Generating and Analyzing Synthetic Workloads Using Iterative Distillation

Total Page:16

File Type:pdf, Size:1020Kb

Generating and Analyzing Synthetic Workloads Using Iterative Distillation Generating and Analyzing Synthetic Workloads using Iterative Distillation A Thesis Presented to The Academic Faculty by Zachary A. Kurmas In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy College of Computing Georgia Institute of Technology May 2004 Generating and Analyzing Synthetic Workloads using Iterative Distillation Approved by: Dr. Umakishore Ramachandran, Adviser Dr. Kimberly Keeton (Hewlett-Packard Laboratories) Dr. Kenneth Mackenzie (Reservoir Labs, Inc.) Dr. Yannis Smaragdakis Dr. Panagiotis Manolios Date Approved: 14 May 2004 To Candi, for her love, support, and many years of patience. ACKNOWLEDGEMENTS Those who praise \thinking outside the box" have never had to deal with a gradu- ate student who chose a thesis topic outside every one of his department's \boxes." Many people have gone above and beyond the call of duty to provide me the re- sources and advice needed to finish this dissertation. First, I want to thank Kimberly Keeton, Ralph Becker-Szendy, John Wilkes, Allistar Vietch, and everybody else in the Storage Systems Department at HP Labs for granting me the privilege to join them for a summer, and for continuing to support my research after I had returned to Georgia Tech. Second, I want to thank Ann Chervenak, Ken Mackenzie, Kishore Ramachandran, and all the other faculty at Georgia Tech for providing the moral and financial support that allowed me to pursue my storage systems research. Third, I thank Chad Huneycutt, Josh Fryman, and all the other students at Georgia Tech who spent time editing my papers and critiquing my talks. Nobody was under any obligation to support my research, yet they agreed to work together and see that I was able to complete my dissertation. I would also like to acknowledge the incredible support staff in the College of Computing at Georgia Tech. Barbara Binder, Jennifer Chisholm, Cathy Dunahoo, Barbara Durham, Deborah Mitchell, Linda Williams, and the rest of the administra- tive assistants do an excellent job helping students navigate Georgia Tech's typical university bureaucracy. Neil Bright, Karen Carpenter, and the rest of the Computing and Networking Services staff do a wonderful job maintaining the College of Comput- ing's computing infrastructure and shielding students from the overhead of system administration. These two groups of people have saved me from countless hours of frustration and wasted time. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS . iv LIST OF TABLES . ix LIST OF FIGURES . xi SUMMARY . xiv CHAPTER 1 INTRODUCTION . 1 1.1 Motivation . 1 1.2 Overview of the Distiller . 3 1.3 Contributions . 5 1.4 Organization . 8 CHAPTER 2 BACKGROUND AND RELATED WORK . 9 2.1 Performance evaluation . 9 2.2 Workload characterization . 11 2.3 Synthetic workload generation . 12 2.3.1 Model the source . 13 2.3.2 Reproduce the pattern . 14 2.3.3 Reproduce behavior . 18 2.4 Attribute selection . 19 2.5 Our work . 20 CHAPTER 3 WORKLOAD MODELS, ATTRIBUTES, AND PER- FORMANCE METRICS . 22 3.1 Workload . 22 3.1.1 Our workload model . 22 3.1.2 Open vs. closed model . 24 3.1.3 Describing workload attributes . 24 3.2 Disk arrays and performance . 26 3.3 Attributes and attribute-values . 30 v 3.3.1 Distributions . 30 3.3.2 State transition matrix . 36 3.3.3 Jump distance . 37 3.3.4 Run count . 40 3.3.5 Burstiness . 43 3.3.6 Attribute groups . 44 3.3.7 Attribute size . 46 3.4 Evaluation metrics . 48 3.4.1 Evaluation criteria . 48 3.4.2 Error . 51 CHAPTER 4 EXPERIMENTAL ENVIRONMENT . 53 4.1 Storage systems . 53 4.2 Workloads . 55 4.3 Software . 58 CHAPTER 5 DESIGN AND IMPLEMENTATION . 62 5.1 Overview . 62 5.2 Initial attribute list . 64 5.3 Choosing an attribute group . 65 5.3.1 Single-parameter attribute groups . 66 5.3.2 Two-parameter attribute groups . 68 5.3.3 Search order . 69 5.4 Choosing an attribute . 71 5.5 Completion of Email example . 73 5.6 Limitations . 76 5.6.1 Randomness error . 77 5.6.2 Non-static target workloads . 78 5.6.3 Exploratory workloads provide estimates only . 78 5.7 Summary . 78 vi CHAPTER 6 EVALUATION OF DISTILLER . 80 6.1 Artificial workloads . 80 6.2 Production workloads . 87 6.3 Summary . 94 CHAPTER 7 OPERATIONAL SENSITIVITY . 95 7.1 Demerit figure . 95 7.1.1 Distiller design limitations . 99 7.1.2 Demerit figure limitations . 