Prospective of Various Graph Coloring and Directions

Total Page:16

File Type:pdf, Size:1020Kb

Prospective of Various Graph Coloring and Directions JAC : A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 A COMPREHENSIVE STUDY OF VARIOUS APPLICATION OF GRAPH THEORY IN MODELING: PROSPECTIVE OF VARIOUS GRAPH COLORING AND DIRECTIONS 1K.VARALAXMI, RAPOLU MANJULA2, GATTU PRASAD3, K.SANTHOSH KUMAR4 1Asst.prof,Holymary institute of technology and science, Keesara - Bogaram - Ghatkesar Rd, Kondapur, Telangana 501301 234Asst.prof ,Vignan's Institute of management and technology for women, Kondapur, Ghatkesar, Ranga Reddy, Telangana Abstract: Graph theory is quickly moving into the standard of arithmetic for the most part in light of its applications in various fields which incorporate organic chemistry (genomics), electrical building (interchanges systems and coding theory), software engineering (calculations and calculations) and tasks inquire about (booking). The incredible combinatorial strategies found in graph theory have likewise been utilized to demonstrate major outcomes in different zones of unadulterated arithmetic. Graphs are utilized to characterize the progression of calculation. Graphs are utilized to speak to systems of correspondence. Graphs are utilized to speak to information association. Graph change frameworks take a shot at rule-situated in-memory control of graphs. In arithmetic, graph theory is the investigation of graphs, which are numerical structures, used to display pairwise relations between objects. A graph right now made up of vertices (additionally called hubs or focuses) which are associated by edges (likewise called connections or lines). The paper along these lines centers around the various parts of this incredible technique for representation of logical realities that can be utilized to tackle some constant problems. The accompanying paper presents the peruser with the presentation, phrasing of graph theory. Imminent of different Graph Coloring and directions applications of graph theory in the assorted fields of science and innovation. Keywords: Coloring Applications, Graph Coloring, Graph Labeling, Modeling, Problem Solving Techniques, Representation. I. INTRODUCTION In mathematics, graph theory is the investigation of graphs, which are scientific structures used to show pairwise relations between objects. A graph right now made up of vertices (likewise called hubs or focuses) which are associated by edges (additionally called connections or lines). A differentiation is made between undirected graphs, where edges interface two vertices evenly and coordinated graphs, where edges connect two vertices unevenly; see Graph (discrete science) for increasing point by point definitions and for different varieties in the sorts of the graph that are normally thought of. Graphs are one of the prime objects of study in discrete science. Volume XIII, Issue IV, APRIL 2020 Page No:68 JAC : A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 Over one century after Euler's paper on the extensions of Königsberg and keeping in mind that Listing was presenting the idea of topology, Cayley was driven by an enthusiasm for specific expository structures emerging from differential analytics to contemplate a specific class of graphs, the trees.[22] This examination had numerous ramifications for hypothetical science. The techniques he utilized fundamentally concern the list of graphs with specific properties. Enumerative graph theory at that point emerged from the aftereffects of Cayley and the essential outcomes distributed by Pólya somewhere in the range of 1935 and 1937. These were summed up by De Bruijn in 1959. Cayley connected his outcomes on trees with contemporary investigations of synthetic composition.[23] The combination of thoughts from science with those from science started what has become some portion of the standard phrasing of graph theory. Specifically, the expression "graph" was presented by Sylvester in a paper distributed in 1878 in Nature, where he draws a similarity between "quantic invariants" and "co-variations" of polynomial math and atomic diagrams:[24] The primary reading material on graph theory was composed by Dénes Kőnig and distributed in 1936.