WO 2U11/151526 Al

Total Page:16

File Type:pdf, Size:1020Kb

WO 2U11/151526 Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ t it t t 8 December 2011 (08.12.2011) WO 2U11/151526 Al (51) International Patent Classification: FI-04230 Kerava (FI). KAILA, Reetta [FI/FI]; Uuraantie C07C 5/373 (2006.01) C07C 15/02 (2006.01) 4b, FI-02140 Espoo (FI). C01B 39/24 (2006.01) (74) Agent: BERGGREN OY AB; P.O. Box 16 (Antinkatu 3 (21) International Application Number: C), FI-00101 Helsinki (FI). PCT/FI201 1/0505 18 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of national protection available): AE, AG, AL, AM, 3 June 201 1 (03.06.201 1) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, English (25) Filing Language: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (26) Publication Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 20105630 3 June 2010 (03.06.2010) FI NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (71) Applicant (for all designated States except US): STORA SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, ENSO OYJ [FI/FI]; P.O. Box 309, FI-00101 Helsinki TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (FI). (84) Designated States (unless otherwise indicated, for every (72) Inventors; and kind of regional protection available): ARIPO (BW, GH, (75) Inventors/ Applicants (for US only): RASANEN, Jari GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, [FI/FI] ; Vastarakinkuja 15, FI-55420 Imatra (FI). PENT- ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TINEN, Tapani [FI/FI]; Lokorentie 3 1, FI-49210 Hu- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, ΓΓ utjarvi (FI). HARLIN, Ali [FI/FI]; Talvikinkatu 6 D 13, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, , LT, LU, [Continued on next page] (54) Title: METHOD OF CONVERTING ALPHA-PINENE TO PARA-CYMENE BY USING A ZEOLITIC CATALYST (57) Abstract: Herein disclosed is biobased p-cymene, which can further be converted to terephtalate. Further, here is described a method for convert ing crude sulphate turpentine recovered Y(N2) from chemical wood pulping into p- cymene and eventually to terephtalic Y(02) acid of biological origin, and and prod Y{N2, CST) ucts thereof respectively. In said method, both conversion and desul- phurisation is realised in one reaction Mar step. Present disclosure is also related to Y use of zeolite catalysts in said method. Y{N2, CST) ivlor a-Y powder) 13X 13X Y p wd r) , cat. Fig. 5 w o 2011/151526 Ai III III II II III I I1 1 I ll ll II IIIII III II III LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, before the expiration of the time limit for amending the SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, claims and to be republished in the event of receipt of GW, ML, MR, NE, SN, TD, TG). amendments (Rule 48.2(h)) Published: Method of converting alpha-pinene to para-cymene by using a zeolitic catalyst Field of the invention The present invention is related to biobased p-cymene, which can further be con- verted to terephtalate. More specifically, it discloses a method for converting sul phate turpentine present in chemical wood pulping into p-cymene and eventually to terephtalic acid of biological origin. It is also related to use of zeolite catalysts in said method. Background of the invention The need for biobased reagents, chemicals and products replacing oil-based, tra ditional raw materials is constantly growing. Applications for this bioreplacement are entering new fields. Terephtalic acid is the main monomer of the dominant polyester polymers, finding wide use in textiles, technical applications, packaging especially bottles and films. One of these polymers, polyethylene terephtalate (PET) is a thermoplastic polymer resin of the polyester family and is used in synthetic fibres. It has several benefits like high transparency, low weight, very good mechanical characteristics, good barrier properties, good form stability, high recyclability, health authorities' a p proval (FDA, EU) and economic production. For bioreplacement in polyethylene terephtalate PET and polybutylene terephta late PBT it is essential to find efficient production routes for the terephtalic acid. Para-cymene (p-cymene) is a common precursor for oxidative production of terephtalic acid of plant-based limonene, terpinenes, and pinenes, which are re coverable in citrus fruit peals, tee three oil, turpentine respectively, and through isoprenoid pathway of carbohydrates. When applying commercial oxidation proc ess for the cymene, yield of 90% of terephtalic acid is achieved. It is desirable to increase the value of crude sulphur turpentine (CST) by convert ing it to a more valuable chemical, such as p-cymene. p-Cymene is an aromatic hydrocarbon that can be utilized as raw material in the synthesis of polymers, but there are also many other applications for p-cymene e.g. in the production of fine chemicals (Monteiro, J. L . F., Veloso, C. O., Catalytic conversion of terpenes into fine chemicals, Top. Catal. 