104 7.1.3 Heavy tails . 113 7.1.4 Lessons learned . 115 7.2 Internal Threshold . 117 7.3 Size / Accuracy tradeoff . 125 7.3.1 OpenMail . 126 7.3.2 OLTP . 133 7.3.3 Lessons from tradeoff study . 138 7.4 Summary . 140 CHAPTER 8 SYNTHETIC WORKLOAD USEFULNESS . 141 8.1 Prefetch length . 141 8.1.1 OpenMail . 142 8.1.2 OLTP . 147 8.1.3 DSS . 150 8.2 Stripe unit size . 153 8.2.1 OpenMail . 154 8.2.2 OLTP . 157 8.2.3 DSS . 160 8.3 Summary . 160 CHAPTER 9 CONCLUSIONS AND FUTURE WORK . 164 APPENDIX A | GENERATION TECHNIQUES . 167 vii APPENDIX B | DEMERIT FIGURE ALGORITHMS . 175 REFERENCES . 177 VITA . 182 viii LIST OF TABLES Table 1 Example workload . 23 Table 2 Example jump distances and modified jump distances . 24 Table 3 Joint distribution of operation type and request size . 32 Table 4 State transition matrix for operation type . 36 Table 5 Jump distance within state . 38 Table 6 Groups of candidate attributes . 45 Table 7 Comparison of FC-30 and FC-60 . 54 Table 8 Summary of workloads . 56 Table 9 Summary of Pantheon configurations . 56 Table 10 Example of the subtractive method for frequest sizeg . 66 Table 11 Example of the rotated frequest sizeg workload . 67 Table 12 Request size and operation type rotated together . 68 Table 13 Request size and operation type rotated separately . 68 Table 14 Workload parameters for target artificial workloads. 82 Table 15 Results of distilling artificial workloads . 84 Table 16 Summary of final synthetic workloads . 87 Table 17 Incremental results of distilling production OpenMail workloads . 89 Table 18 Incremental results of distilling production OLTP and DSS workloads 90 Table 19 Replay errors of production workloads . 92 Table 20 Randomness errors of production workloads . 92 Table 21 Effects of modifying the demerit figure . 96 Table 22 Incremental results of distilling OM using different demerit figures . 97 Table 23 Incremental results of distilling OLTP using different demerit figures 98 Table 24 Incremental results of distilling DSS using different demerit figures 99 Table 25 Effects of subtractive workload's randomness error on flocationg evaluation . 100 Table 26 Difference between CDFs for rotated flocationg workloads . 101 ix Table 27 Attribute chosen given different rotate amounts . 102 Table 28 Effects of choosing A5 instead of A1 when using MRT . 103 Table 29 Comparison of test workloads illustrating differences between RMS and log area. 104 Table 30 Comparison of finterarrival timeg attributes chosen using log area and RMS demerit figures . 106 Table 31 Comparison of fop. type, locationg attributes chosen using RMS and log area . 110 Table 32 Comparison of fop. type, locationg attributes chosen for OLTP . 111 Table 33 Counterintuitive log area results . ..
Recommended publications
  • A Large-Scale Study of File-System Contents
    A Large-Scale Study of File-System Contents John R. Douceur and William J. Bolosky Microsoft Research Redmond, WA 98052 {johndo, bolosky}@microsoft.com ABSTRACT sizes are fairly consistent across file systems, but file lifetimes and file-name extensions vary with the job function of the user. We We collect and analyze a snapshot of data from 10,568 file also found that file-name extension is a good predictor of file size systems of 4801 Windows personal computers in a commercial but a poor predictor of file age or lifetime, that most large files are environment. The file systems contain 140 million files totaling composed of records sized in powers of two, and that file systems 10.5 TB of data. We develop analytical approximations for are only half full on average. distributions of file size, file age, file functional lifetime, directory File-system designers require usage data to test hypotheses [8, size, and directory depth, and we compare them to previously 10], to drive simulations [6, 15, 17, 29], to validate benchmarks derived distributions. We find that file and directory sizes are [33], and to stimulate insights that inspire new features [22]. File- fairly consistent across file systems, but file lifetimes vary widely system access requirements have been quantified by a number of and are significantly affected by the job function of the user. empirical studies of dynamic trace data [e.g. 1, 3, 7, 8, 10, 14, 23, Larger files tend to be composed of blocks sized in powers of two, 24, 26]. However, the details of applications’ and users’ storage which noticeably affects their size distribution.