[25] Another book by Frank Harary, distributed in 1969, was "considered the world over to be the complete course reading on the subject",[26] and empowered mathematicians, physicists, electrical architects, and social researchers to converse with one another. Harary gave the entirety of the sovereignties to subsidize the Pólya Prize.[27] One of the most popular and animating problems in graph theory is the four-shading problem: "Is it genuine that any guide attracted the plane may have its districts hued with four hues so that any two locales having a typical outskirt have various hues?" This problem was first presented by Francis Guthrie in 1852 and its originally set up account is in a letter of De Morgan routed to Hamilton that year. Numerous wrong evidence has been proposed, including those by Cayley, Kempe, and others. The investigation and the speculation of this problem by Tait, Heawood, Ramsey, and Hadwiger prompted the investigation of the colorings of the graphs inserted on surfaces with the discretionary class. Tait's reformulation created another class of problems, the factorization problems, especially concentrated by Petersen and Kőnig. Crafted by Ramsey on hues and all the more particularly the outcomes acquired by Turán in 1941 were at the cause of another part of graph theory, extremal graph theory. The four-shading problem stayed unsolved for over a century. In 1969 Heinrich Heesch distributed a strategy for solving the problem of utilizing computers.[28] A PC supported verification delivered in 1976 by Kenneth Appel and Wolfgang Haken utilizes the thought of "releasing" created by Heesch.[29][30] The confirmation included checking the properties of 1,936 designs by PC and was not completely acknowledged at the time because of its multifaceted nature. A less complex verification considering just 633 arrangements was given twenty years after the fact by Robertson, Seymour, Sanders, and Thomas.[1] The self-sufficient advancement of topology from 1860 and 1930 prepared graph theory back through crafted by Jordan, Kuratowski and Whitney. Another significant factor of normal Volume XIII, Issue IV, APRIL 2020 Page No:69 JAC : A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 improvement of graph theory and topology originated from the utilization of the techniques of current polynomial math. The principal case of such use originates from crafted by the physicist Gustav Kirchhoff, who distributed in 1845 his Kirchhoff's circuit laws for figuring the voltage and flow in electric circuits. The presentation of probabilistic strategies in graph theory, particularly in the investigation of Erdős and Rényi of the asymptotic likelihood of graph network, offered to ascend to one more branch, known as arbitrary graph theory, which has been a productive wellspring of graph- theoretic outcomes. Graph drawing Graphs are spoken to outwardly by drawing a point or hover for each vertex and drawing a line between two vertices on the off chance that they are associated with an edge. In the event that the graph is coordinated, the bearing is demonstrated by drawing a bolt. A graph drawing ought not to be mistaken for the graph itself (the theoretical, non-visual structure) as there are a few different ways to structure the graph drawing. The only thing that is important is which vertices are associated with which others by what number of edges and not the specific design. By and by, it is frequently hard to choose if two drawings speak to a similar graph. Contingent upon the problem space a few designs might be more qualified and more obvious than others. The spearheading work of W. T. Tutte was powerful regarding the matter of graph drawing. Among different accomplishments, he presented the utilization of direct mathematical techniques to acquire graph drawings. Graph drawing additionally can be said to incorporate problems that manage the intersection number and its different speculations. The intersection number of a graph is the base number of crossing points between edges that a drawing of the graph in the plane must contain. For a planar graph, the intersection number is zero by definition. II. GRAPH THEORY APPLICATIONS Volume XIII, Issue IV, APRIL 2020 Page No:70 JAC : A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 The system graph framed by Wikipedia editors (edges) adding to various Wikipedia language forms (vertices) for one month in summer 2013.