of chlorhexidine chip as an adjunct to scaling and root planning (SRP), using BANA Test Kit. Materials and Methods: A total of 20 chronic periodontitis patients (aged 35–55 years) having pocket depth of ≥5 mm in molar teeth were selected and randomly divided into following treatment groups: Group I: SRP and Group II: SRP along with chlorhexidine chip. The clinical and microbial parameters were recorded at baseline and 1 and 3 months post-treatment. BANA chairside test was used for estimation of specific microbiota. Statistical analysis used: Mann–Whitney test, Wilcoxon signed test, t-test, Pearson’s Chi-square test, and variability test were used.
    [Show full text]
  • Microbial Biogeography and Ecology of the Mouth and Implications for Periodontal
    bioRxiv preprint doi: https://doi.org/10.1101/541052; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Microbial biogeography and ecology of the mouth and implications for periodontal diseases Authors: Diana M. Proctor1,2,10, Katie M. Shelef3,10, Antonio Gonzalez4, Clara L. Davis Long5, Les Dethlefsen1, Adam Burns1, Peter M. Loomer6, Gary C. Armitage7, Mark I. Ryder7, Meredith E. Millman7, Rob Knight4, Susan P. Holmes8, David A. Relman1,5,9 Affiliations 1Division of Infectious Disease & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA 2National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA 3Department of Biology, Stanford University School of Medicine, Stanford, CA 94305 USA 4Departments of Pediatrics and Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093 USA 5Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA 6Ashman Department of Periodontology & Implant Dentistry, New York University College of Dentistry, New York, NY 10010 USA 7Division of Periodontology, University of California, San Francisco School of Dentistry, San Francisco, CA 94143 USA 8Department of Statistics, Stanford University, Stanford, CA 94305 USA 9Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA 10These authors contributed equally Corresponding author: David A. Relman: [email protected]; Address: Encina E209, 616 Serra Street, Stanford, California 94305-6165; Phone: 650-736-6822; Fax: 650-852-3291 1 bioRxiv preprint doi: https://doi.org/10.1101/541052; this version posted February 8, 2019.
    [Show full text]
  • Probiotic Alternative to Chlorhexidine in Periodontal Therapy: Evaluation of Clinical and Microbiological Parameters
    microorganisms Article Probiotic Alternative to Chlorhexidine in Periodontal Therapy: Evaluation of Clinical and Microbiological Parameters Andrea Butera , Simone Gallo * , Carolina Maiorani, Domenico Molino, Alessandro Chiesa, Camilla Preda, Francesca Esposito and Andrea Scribante * Section of Dentistry–Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy; [email protected] (A.B.); [email protected] (C.M.); [email protected] (D.M.); [email protected] (A.C.); [email protected] (C.P.); [email protected] (F.E.) * Correspondence: [email protected] (S.G.); [email protected] (A.S.) Abstract: Periodontitis consists of a progressive destruction of tooth-supporting tissues. Considering that probiotics are being proposed as a support to the gold standard treatment Scaling-and-Root- Planing (SRP), this study aims to assess two new formulations (toothpaste and chewing-gum). 60 patients were randomly assigned to three domiciliary hygiene treatments: Group 1 (SRP + chlorhexidine-based toothpaste) (control), Group 2 (SRP + probiotics-based toothpaste) and Group 3 (SRP + probiotics-based toothpaste + probiotics-based chewing-gum). At baseline (T0) and after 3 and 6 months (T1–T2), periodontal clinical parameters were recorded, along with microbiological ones by means of a commercial kit. As to the former, no significant differences were shown at T1 or T2, neither in controls for any index, nor in the experimental
    [Show full text]
  • Isolation and Identification of Oral Bacteria and Characterization for Bacteriocin Production and Antimicrobial Sensitivity