    [Show full text]
  • Latency-Aware, Inline Data Deduplication for Primary Storage
    iDedup: Latency-aware, inline data deduplication for primary storage Kiran Srinivasan, Tim Bisson, Garth Goodson, Kaladhar Voruganti NetApp, Inc. fskiran, tbisson, goodson, [email protected] Abstract systems exist that deduplicate inline with client requests for latency sensitive primary workloads. All prior dedu- Deduplication technologies are increasingly being de- plication work focuses on either: i) throughput sensitive ployed to reduce cost and increase space-efficiency in archival and backup systems [8, 9, 15, 21, 26, 39, 41]; corporate data centers. However, prior research has not or ii) latency sensitive primary systems that deduplicate applied deduplication techniques inline to the request data offline during idle time [1, 11, 16]; or iii) file sys- path for latency sensitive, primary workloads. This is tems with inline deduplication, but agnostic to perfor- primarily due to the extra latency these techniques intro- mance [3, 36]. This paper introduces two novel insights duce. Inherently, deduplicating data on disk causes frag- that enable latency-aware, inline, primary deduplication. mentation that increases seeks for subsequent sequential Many primary storage workloads (e.g., email, user di- reads of the same data, thus, increasing latency. In addi- rectories, databases) are currently unable to leverage the tion, deduplicating data requires extra disk IOs to access benefits of deduplication, due to the associated latency on-disk deduplication metadata. In this paper, we pro- costs. Since offline deduplication systems impact la-
    [Show full text]
  • On the Performance Variation in Modern Storage Stacks
    On the Performance Variation in Modern Storage Stacks Zhen Cao1, Vasily Tarasov2, Hari Prasath Raman1, Dean Hildebrand2, and Erez Zadok1 1Stony Brook University and 2IBM Research—Almaden Appears in the proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17) Abstract tions on different machines have to compete for heavily shared resources, such as network switches [9]. Ensuring stable performance for storage stacks is im- In this paper we focus on characterizing and analyz- portant, especially with the growth in popularity of ing performance variations arising from benchmarking hosted services where customers expect QoS guaran- a typical modern storage stack that consists of a file tees. The same requirement arises from benchmarking system, a block layer, and storage hardware. Storage settings as well. One would expect that repeated, care- stacks have been proven to be a critical contributor to fully controlled experiments might yield nearly identi- performance variation [18, 33, 40]. Furthermore, among cal performance results—but we found otherwise. We all system components, the storage stack is the corner- therefore undertook a study to characterize the amount stone of data-intensive applications, which become in- of variability in benchmarking modern storage stacks. In creasingly more important in the big data era [8, 21]. this paper we report on the techniques used and the re- Although our main focus here is reporting and analyz- sults of this study. We conducted many experiments us- ing the variations in benchmarking processes, we believe ing several popular workloads, file systems, and storage that our observations pave the way for understanding sta- devices—and varied many parameters across the entire bility issues in production systems.
    [Show full text]
  • Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
    Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3
    [Show full text]
  • CD ROM Drives and Their Handling Under RISC OS Explained
    28th April 1995 Support Group Application Note Number: 273 Issue: 0.4 **DRAFT** Author: DW CD ROM Drives and their Handling under RISC OS Explained This Application Note details the interfacing of, and protocols underlying, CD ROM drives and their handling under RISC OS. Applicable Related Hardware : Application All Acorn computers running Notes: 266: Developing CD ROM RISC OS 3.1 or greater products for Acorn machines 269: File transfer between Acorn and foreign platforms Every effort has been made to ensure that the information in this leaflet is true and correct at the time of printing. However, the products described in this leaflet are subject to continuous development and Support Group improvements and Acorn Computers Limited reserves the right to change its specifications at any time. Acorn Computers Limited Acorn Computers Limited cannot accept liability for any loss or damage arising from the use of any information or particulars in this leaflet. Acorn, the Acorn Logo, Acorn Risc PC, ECONET, AUN, Pocket Acorn House Book and ARCHIMEDES are trademarks of Acorn Computers Limited. Vision Park ARM is a trademark of Advance RISC Machines Limited. Histon, Cambridge All other trademarks acknowledged. ©1995 Acorn Computers Limited. All rights reserved. CB4 4AE Support Group Application Note No. 273, Issue 0.4 **DRAFT** 28th April 1995 Table of Contents Introduction 3 Interfacing CD ROM Drives 3 Features of CD ROM Drives 4 CD ROM Formatting Standards ("Coloured Books") 5 CD ROM Data Storage Standards 7 CDFS and CD ROM Drivers 8 Accessing Data on CD ROMs Produced for Non-Acorn Platforms 11 Troubleshooting 12 Appendix A: Useful Contacts 13 Appendix B: PhotoCD Mastering Bureaux 14 Appendix C: References 14 Support Group Application Note No.