[6] Graphs can be utilized to demonstrate numerous sorts of relations and procedures in physical, biological,[7][8] social and data frameworks. Numerous functional problems can be spoken to by graphs. Accentuating their application to true frameworks, the term arrange is at times characterized to mean a graph in which properties (for example names) are related with the vertices and edges, and the subject that communicates and comprehends this present reality frameworks as a system is called arrange science. Software engineering In software engineering, graphs are utilized to speak to systems of correspondence, information association, computational gadgets, the progression of calculation, and so on. For example, the connection structure of a site can be spoken to by a coordinated graph, wherein the vertices speak to pages and coordinated edges speak to joins starting with one page then onto the next. A comparative methodology can be taken to problems in social media,[9] travel, science, PC chip configuration, mapping the movement of neurodegenerative
Recommended publications
  • The Number of Dissimilar Supergraphs of a Linear Graph
    Pacific Journal of Mathematics THE NUMBER OF DISSIMILAR SUPERGRAPHS OF A LINEAR GRAPH FRANK HARARY Vol. 7, No. 1 January 1957 THE NUMBER OF DISSIMILAR SUPERGRAPHS OF A LINEAR GRAPH FRANK HARARY 1. Introduction* A (p, q) graph is one with p vertices and q lines. A formula is obtained for the number of dissimilar occurrences of a given (α, β) graph H as a subgraph of all (p, q) graphs G, oc<ip, β <: q, that is, for the number of dissimilar (p, q) supergraphs of H. The enumeration methods are those of Pόlya [7]. This result is then appli- ed to obtain formulas for the number of dissimilar complete subgraphs (cliques) and cycles among all (p, q) graphs. The formula for the num- ber of rooted graphs in [2] is a special case of the number of dissimilar cliques. This note complements [3] in which the number of dissimilar {p, k) subgraphs of a given (p, q) graph is found. We conclude with a discussion of two unsolved problems. A {linear) graph G (see [5] as a general reference) consists of a finite set V of vertices together with a prescribed subset W of the col- lection of all unordered pairs of distinct vertices. The members of W are called lines and two vertices vu v% are adjacent if {vlt v2} e W, that is, if there is a line joining them. By the complement Gr of a graph G, we mean the graph whose vertex-set coincides with that of G, in which two vertices are adjacent if and only if they are not adjacent in G.
    [Show full text]
  • Remembering Frank Harary
    Discrete Mathematics Letters Discrete Math. Lett. 6 (2021) 1–7 www.dmlett.com DOI: 10.47443/dml.2021.s101 Editorial Remembering Frank Harary On March 11, 2005, at a special session of the 36th Southeastern International Conference on Combinatorics, Graph The- ory, and Computing held at Florida Atlantic University in Boca Raton, the famous mathematician Ralph Stanton, known for his work in combinatorics and founder of the Institute of Combinatorics and Its Applications, stated that the three mathematicians who had the greatest impact on modern graph theory have now all passed away. Stanton was referring to Frenchman Claude Berge of France, Canadian William Tutte, originally from England, and a third mathematician, an American, who had died only 66 days earlier and to whom this special session was being dedicated. Indeed, that day, March 11, 2005, would have been his 84th birthday. This third mathematician was Frank Harary. Let’s see what led Harary to be so recognized by Stanton. Frank Harary was born in New York City on March 11, 1921. He was the oldest child of Jewish immigrants from Syria and Russia. He earned a B.A. degree from Brooklyn College in 1941, spent a graduate year at Princeton University from 1943 to 1944 in theoretical physics, earned an M.A. degree from Brooklyn College in 1945, spent a year at New York University from 1945 to 1946 in applied mathematics, and then moved to the University of California at Berkeley, where he wrote his Ph.D. Thesis on The Structure of Boolean-like Rings, in 1949, under Alfred Foster.