27 1-4 (2004) 169-1 80). Industrially, p-cymene is pro duced by alkylation of toluene with propene. Worldwide production of pinenes was 0.33 Mton / year based on FAO statistics on 1995. Of this 70% was sulphate turpentine CST from wood in chemical pulping processes, consisting 90% alpha- and beta-pinenes. However, the pulping proc ess originated aromates contain sulphur, which causes problems in further refine ment of pinenes, especially poisoning the catalyst and leaving an unacceptable odour to PET eventually produced from terphtalate. Some processes for the conversion of pinenes into cymenes are known. Determi- nation of liquid phase reaction conditions and selection of catalyst for preparation of p-cymene from c -pinene has been reviewed by Wang (Huaxue Shijie (2001 ), 42(3), 13 1- 1 33 CODEN: HUAKAB; ISSN: 0367-6358). The preparation of p- cymene from cc-pinene was studied by ring-opening-isomerization and hydrogen transfer disproportionation with a catalyst like Raney nickel, copper formate, and p-toluenesulfonic acid. Pinenes can be dehydrogenated and aromatized in presence of Pd-catalyst close to atmospheric pressure and 200-400 °C temperature, based on Horderlich, A p plied Catalysis, A : General (2001 ) , 2 15(1-2),1 11- 124 CODEN: ACAGE4; ISSN: 0926-860X. The dehydrogenation of cc-pinene to p-cymene is conducted over car- riers impregnated with Pd. An optimal acid strength is required to cleave selec tively the C-C bond in the cyclobutane ring of cc-pinene. Too strong acid sites such as in zeolites favor side reactions like oligomerization and cracking. Too weak acid sites fail to cleave the aforementioned C-C bond and rapid hydrogenation of the cc- pinene is a consequence. Hydrogenolysis is also a major side reaction leading to tetramethylcyclohexanes. A reaction mechanism is proposed in which first isom- erization is involved followed by hydrogenation/dehydrogenation to stabilize the components. The catalyst has a dual-functionality with the acid sites in charge of isomerization and the metallic sites responsible of hydrogenation/dehydrogen ation. The use of crude sulphate turpentine (CST) as raw material shows that β- pinene has a similar reactivity as cc-pinene and high yields of p-cymene can be obtained from this cheap starting material. The sulphur remains however a major drawback. The process yields 65% from pinenes and 59% of the turpentines. However, when applying CST, sulphur must be removed, because it poisons the catalyst rapidly. Bazhenov et.al. in Russian Journal of Applied Chemistry (Translation of Zhurnal Prikladnoi Khimii) (2003), 76(2), 234-237 CODEN: RJACEO; ISSN: 1070-4272, reported hydrogenation and isomerization of a-pinene on zeolite Y and heteroge neous nickel catalysts. Nickel catalyst supported on alumina reached 80% conver- sion in 2 hours at 400-450 °C and 0.5 MPa hydrogen pressure. However, nickel is especially sensitive for sulphur. Kutuzov et.al. disclose in RU 22001 44, a process for skeletal isomerization and dehydrogenation of α-pinene in presence of zeolite-containing cracking catalyst (Z-1 0) preliminarily activated for 1-2 h at 300-550 °C in nitrogen flow. Process is carried out for 2-8 h at 150-1 70 °C and 5 atmospheric nitrogen pressure. The re action is typically robust for sulphur and yields 80% conversion to p-cymene. However, even when not harmful for the process, the remaining sulphur may be undesirable in the end products, i.e. in plastics intended for food packages. As such, it requires separate processes for sulphur removal. Removal of sulphur- containing compounds from sulphate wood turpentine has been studied widely. Chudinov et.al. disclose in SU 3321 15 removal of sulphur impurities from turpen tine oil by treatment with sodium hypochlorite solution in the presence of a mineral acid. Another document, US 3778485 disclose purification of crude sulphate turpentine by agitating with sodium hypochlorite solution containing 90 g/l available C I fo l lowed by washing. The composition of the bleached turpentine was a-pinene 76.4, camphene 1.3, β-pinene 13.8, myrcene 2.2, dipentene 3.6, pine oil 2 , heavies 0.6, S (weight/volume) 0.01 4 , and chloride (weight/volume) 0.092.