    Isolation and Identification of Oral Bacteria and Characterization for Bacteriocin Production and Antimicrobial Sensitivity Monzilur Rahman1, Md. Nahidul Islam1, Muhammad Nurul Islam2 and Mohammad Shahnoor Hossain1 1Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh 2Department of Botany, University of Dhaka, Dhaka-1000, Bangladesh Received: May 10, 2015; Accepted: June 03, 2015; Published (web): June 15, 2015 ABSTRACT: Oral bacteria play an important role in body homeostasis and the bacterial genus Streptococcus is the dominant microflora commonly found in oral bacterial community. Their ability to establish biofilm lifestyle in the oral cavity by outcompeting other bacteria has been attributed to the production of bacteriocin along with other strategies. The goal of the present study was to isolate and identify oral bacteria and characterize their ability to produce bacteriocin against other oral bacteria as well as their sensitivity to common antibiotics. We have employed deferred antagonism bacteriocin assay for bacteriocin production and disk diffusion assay for antibiotic susceptibility testing. We identified eight bacterial strains belonging to the genera Streptococcus and Enterococcus based on colony morphology, biochemical assays, 16S rDNA sequence analysis, and species-specific PCR. Antibiotic susceptibility assay indicated that some of the strains are resistant to one or more antibiotics. Our study also revealed that the isolated strains are capable of producing one or more bacteriocins
    [Show full text]
  • Analysis of Carbohydrates and Glycoconjugates by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: an Update for 2011–2012
    ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2011–2012 David J. Harvey* Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK Received 19 June 2014; accepted 15 January 2015 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/mas.21471 This review is the seventh update of the original article published text. As the review is designed to complement the earlier work, in 1999 on the application of MALDI mass spectrometry to the structural formulae, etc. that were presented earlier are not analysis of carbohydrates and glycoconjugates and brings repeated. However, a citation to the structure in the earlier work coverage of the literature to the end of 2012. General aspects is indicated by its number with a prefix (i.e., 1/x refers to such as theory of the MALDI process, matrices, derivatization, structure x in the first review and 2/x to structure x the second). MALDI imaging, and fragmentation are covered in the first part Books, general reviews, and review-type articles directly of the review and applications to various structural types concerned with, or including, MALDI analysis of carbohydrates constitute the remainder. The main groups of compound are and glycoconjugates to have been published during the review oligo- and poly-saccharides, glycoproteins, glycolipids, glyco- period are listed in Table 1. Reviews relating to more specific sides, and biopharmaceuticals. Much of this material is presented aspects of MALDI analysis are listed in the appropriate sections. in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and II.
    [Show full text]
  • The Salivary Microbiome for Differentiating Individuals: Proof of Principle
    Published in "Microbes and Infection 18(6): 399–405, 2016" which should be cited to refer to this work. The salivary microbiome for differentiating individuals: proof of principle Sarah L. Leake a, Marco Pagni b, Laurent Falquet b,c, Franco Taroni a,1, Gilbert Greub d,*,1 a School of Criminal Justice, University of Lausanne, Lausanne, Switzerland b Swiss Institute of Bioinformatics, Vital-IT Group, Lausanne, Switzerland c Department of Biology, University of Fribourg, Fribourg, Switzerland d Institute of Microbiology, Lausanne, Switzerland Abstract Human identification has played a prominent role in forensic science for the past two decades. Identification based on unique genetic traits is driving the field. However, this may have limitations, for instance, for twins. Moreover, high-throughput sequencing techniques are now available and may provide a high amount of data likely useful in forensic science. This study investigates the potential for bacteria found in the salivary microbiome to be used to differentiate individuals. Two different targets (16S rRNA and rpoB) were chosen to maximise coverage of the salivary microbiome and when combined, they increase the power of dif- ferentiation (identification). Paired-end Illumina high-throughput sequencing was used to analyse the bacterial composition of saliva from two different people at four different time points (t ¼ 0 and t ¼ 28 days and then one year later at t ¼ 0 and t ¼ 28 days). Five major phyla dominate the samples: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. Streptococcus, a Firmicutes, is one of the most abundant aerobic genera found in saliva and targeting Streptococcus rpoB has enabled a deeper characterisation of the different streptococci species, which cannot be differentiated using 16S rRNA alone.