    [Show full text]
  • Leverages and Constraints for Turkish Foreign Policy in Syrian War: a Structural Balance Approach
    Instructions for authors, permissions and subscription information: E-mail: [email protected] Web: www.uidergisi.com.tr Leverages and Constraints for Turkish Foreign Policy in Syrian War: A Structural Balance Approach Serdar Ş. GÜNER* and Dilan E. KOÇ** * Assoc. Prof. Dr., Department of International Relations, Bilkent University ** Student, Department of International Relations, Bilkent University To cite this article: Güner, Serdar Ş. and Koç, Dilan E., “Leverages and Constraints for Turkish Foreign Policy in Syrian War: A Structural Balance Approach”, Uluslararası İlişkiler, Volume 15, No. 59, 2018, pp. 89-103. Copyright @ International Relations Council of Turkey (UİK-IRCT). All rights reserved. No part of this publication may be reproduced, stored, transmitted, or disseminated, in any form, or by any means, without prior written permission from UİK, to whom all requests to reproduce copyright material should be directed, in writing. References for academic and media coverages are beyond this rule. Statements and opinions expressed in Uluslararası İlişkiler are the responsibility of the authors alone unless otherwise stated and do not imply the endorsement by the other authors, the Editors and the Editorial Board as well as the International Relations Council of Turkey. Uluslararası İlişkiler Konseyi Derneği | Uluslararası İlişkiler Dergisi Web: www.uidergisi.com.tr | E- Mail: [email protected] Leverages and Constraints for Turkish Foreign Policy in Syrian War: A Structural Balance Approach Serdar Ş. GÜNER Assoc. Prof. Dr., Department of International Relations, Bilkent University, Ankara, Turkey. E-mail: [email protected] Dilan E. KOÇ Student, Department of International Relations, Bilkent University, Ankara, Turkey. E-mail: [email protected] The authors thank participants of the Seventh Eurasian Peace Science Network Meeting of 2018 and anonymous referees for their comments and suggestions.
    [Show full text]
  • Introduction to Graph Theory: a Discovery Course for Undergraduates
    Introduction to Graph Theory: A Discovery Course for Undergraduates James M. Benedict Augusta State University Contents 1 Introductory Concepts 1 1.1 BasicIdeas ...................................... 1 1.2 Graph Theoretic Equality . 2 1.3 DegreesofVertices .................................. 4 1.4 Subgraphs....................................... 6 1.5 The Complement of a Graph . 7 2 Special Subgraphs 9 2.1 Walks ......................................... 9 2.2 Components...................................... 10 2.3 BlocksofaGraph................................... 11 3 Three Famous Results and One Famous Graph 14 3.1 The Four-Color Theorem . 14 3.2 PlanarGraphs..................................... 16 3.3 ThePetersenGraph ................................. 18 3.4 TraceableGraphs ................................... 18 K(3;3;3) = H1 H2 Removing the edge w1v2 destroys the only C4 v 3 u1 H1: H2: w3 v v2 3 u w1 u 2 u u 2 v 1 3 w 1 w 2 2 w3 u3 w1 v2 v1 Place any edge of H1 into H2 or (vice versa) and a C4 is created. i Remarks By reading through this text one can acquire a familiarity with the elementary topics of Graph Theory and the associated (hopefully standard) notation. The notation used here follows that used by Gary Chartrand at Western Michigan University in the last third of the 20th century. His usage of notation was in‡uenced by that of Frank Harary at the University of Michigan beginning in the early 1950’s. The text’s author was Chartrand’s student at WMU from 1973 to 1976. In order to actually learn any graph theory from this text, one must work through and solve the problems found within it. Some of the problems are very easy.
    [Show full text]
  • Combinatorics: a First Encounter
    Combinatorics: a first encounter Darij Grinberg Thursday 10th January, 2019at 9:29pm (unfinished draft!) Contents 1. Preface1 1.1. Acknowledgments . .4 2. What is combinatorics?4 2.1. Notations and conventions . .4 1. Preface These notes (which are work in progress and will remain so for the foreseeable fu- ture) are meant as an introduction to combinatorics – the mathematical discipline that studies finite sets (roughly speaking). When finished, they will cover topics such as binomial coefficients, the principles of enumeration, permutations, parti- tions and graphs. The emphasis falls on enumerative combinatorics, meaning the art of computing sizes of finite sets (“counting”), and graph theory. I have tried to keep the presentation as self-contained and elementary as possible. The reader is assumed to be familiar with some basics such as induction proofs, equivalence relations and summation signs, as well as have some experience with mathematical proofs. One of the best places to catch up on these basics and to gain said experience is the MIT lecture notes [LeLeMe16] (particularly their first five chapters). Two other resources to familiarize oneself with proofs are [Hammac15] and [Day16]. Generally, most good books about “reading and writing mathemat- ics” or “introductions to abstract mathematics” should convey these skills, although the extent to which they actually do so may differ. These notes are accompanying two classes on combinatorics (Math 4707 and 4990) I am giving at the University of Minneapolis in Fall 2017. Here is a (subjective and somewhat random) list of recommended texts on the kinds of combinatorics that will be considered in these notes: • Enumerative combinatorics (aka counting): 1 Notes on graph theory (Thursday 10th January, 2019, 9:29pm) page 2 – The very basics of the subject can be found in [LeLeMe16, Chapters 14– 15].