Recommended publications
  • Natural History of Fiji's Endemic Swallowtail Butterfly, Papilio Schmeltzi
    32 TROP. LEPID. RES., 23(1): 32-38, 2013 CHANDRA ET AL.: Life history of Papilio schmeltzi NATURAL HISTORY OF FIJI’S ENDEMIC SWALLOWTAIL BUTTERFLY, PAPILIO SCHMELTZI (HERRICH-SCHAEFFER) Visheshni Chandra1, Uma R. Khurma1 and Takashi A. Inoue2 1School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Private Bag, Suva, Fiji. Correspondance: [email protected]; 2Japanese National Institute of Agrobiological Sciences, Ôwashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan Abstract - The wild population of Papilio schmeltzi (Herrich-Schaeffer) in the Fiji Islands is very small. Successful rearing methods should be established prior to any attempts to increase numbers of the natural population. Therefore, we studied the biology of this species. Papilio schmeltzi was reared on Micromelum minutum. Three generations were reared during the period from mid April 2008 to end of November 2008, and hence we estimate that in nature P. schmeltzi may have up to eight generations in a single year. Key words: Papilio schmeltzi, Micromelum minutum, life cycle, larval host plant, developmental duration, morphological characters, captive breeding INTRODUCTION MATERIALS AND METHODS Most of the Asia-Pacific swallowtail butterflies P. schmeltzi was reared in a screened enclosure from mid (Lepidopera: Papilionidae) belonging to the genus Papilio are April 2008 to end of November 2008. The enclosure was widely distributed in the tropics (e.g. Asia, Papua New Guinea, designed to provide conditions as close to its natural habitat as Australia, New Caledonia, Vanuatu, Solomon Islands, Fiji and possible and was located in an open area at the University of Samoa).
    [Show full text]
  • Doterra Essential Oils Scientific References Bibliography The
    doTERRA Essential Oils Scientific References Bibliography The Science of Aroma and Touch 1. Hertenstein M, et al. Touch communicates distinct emotions. Emotion. 2006;6(3):528-533. 2. Thompson E. and Hampton J. The effect of relationship status on communicating emotions through touch. Cognition and Emotion. 2011; 25(2):295-306. 3. Chatel-Goldman J, et al. Touch increases autonomic coupling between romantic partners. Frontiers in Behavioral Neuroscience. 2014; 8:95. 4. Uvnas-Moberg, K, et al. Self-soothing behaviors with particular reference to oxytocin release induced by non- noxious sensory stimulation. Frontiers in Psychology. 2014; 5:1529. The Science of Cypress 1. M. Kusuhara, K. Urakami, Y. Masuda, V. Zangiacomi, H. Ishii, S. Tai, K. Maruyama, and K. Yamaguchi, “Fragrant environment with α-pinene decreases tumor growth in mice,” Biomed. Res. Tokyo Jpn., vol. 33, no. 1, pp. 57–61, Feb. 2012. 2. H. J. Dorman and S. G. Deans, “Antimicrobial agents from plants: antibacterial activity of plant volatile oils,” J. Appl. Microbiol., vol. 88, no. 2, pp. 308–316, Feb. 2000. Chemistry of Pink Pepper 1. Siqueira HDS, Neto BS, Sousa DP, et al. α-Phellandrene, a cyclic monoterpene, attenuates inflammatory response through neutrophil migration inhibition and mast cell degranulation. Life Sci. 2016;160:27-33. doi:10.1016/j.lfs. 2016.07.008 2. Lin J-J, Lin J-H, Hsu S-C, et al. Alpha-phellandrene promotes immune responses in normal mice through enhancing macrophage phagocytosis and natural killer cell activities. Vivo Athens Greece. 2013;27(6):809-814. 3. Jing L, Zhang Y, Fan S, et al.