    [Show full text]
  • Parents with Periodontitis Impact the Subgingival Colonization of Their Ofspring Mabelle Freitas Monteiro1, Khaled Altabtbaei2, Purnima S
    www.nature.com/scientificreports OPEN Parents with periodontitis impact the subgingival colonization of their ofspring Mabelle Freitas Monteiro1, Khaled Altabtbaei2, Purnima S. Kumar3,4*, Márcio Zafalon Casati1, Karina Gonzales Silverio Ruiz1, Enilson Antonio Sallum1, Francisco Humberto Nociti‑Junior1 & Renato Corrêa Viana Casarin1,4 Early acquisition of a pathogenic microbiota and the presence of dysbiosis in childhood is associated with susceptibility to and the familial aggregation of periodontitis. This longitudinal interventional case–control study aimed to evaluate the impact of parental periodontal disease on the acquisition of oral pathogens in their ofspring. Subgingival plaque and clinical periodontal metrics were collected from 18 parents with a history of generalized aggressive periodontitis and their children (6–12 years of age), and 18 periodontally healthy parents and their parents at baseline and following professional oral prophylaxis. 16S rRNA amplicon sequencing revealed that parents were the primary source of the child’s microbiome, afecting their microbial acquisition and diversity. Children of periodontitis parents were preferentially colonized by Filifactor alocis, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus parasanguinis, Fusobacterium nucleatum and several species belonging to the genus Selenomonas even in the absence of periodontitis, and these species controlled inter‑bacterial interactions. These pathogens also emerged as robust discriminators of the microbial signatures of children of parents with periodontitis. Plaque control did not modulate this pathogenic pattern, attesting to the microbiome’s resistance to change once it has been established. This study highlights the critical role played by parental disease in microbial colonization patterns in their ofspring and the early acquisition of periodontitis‑related species and underscores the need for greater surveillance and preventive measures in families of periodontitis patients.
    [Show full text]
  • Association of Fungi and Archaea of the Gut Microbiota with Crohn's
    pathogens Article Association of Fungi and Archaea of the Gut Microbiota with Crohn’s Disease in Pediatric Patients—Pilot Study Agnieszka Krawczyk 1, Dominika Salamon 1,* , Kinga Kowalska-Duplaga 2 , Tomasz Bogiel 3,4 and Tomasz Gosiewski 1,* 1 Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; [email protected] 2 Department of Pediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; [email protected] 3 Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; [email protected] 4 Clinical Microbiology Laboratory, University Hospital No. 1 in Bydgoszcz, 85-094 Bydgoszcz, Poland * Correspondence: [email protected] (D.S.); [email protected] (T.G.); Tel.: +48-(12)-633-25-67 (D.S.); +48-(12)-633-25-67 (T.G.) Abstract: The composition of bacteria is often altered in Crohn’s disease (CD), but its connection to the disease is not fully understood. Gut archaea and fungi have recently been suggested to play a role as well. In our study, the presence and number of selected species of fungi and archaea in pediatric patients with CD and healthy controls were evaluated. Stool samples were collected from children with active CD (n = 54), non-active CD (n = 37) and control subjects (n = 33). The prevalence and the number of selected microorganisms were assessed by real-time PCR. The prevalence of Candida Citation: Krawczyk, A.; Salamon, D.; tropicalis was significantly increased in active CD compared to non-active CD and the control group Kowalska-Duplaga, K.; Bogiel, T.; (p = 0.011 and p = 0.036, respectively).