    [Show full text]
  • Structural Balance: a Generalization of Heider's Theory'
    VOL. 63, No. 5 SEPTEMBER, 1956 THE PSYCHOLOGICAL REVIEW STRUCTURAL BALANCE: A GENERALIZATION OF HEIDER'S THEORY' DORWIN CARTWRIGHT AND FRANK HARARY Research Center for Group Dynamics, University of Michigan A persistent problem of psychology will arise to change it toward a state has been how to deal conceptually of balance. These pressures may with patterns of interdependent prop- work to change the relation of affec- erties. This problem has been cen- tion between P and 0, the relation of tral, of course, in the theoretical responsibility between 0 and X, or the treatment by Gestalt psychologists of relation of evaluation between P phenomenal or neural configurations andX. or fields (12, 13, 15). It has also The purpose of this paper is to been of concern to social psychologists present and develop the consequences and sociologists who attempt to em- of a formal definition of balance which ploy concepts referring to social sys- is consistent with Heider's conception tems (18). and which may be employed in a more Heider (19), reflecting the general general treatment of empirical con- field-theoretical approach, has con- figurations. The definition is stated sidered certain aspects of cognitive in terms of the mathematical theory fields which contain perceived people of linear graphs (8, 14) and makes use and impersonal objects or events. of a distinction between a given rela- His analysis focuses upon what he calls tion and its opposite relation. Some the P-O-X unit of a cognitive field, of the ramifications of this definition consisting of P (one person), 0 (an- are then examined by means of other person), and X (an impersonal theorems derivable from the definition entity).
    [Show full text]
  • Regular Graphs Containing a Given Graph
    Regular graphs containing a given graph Autor(en): Akiyama, Jin / Era, Hiroshi / Harary, Frank Objekttyp: Article Zeitschrift: Elemente der Mathematik Band (Jahr): 38 (1983) Heft 1 PDF erstellt am: 03.10.2021 Persistenter Link: http://doi.org/10.5169/seals-37177 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch El Math Vol 38, 1983 15 Der Grundgedanke dieses Beweises ist also, zu zeigen, dass diejenigen Paare (a,b), deren Schrittzahl T(a,b) die Abschätzung von Dixon (Lemma 2) erfüllen, den Hauptbeitrag zu dem gesuchten Mittelwert liefern. Zum Abschluss seien noch einige numerische Ergebnisse angegeben, wie man sie mit einem programmierbaren Taschenrechner errechnen kann.
    [Show full text]
  • BEAUTIFUL CONJECTURES in GRAPH THEORY Adrian Bondy
    BEAUTIFUL CONJECTURES IN GRAPH THEORY Adrian Bondy What is a beautiful conjecture? The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas, like the colors or the words must fit together in a harmonious way. Beauty is the first test: there is no permanent place in this world for ugly mathematics. G.H. Hardy Some criteria: . Simplicity: short, easily understandable statement relating basic concepts. Element of Surprise: links together seemingly disparate concepts. Generality: valid for a wide variety of objects. Centrality: close ties with a number of existing theorems and/or conjectures. Longevity: at least twenty years old. Fecundity: attempts to prove the conjecture have led to new concepts or new proof techniques. Reconstruction Conjecture P.J. Kelly and S.M. Ulam 1942 Every simple graph on at least three vertices is reconstructible from its vertex-deleted subgraphs STANISLAW ULAM Simple Surprising General Central Old F ertile ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ v1 v2 v6 v3 v5 v4 G G − v1 G − v2 G − v3 PSfrag replacements G − v4 G − v5 G − v6 Edge Reconstruction Conjecture F. Harary 1964 Every simple graph on at least four edges is reconstructible from its edge-deleted subgraphs FRANK HARARY Simple Surprising General Central Old F ertile ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ G H PSfrag replacements G H MAIN FACTS Reconstruction Conjecture False for digraphs. There exist infinite families of nonreconstructible tournaments. P.J. Stockmeyer 1977 Edge Reconstruction Conjecture True for graphs on n vertices and more than n log2 n edges. L. Lovasz´ 1972, V. Muller¨ 1977 Path Decompositions T. Gallai 1968 Every connected simple graph on n vertices can 1 be decomposed into at most 2(n + 1) paths TIBOR GALLAI Simple Surprising General Central Old F ertile ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗ Circuit Decompositions G.