    [Show full text]
  • Table of Contents
    SUPPLEMENTARY MATERIAL Volatile Terpenes and Terpenoids from the Workers and Queens of Monomorium chinense (Hymenoptera: Formicidae) Rui Zhao 1, 2, Lihua Lu 2, Qingxing Shi 2, Jian Chen 3*, Yurong He 1* 1 Department of Entomology, College of Agriculture, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, China; [email protected] (R.Z.) 2 Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou, Guangdong 510640, China; [email protected] (L.L.); [email protected] (Q.S.) 3 National Biological Control Laboratory, Southeast Area, Agriculture Research Service, United States Department of Agriculture, 59 Lee Road, Stoneville, MS 38776, USA *Correspondence: [email protected] (J.C.); [email protected] (Y.H.) Table of Contents Figure S1 Mass spectrum of peak 1 (a) from Monomorium chinense workers and δ-elemene (b) from the literature book, showing the match of mass spectra. .......................................................... 3 Figure S2 Total ion chromatograms of extract of Monomorium chinense workers (a) and standard β-elemene (b), showing the match of retention times; Mass spectra of peak 2(c) and standard β- elemene (d), showing the match of mass spectra. ............................................................................. 3 Figure S3 Total ion chromatograms of extract of Monomorium chinense workers (a) and standard β- cedrene (b), showing the match of retention times; Mass spectra of peak 3(c) and standard β- cedrene (d), showing the match of mass spectra. .............................................................................. 4 Figure S4 Total ion chromatograms of extract of Monomorium chinense workers (a) and standard (E)-β-farnesene (b), showing the match of retention times; Mass spectra of peak 4(c) and standard (E)-β-farnesene (d), showing the match of mass spectra.
    [Show full text]
  • Qualitative Silk Cocoons in Silkworm, Bombyx Mori (L) Through
    International Journal of Scientific Research in Chemistry (IJSRCH) | Online ISSN: 2456-8457 © 2018 IJSRCH | Volume 3 | Issue 4 Qualitative Silk Cocoons in Silkworm, Bombyx Mori (L) Through the Topical Application of Acetone Macerative of Powder of Ganoderma Fruiting Body And Acetone Solution of It’s Triterpenoid (Lucidone –D). Manali Ramesh Rao Shinde, Seema Karna Dongare, Vitthalrao Bhimasha Khyade Science Association, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar, Baramati, Pune, Maharashtra, India ABSTRACT Terpene and terpenoid contents of ganoderma fruiting body is well esteemed fact. Terpenes and terpenoids are the significant Insect Juvenile Hormone Analogues (JHA). Ten mircolitres of acetone maceratives of (20 ppm) of powder of ganoderma fruiting body and acetone solution of triterpenoid (lucidone –d) compound were topically applied separately to the fifth instar larvae of bivoltine silkworm, Bombyx mori (L) [Race: (CSR6 x CSR26) x CSR2 x CSR27)] at 48 hours after the fourth moult. The cocoons spinned by the larvae were used for analysis of shell ratio and silk filament for the denier scale. The shell ratio of the cocoons harvested from untreated and acetone treated groups was found measured 20. 197 and 20.428 respectively. The denier scale of the silk filament obtained from the untreated control and acetone treated control groups was 2.726 and 2.738 respectively. Topical application of acetone maceratives of (20 ppm) of powder of ganoderma fruiting body and acetone solution of triterpenoid (lucidone –d) compound separately to the fifth instar larvae of bivoltine raced silkworm, Bombyx mori (L) [(CSR6 x CSR26) x CSR2 x CSR27)] was found resulted into the cocoons with 29.381 and 33.321 shell ratio respectively.