    [Show full text]
  • Microbiological, Lipid and Immunological Profiles in Children
    Original Article http://dx.doi.org/10.1590/1678-77572016-0196 Microbiological, lipid and immunological SUR¿OHVLQFKLOGUHQZLWKJLQJLYLWLVDQG type 1 diabetes mellitus Abstract Cristiane DUQUE1 Objective: The aim of this study was to compare the prevalence of SHULRGRQWDOSDWKRJHQVV\VWHPLFLQÀDPPDWRU\PHGLDWRUVDQGOLSLGSUR¿OHVLQ Mariana Ferreira Dib JOÃO2 type 1 diabetes children (DM) with those observed in children without diabetes Gabriela Alessandra da Cruz (NDM), both with gingivitis. Material and methods: Twenty-four DM children Galhardo CAMARGO3 and twenty-seven NDM controls were evaluated. The periodontal status, 3 Gláucia Schuindt TEIXEIRA JO\FHPLF DQG OLSLG SUR¿OHV ZHUH GHWHUPLQHG IRU ERWK JURXSV 6XEJLQJLYDO Thamiris Santana MACHADO3 samples of periodontal sites were collected to determine the prevalence of Rebeca de Souza AZEVEDO3 SHULRGRQWDOPLFURRUJDQLVPVE\3&5%ORRGVDPSOHVZHUHFROOHFWHGIRU,/ǃ Flávia Sammartino MARIANO2 TNF-D and IL-6 analysis using ELISA kits. Results: Periodontal conditions of DM Natália Helena COLOMBO1 and NDM patients were similar, without statistical differences in periodontal indices. When considering patients with gingivitis, all lipid parameters Natália Leal VIZOTO2 evaluated were highest in the DM group; Capnocytophaga sputigena and Renata de Oliveira Capnocytophaga ochracea were more prevalent in the periodontal sites of DM 2 MATTOS-GRANER children. “Red complex” bacteria were detected in few sites of DM and NDM groups. Fusobacterium nucleatum and Campylobacter rectus were frequently IRXQGLQERWKJURXSV6LPLODUOHYHOVRI,/ǃ71)D
    [Show full text]
  • Periodontal, Metabolic, and Cardiovascular Disease
    Pteridines 2018; 29: 124–163 Research Article Open Access Hina Makkar, Mark A. Reynolds#, Abhishek Wadhawan, Aline Dagdag, Anwar T. Merchant#, Teodor T. Postolache*# Periodontal, metabolic, and cardiovascular disease: Exploring the role of inflammation and mental health Journal xyz 2017; 1 (2): 122–135 The First Decade (1964-1972) https://doi.org/10.1515/pteridines-2018-0013 receivedResearch September Article 13, 2018; accepted October 10, 2018. List of abbreviations Abstract: Previous evidence connects periodontal AAP: American Academy of Periodontology Max Musterman, Paul Placeholder disease, a modifiable condition affecting a majority of AGEs: Advanced glycation end products Americans,What withIs So metabolic Different and cardiovascular About morbidity AgP: Aggressive periodontitis and mortality. This review focuses on the likely mediation AHA: American Heart Association ofNeuroenhancement? these associations by immune activation and their anti-CL: Anti-cardiolipin potentialWas istinteractions so anders with mental am Neuroenhancement?illness. Future anti-oxLDL: Anti-oxidized low-density lipoprotein longitudinal, and ideally interventional studies, should AP: Acute periodontitis focus on reciprocal interactions and cascading effects, as ASCVD: Atherosclerotic cardiovascular disease wellPharmacological as points for effective and Mentalpreventative Self-transformation and therapeutic C. pneumoniae in Ethic : Chlamydia pneumoniae interventionsComparison across diagnostic domains to reduce CAL: Clinical attachment loss morbidity,Pharmakologische
    [Show full text]
  • Syllabus 2017-18 for BDS Degree Course
    THE TAMIL NADU Dr. M.G.R. MEDICAL UNIVERSITY No. 69, ANNA SALAI, GUINDY, CHENNAI – 600 032. B.D.S. DEGREE COURSES SYLLABUS AND CURRICULUM THE TAMIL NADU Dr. M.G.R. MEDICAL UNIVERSITY, CHENNAI PREFACE The Syllabus and Curriculum for the B.D.S.Courses have been restructured with the Experts from the concerned specialities to educate students of BDS course to 1. Take up the responsibilities of dental surgeon of first contact and be capable of functioning independently in both urban and rural environment. 2. Provide educational experience that allows hands-on-experience both in hospital as well as in community setting. 3. Make maximum efforts to encourage integrated teaching and de-emphasize compartmentalisation of disciplines so as to achieve horizontal and vertical integration in different phases. 4. Offer educational experience that emphasizes health rather than only disease. 5. Teach common problems of health and disease and to the national programmes. 6. Use learner oriented methods, which would encourage clarity of expression, independence of judgement, scientific habits, problem solving abilities, self initiated and self-directed learning. 7. Use of active methods of learning such as group discussions, seminars, role play, field visits, demonstrations, peer interactions etc., which would enable students to develop personality, communication skills and other qualities towards patient care. The Students passing out of this Prestigious University should be acquire adequate knowledge, necessary skills and such attitudes which are required for carrying out all the activities appropriate to general dental practice involving the prevention, diagnosis and treatment of anomalies and diseases of the teeth, mouth, jaws and associated tissues.
    [Show full text]