    [Show full text]
  • John R. Bowles Thesis A
    - Math Goes to Hollywood or: How I Learned to Stop Worrying and Love the Math An Honors Thesis (HONRS 499) by John R. Bowles Thesis Advisor -- Dr. Kerry Jones ~~ Ball State University Muncie, IN May 5,2001 Graduation Date: May 5, 2001 speD!1 The:.;I::::; - Abstract Mathematics doesn't put people in the seats at the movie theater, but recently mathematics can be found more and more in popular films. Though Hollywood has shunned the value of mathematics in the past, a trio of excellent films have recently been made with mathematics as an integral character. This paper examines the math topics discussed in three of those movies: Good Will Hunting, Rushmore, and Pi. The mathematics used in each film is analyzed for validity. Also discussed is how each film's depiction of mathematics might effect society's view of mathematics. -- Acknowedgements Thank you Dr. Jones for your patience and guidance with this paper. Thanks also to Dr. Bremigan for your unexpected help. Also, thank you Nate for being there the first time I saw most of these movies and Erin for helping me stay sane while writing this paper. - Bowles I -- John R. Bowles Honors Thesis 5 May 2001 Math Goes to Hollywood or: How I Learned to Stop Worrying and Love the Math "Tough guys don't do math. Tough guys fry chicken for a living!" These are the words that high school math teacher Jaime Escalante (played by Edward James Olmos) sarcastically exclaims to his students in the film Stand and Deliver (IMDB). He is trying to overcome a common stigma shared by many teenagers that math is not cool.
    [Show full text]
  • Paul Erdos: the Master of Collaboration
    Paul Erdos: The Master of Collaboration Jerrold W. Grossman Department of Mathematical Sciences, Oakland University, Rochester, MI48309- 4401 Over a span of more than 60 years, Paul Erdos has taken the art of col­ laborative research in mathematics to heights never before achieved. In this brief look at his collaborative efforts, we will explore the breadth of Paul's interests, the company he has kept, and the influence of his collaboration in the mathematical community. Rather than focusing on the mathematical content of his work or the man himself, we will see what conclusions can be drawn by looking mainly at publication lists. Thus our approach will be mostly bibliographical, rather than either mathematical or biographical. The data come mainly from the bibliography in this present volume and records kept by Mathematical Reviews (MR) [13]. Additional useful sources of infor­ mation include The Hypertext Bibliography Project (a database of articles in theoretical computer science) [11], Zentralblatt [16], the Jahrbuch [10]' vari­ ous necrological articles too numerous to list, and personal communications. Previous articles on these topics can be found in [3,4,7,8,14]. Paul has certainly become a legend, whose fame (as well as his genius and eccentricity) has spread beyond the circles of research mathematicians. We find a popular videotape about him [2], articles in general circulation maga­ zines [9,15] (as well as in mathematical publications-see [1] for a wonderful example), and graffiti on the Internet (e.g., his quotation that a mathemati­ cian is a device for turning coffee into theorems, on a World Wide Web page designed as a sample of the use of the html language [12]).