    [Show full text]
  • Role of the Osmeterial Gland in Swallowtail Larvae (Papilionidae) in Defense Against an Avian Predator
    Journal of the Lepidopterists' Society 44(4), 1990, 245-251 ROLE OF THE OSMETERIAL GLAND IN SWALLOWTAIL LARVAE (PAPILIONIDAE) IN DEFENSE AGAINST AN AVIAN PREDATOR ANDREA JO LESLIE 316 N. Fleming Rd., Woodstock, Illinois 60098 AND MAY R. BERENBAUM* Department of Entomology, 320 Morrill Hall, University of Illinois, 505 S. Goodwin, Urbana, Illinois 61801-3795 ABSTRACT. The importance of the osmeterial gland, a universal characteristic of larvae in the Papilionidae, in defense against vertebrate predators has rarely been ex­ amined. In this study, third and fifth instar larvae of Papilio polyxenes with and without a functional osmeterium were presented to Coturnix coturnix (Japanese quail), a rep­ resentative avian predator. Virtually all larvae were rejected by C. coturnix irrespective of osmeterial function. Larvae of P. cresphontes with functional osmeteria were also universally rejected by C. coturnix; in contrast, larvae of P. glaucus were readily con­ sumed. In view of the fact that osmeterial secretions in these three species are similar in composition, they are unlikely to playa major role in determining palatability of these species to this avian predator. Additional key words: Papilio polyxenes, Papilio glaucus, Papilio cresphontes, Co­ turnix coturnix, palatability. The osmeterium, a Y-shaped eversible gland located mid-dorsally behind the head, is a universal characteristic of swallowtail caterpillars (Papilionidae). Its function has long been assumed to be defensive (Merian 1705, as cited in Crossley & Waterhouse 1969). There is indeed evidence of the efficacy of the osmeterial gland and its secretions against invertebrate predators. Eisner and Meinwald (1965) demonstrated that Papilio machaon L. larvae use osmeterial secretions to deter ant pre­ dation; Damman (1986) determined that the presence of a functional osmeterial gland of Eurytides marcellus (Cramer) reduces predation by ants and small spiders, and Chow and Tsai (1989) showed that Papilio memnon L.
    [Show full text]
  • Evolution of Specialization in Insect-Umbellifer Associations
    Annual Reviews www.annualreviews.org/aronline Annu. Rev. Entomol. 1990. 35:319~43 Copyright © 1990 by Annual Reviews Inc. All rights reserved EVOLUTION OF SPECIALIZATION IN INSECT-UMBELLIFER ASSOCIATIONS May R. Berenbaum Departmentof Entomology,University of Illinois, 320 Morrill Hall, 505 South GoodwinAvenue, Urbana, Illinois 61801 Introduction The plant family Umbelliferae (Apiaceae) consists of almost 3000 species worldwide (112). Membersof the family occupy a wide variety of habitats, including deserts, basaltic bluffs, salt and freshwater marshes, chaparral, forests, waste places, and subalpine tundra. Despite the ecological diversity, however, family membersdisplay remarkable morphological conservatism. The integrity of the family as a taxonomic unit has been recognized for by University of Delaware on 02/03/09. For personal use only. centuries, from Theophrastus’ establishment of Narthekodes as one of the natural plant families to Tournefort’s unification of its current elements in 1694 (38). Annu. Rev. Entomol. 1990.35:319-343. Downloaded from arjournals.annualreviews.org Also characteristic of the family is a relatively distinctive insect fauna. Acknowledgedas a plant taxon disproportionately free from insect attack (105), the Umbelliferae nonetheless supports a fauna that is primarily oli- gophagous--restricted to Umbelliferae and, rarely, a few closely related families. Thus, it is not surprising that interactions betweenumbelliferous plants and their insect associates have received considerable attention from both ecological
    [Show full text]
  • Aggregation Pheromone Biosynthesis and Engineering in Plants for Stinkbug Pest Management
    Aggregation Pheromone Biosynthesis and Engineering in Plants for Stinkbug Pest Management Bryan W. Lehner Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University as partial fulfillment of the requirements for the degree of Masters of Science In Biological Sciences Dorothea Tholl (Chair) David Haak Susan Whitehead Claus Tittiger January 30, 2019 Blacksburg, VA Keywords: Trap Crop, Stink Bug, Pheromone, Terpene Synthase, Plant Transformation Aggregation Pheromone Biosynthesis and Engineering in Plants for Stinkbug Pest Management Bryan W. Lehner ABSTRACT Stinkbugs (Pentatomidae) and other agricultural pests such as bark beetles and flea beetles are known to synthesize terpenoids as aggregation pheromones. Knowledge of the genes and enzymes involved in pheromone biosynthesis may allow engineering of the pheromone biosynthetic pathways in plants to develop new forms of trap crops and agricultural practices for pest management. The harlequin bug, Murgantia histrionica, a specialist pest on crucifer crops, produces the sesquiterpene, murgantiol, as a male- specific aggregation pheromone. Similarly, the southern green stink bug, Nezara viridula, a generalist pest worldwide on soybean and other crops, releases sesquiterpene cis-/trans- (Z)-α-bisabolene epoxides as male-specific aggregation pheromone. In both species, enzymes called terpene synthases (TPSs) synthesize precursors of the aggregation pheromones, which are sesquipiperitol and (Z)-α-bisabolene as the precursor of murgantiol and cis-/trans-(Z)-α-bisabolene epoxide, respectively. We hypothesized that enzymes in the family of cytochrome P450 monooxygenases are involved in the conversion of these precursors to the final epoxide products. This study investigated the tissue specificity and sequence of these conversions by performing crude enzyme assays with protein extracts from male tissues.
    [Show full text]
  • The Structure and Defensive Efficacy of Glandular Secretion of the Larval Osmeterium in Graphium Agamemnon Agamemnon Linnaeus, 1758 (Lepidoptera: Papilionidae)
    Turk J Zool 2011; 35(2): 245-254 © TÜBİTAK Research Article doi:10.3906/zoo-0901-24 The structure and defensive efficacy of glandular secretion of the larval osmeterium in Graphium agamemnon agamemnon Linnaeus, 1758 (Lepidoptera: Papilionidae) Jagannath CHATTOPADHYAY* Department of Zoology, S.C. College, Dhaniakhali, Hooghly-712302, West Bengal - INDIA Received: 20.01.2009 Abstract: Histomorphological study of the larval (final instar) osmeterium gland in Graphium agamemnon agamemnon Linnaeus shows that each fully protruded Y-shaped osmeterium is composed of 2 elongated hollow tubular arms, which arise from a basal peduncle. The surface of the osmeterium has irregular folds, and papillae arise from some cells. There is an oval opening (gland pore, structurally less complicated than in other evolved species) in the proximal second seventh of the segment on each tubular arm on its posterior face. Histologically, 2 main types of secretory cells can be observed (excluding the muscle fiber cells and supporting cells): i) ellipsoid gland cells within the gland pore region and ii) tubular arm cells extending from the upper part of the ovoid gland pore region to the distal part of the tubular arms. The defensive efficacy of the osmeterial secretion in larvae was also examined,both in the laboratory and field, and was observed to be very complicated. Key words: Lepidoptera, Papilionidae, swallowtail butterfly larva, osmeterium, larvae,Graphium agamemnon agamemnon Introduction disagreeable and pungent odor that is presumed to The osmeterium is an eversible, forked defensive repel such enemies as ants and other predatory or gland that protrudes from the mid-dorsal region at parasitic insects.