    [Show full text]
  • Anthropology, Mathematics, Kinship: a Tribute to the Anthropologist Per Hage 1 and His Work with the Mathematician Frank Harary
    MATHEMATICAL ANTHROPOLOGY AND CULTURAL THEORY: AN INTERNATIONAL JOURNAL VOLUME 2 NO. 3 JULY 2008 ANTHROPOLOGY, MATHEMATICS, KINSHIP: A TRIBUTE TO THE ANTHROPOLOGIST PER HAGE 1 AND HIS WORK WITH THE MATHEMATICIAN FRANK HARARY DAVID JENKINS ROUNDHOUSE INSTITUTE FOR FIELD STUDIES [email protected] COPYRIGHT 2008 ALL RIGHTS RESERVED BY AUTHOR SUBMITTED: MAY 1, 2008 ACCEPTED: JUNE 15, 2008 MATHEMATICAL ANTHROPOLOGY AND CULTURAL THEORY: AN INTERNATIONAL JOURNAL ISSN 1544-5879 1 A version of this paper was prepared for the 105th Annual American Anthropological Association Meeting. Session title: Kinship and Language: Per Hage (1935 – 2004) Memorial Session. San Jose, California, November 14 – 18, 2006. JENKINS: ANTHROPOLOGY, MATHEMATICS, KINSHIP WWW.MATHEMATICALANTHROPOLOGY.ORG MATHEMATICAL ANTHROPOLOGY AND CULTURAL THEORY: AN INTERNATIONAL JOURNAL VOLUME 2 NO. 3 JULY 2008 ANTHROPOLOGY, MATHEMATICS, KINSHIP: A TRIBUTE TO THE ANTHROPOLOGIST PER HAGE AND HIS WORK WITH THE MATHEMATICIAN FRANK HARARY DAVID JENKINS ROUNDHOUSE INSTITUTE FOR FIELD STUDIES Abstract: Over a long and productive career, Per Hage produced a diverse and influential body of work. He conceptualized and solved a range of anthropological problems, often with the aid of mathematical models from graph theory. In three books and many research articles, Hage, and his mathematician collaborator Frank Harary, developed innovative analyses of exchange relations, including marriage, ceremonial, and resource exchange. They advanced network models for the study of communication, language evolution, kinship and classification. And they demonstrated that graph theory provides an analytical framework that is both subtle enough to preserve culturally specific relations and abstract enough to allow for genuine cross-cultural comparison. With graph theory, two common analytical problems in anthropology can be avoided: the problem of hiding cultural phenomena with weak cross-cultural generalizations, and the problem of making misleading comparisons based on incomparable levels of abstraction.
    [Show full text]
  • On the Dimension of a Graph
    ON THE DIMENSION OF A GRAPH PAUL ERDOS, FRANK HARARY and WILLIAM T. TUTTE Our purpose in this note is to present a natural geometrical definition of the dimension of a graph and to explore some of its ramifications. In §1 we determine the dimension of some special graphs. We observe in §2 that several results in the literature are unified by the concept of the dimension of a graph, and state some related unsolved problems. We define the dimension of a graph 0, denoted dim 0, as the minimum number n such that G can be embedded into Euclidean re-space En with every edge of O having length 1. The vertices of G are mapped onto distinct points of En, but there is no restriction on the crossing of edges. 1. Some graphs and their dimensions. Let Kn be the complete graph with n vertices in which every pair of vertices are adjacent (joined by an edge). The triangle K3 and the tetrahedron Kt are shown in Figure 1. "3* Fig. 1. The dimension of Kz is 2 since it may be drawn as a unit equilateral triangle. But clearly, dimiT4 = 3 and in general dim Kn = n—1. By Kn — x -we mean the graph obtained from the complete graph Kn by deleting any one edge, x. For example K3 — x and Kt — x are shown in Figure 2. - x: - x: Fig. 2. From this figure, we see at once that dim (Ks — x) = 1 and that dim (K4 — x) = 2 since it can be drawn as two equilateral triangles with the same base.
    [Show full text]