    [Show full text]
  • Papilionidae Biosecurity Occurrence Background Subfamilies Short Description Diagnosis
    Papilio anactus Papilionidae Swallowtail Butterflies Biosecurity BIOSECURITY ALERT This Family is of Biosecurity Concern Occurrence This family occurs in Australia. Background The Papilionidae or swallowtail butterflies are large colourful insects that are distributed globally. There are over 550 species and most of these are tropical. The name swallowtail refers to a tail-like extension of the hind wings of the adults, found in most papilionids. Many swallowtail caterpillars sequester toxic chemicals from their food plants rendering both them and the adults as distasteful and thus protection from predators. Most caterpillars are external feeders (Fig. 1, Fig. 2) but some tie leaves together with silk for shelters. Early instars often resemble bird droppings (Fig. 2). Subfamilies Baroniinae Parnassiinae Papilioninae Reed et al. (2006), Nazari (2007). Short Description Adapted from Ackery et al. (1998) Mature swallowtail caterpillars are stout, and are smooth, the so-called ‘smooth and green group’ (Fig. 1, Fig. 3), or have a series or sport fleshy tubercles on the dorsum, the ‘red, tuberculate group’. They sometimes have a raised fleshy protuberance (hood or crest) on A1. The most diagnostic feature for swallowtails is the osmeterium, situated on the dorsal side of T1 just behind the head. This is a fleshy, bifid, tentacle-like organ that is inflated and everted when the caterpillar feels threatened. It is usually brightly coloured and secretes a foul-smelling terpene based chemical to ward off potential predators. Parnassine caterpillars have conspicuous setae grouped onto pinacula or verrucae. On the other hand, Papilionine caterpillars are smooth and often have expanded thoracic segments imparting a humped appearance.
    [Show full text]
  • The Pipevine Swallowtail: Life Cycle and Ecology
    The Pipevine Swallowtail: Life Cycle and Ecology Xi Wang 2012 ISBN 0-921631-40-8 Author’s Note The Pipevine Swallowtail (Battus philenor) is normally a rare species in Ontario, with at most only a few individuals seen every year. However, in 2012 there was one of the largest migrations into southern Ontario on record. As a result, I had my first opportunity to raise ova and larvae to adulthood. I begin this monograph on B. philenor with a review of taxonomy, geographical distribution and foodplants. I then describe in detail all life cycle stages of this species from ova to adult, with photographic accompaniment wherever possible. Some of my observations are likely new to the literature, particularly the description of the fascinating processes surrounding pupation and emergence. My own life history research is supplemented with accounts of key findings on the biology, ecology, and behaviour of this species from several dozen works from the scientific literature. Much about this butterfly remains unknown. I hope that this monograph will generate new questions and inspire interest in some readers, who may then make noteworthy observations of their own. I would like to extend my deepest thanks to Ross A. Layberry, Alan Macnaughton, and an anonymous reviewer, who proofread this document and provided valuable feedback and guidance. I also wish to thank Laura Swystun, who has always encouraged me to pursue my passions to the fullest. Xi Wang Dept. of Diagnostic Radiology, Juravinski Hospital, Hamilton, ON, Canada. Email: [email protected] Photographs: Cover photograph courtesy of Bob Yukich of a male Pipevine Swallowtail on Aristolochia tomentosa taken in Toronto on July 10, 2012.
    [Show full text]
  • The Neotropical Butterfly Papilio Anchisiades Idaeus Fabricius (Pa
    Journal of the Lepidopterists' Society 40(1), 1986, 36-53 NATURAL HISTORY AND ECOLOGICAL CHEMISTRY OF THE NEOTROPICAL BUTTERFLY PAPILlO ANCHISIADES (PAPILIONIDAE) ALLEN M. YOUNG Invertebrate Zoology Section, Milwaukee Public Museum, Milwaukee, Wisconsin 53233 MURRAY S. BLUM Department of Entomology, University of Georgia, Athens, Georgia 30602 HENRY M. FALES AND Z. BIAN Laboratory of Chemistry, National Heart, Lung and Blood Institute, Bethesda, Maryland 20014 ABSTRACT. The life cycle, behavior, and chemical ecology of the neotropical but­ terfly Papilio anchisiades idaeus Fabricius (Papilioninae) were studied, using larvae from a single cluster of eggs obtained in NE Costa Rica. The butterfly places large clusters of eggs on the ventral surface of older (bluish green) leaves of Citrus. The larvae are cryptically colored and exhibit communal resting, molting, and nocturnal feeding be­ havior. Fourth and fifth instars perch on branches and trunk of the host plant. Larvae are parasitized by the braconid wasp Meteorus sp., and the ant Camponotus rectan­ gularis attacks and kills pupae located on the host plant. Paper wasps do not attack large larvae or pupae, even though their nests are often abundant in Citrus trees occupied by P. anchisiades. Pupae on substrates away from the host plant may survive ant predation. Larvae readily evert the osmeterium when provoked; a very pungent, disagreeable odor is noticeable (to humans) only in the fifth instar. The principle components of the os­ meterial secretions change both qualitatively and quantitatively with the molt to the fifth instar. The major constituents of the secretions of third and fourth instars are sesquiterpenes including "a-bergamotene", a-acoradiene, "a-himachalene", and isomers of farnesene; the main secretion of the fifth instar is dominated by isobutyric acid and 2-methylbutyric acid with sesquiterpenes, aliphatic hydrocarbons, long-chain alcohols, and carboxylic esters constituting minor constituents.
    [Show full text]
  • Topical Application of Acetone Solution of Ferruginol, Meroterpene
    Int.J.Curr.Microbiol.App.Sci (2017) 6(4): 144-158 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 4 (2017) pp. 144-158 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.604.017 Topical Application of Acetone Solution of Ferruginol, Meroterpene Compound to the Fifth Instar Larvae of Silkworm Bombyx mori (L.) (Race: PM x CSR2) for Quality Improvement in Silk Mansi Avinash Adagale1, Apurva Baban Tamhane1 and Vitthalrao B. Khyade2* 1Shardabai Pawar Mahila Mahavidyalaya Shardanagar, Malegaon (Baramati), Pune 413115, Maharashtra, India 2Sericulture Unit, Malegaon Sheti Farm, Agricultural Development Trust Baramati, Shardanagar, (Malegaon Khurd) Post Box No - 35, Baramati, Pune 413 115, Maharashtra, India *Corresponding author ABSTRACT The principle of efficient use of available system for quality improvement is tried to utilize in the present study. The present attempt was undertaken to study the influence of acetone solution of Ferruginol, a natural phenol and a meroterpene compound, on the cocoon characters and silk filament parameters of silk worm Bombyx mori (L.) (Race: PM x CSR2). Three concentrations (5ppm; 10ppm and 20ppm) of Ferruginol were prepared. The K e yw or ds fifth instar larvae were utilized for the experimentation. Soon after the fourth moult, the fifth instar larvae were grouped into five groups (each with hundred individuals) Bombyx mori, (Untreated control; Acetone treated control; 5ppm Ferruginol; 10ppm Ferruginol and Ferruginol, 20ppm Ferruginol ). Ten microliters of each concentration of Ferruginol solution were Meroterpene, topically applied to respective group to the individual larva at 48 hours after the fourth Silk yield.
    [Show full text]