    [Show full text]
  • Porting FUSE to L4re
    Großer Beleg Porting FUSE to L4Re Florian Pester 23. Mai 2013 Technische Universit¨at Dresden Fakult¨at Informatik Institut fur¨ Systemarchitektur Professur Betriebssysteme Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann H¨artig Betreuender Mitarbeiter: Dipl.-Inf. Carsten Weinhold Erkl¨arung Hiermit erkl¨are ich, dass ich diese Arbeit selbstst¨andig erstellt und keine anderen als die angegebenen Hilfsmittel benutzt habe. Declaration I hereby declare that this thesis is a work of my own, and that only cited sources have been used. Dresden, den 23. Mai 2013 Florian Pester Contents 1. Introduction 1 2. State of the Art 3 2.1. FUSE on Linux . .3 2.1.1. FUSE Internal Communication . .4 2.2. The L4Re Virtual File System . .5 2.3. Libfs . .5 2.4. Communication and Access Control in L4Re . .6 2.5. Related Work . .6 2.5.1. FUSE . .7 2.5.2. Pass-to-Userspace Framework Filesystem . .7 3. Design 9 3.1. FUSE Server parts . 11 4. Implementation 13 4.1. Example Request handling . 13 4.2. FUSE Server . 14 4.2.1. LibfsServer . 14 4.2.2. Translator . 14 4.2.3. Requests . 15 4.2.4. RequestProvider . 15 4.2.5. Node Caching . 15 4.3. Changes to the FUSE library . 16 4.4. Libfs . 16 4.5. Block Device Server . 17 4.6. File systems . 17 5. Evaluation 19 6. Conclusion and Further Work 25 A. FUSE operations 27 B. FUSE library changes 35 C. Glossary 37 V List of Figures 2.1. The architecture of FUSE on Linux . .3 2.2. The architecture of libfs .
    [Show full text]
  • Paratrac: a Fine-Grained Profiler for Data-Intensive Workflows
    ParaTrac: A Fine-Grained Profiler for Data-Intensive Workflows Nan Dun Kenjiro Taura Akinori Yonezawa Department of Computer Department of Information and Department of Computer Science Communication Engineering Science The University of Tokyo The University of Tokyo The University of Tokyo 7-3-1 Hongo, Bunkyo-Ku 7-3-1 Hongo, Bunkyo-Ku 7-3-1 Hongo, Bunkyo-Ku Tokyo, 113-5686 Japan Tokyo, 113-5686 Japan Tokyo, 113-5686 Japan [email protected] [email protected] [email protected] tokyo.ac.jp tokyo.ac.jp tokyo.ac.jp ABSTRACT 1. INTRODUCTION The realistic characteristics of data-intensive workflows are With the advance of high performance distributed com- critical to optimal workflow orchestration and profiling is puting, users are able to execute various data-intensive an effective approach to investigate the behaviors of such applications by harnessing massive computing resources [1]. complex applications. ParaTrac is a fine-grained profiler Though workflow management systems have been developed for data-intensive workflows by using user-level file system to alleviate the difficulties of planning, scheduling, and exe- and process tracing techniques. First, ParaTrac enables cuting complex workflows in distributed environments [2{5], users to quickly understand the I/O characteristics of from optimal workflow management still remains a challenge entire application to specific processes or files by examining because of the complexity of applications. Therefore, one low-level I/O profiles. Second, ParaTrac automatically of important and practical demands is to understand and exploits fine-grained data-processes interactions in workflow characterize the data-intensive applications to help workflow to help users intuitively and quantitatively investigate management systems (WMS) refine their orchestration for realistic execution of data-intensive workflows.
    [Show full text]
  • Eventtracker: Removable Media Device Monitoring Version 7.X
    EventTracker: Removable Media Device Monitoring Version 7.x EventTracker 8815 Centre Park Drive Columbia MD 21045 Publication Date: Dec 21, 2011 www.eventtracker.com EventTracker: Removable Media Device Monitoring Abstract With the introduction of newer portable devices, the security needs of protecting integrity and confidential data has been changed. An increasing need of portable access to the data has also increased the risk of sensitive or confidential data exposure. Therefore, to keep a record of removable media device activities has become one of the most important compliance factor for the enterprise. EventTracker’s advanced removable media monitoring capacity protects and monitors system(s) from illegal access or data theft. EventTracker helps user(s) to disable the unauthorized access to the machine and allow the trusted devices connection. Purpose This document will help you to enable the removable device monitoring and explains the procedure to find the Device ID and USB serial number. It also monitors insertion/removal and files written to and read from removable media such as CD/DVD and USB. Intended Audience Administrators who are assigned the task to monitor and manage events using EventTracker. Scope The configurations detailed in this guide are consistent with EventTracker Enterprise version 7.x. The instructions can be used while working with later releases of EventTracker Enterprise. The information contained in this document represents the current view of Prism Microsystems Inc. on the issues discussed as of the date of publication. Because Prism Microsystems must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Prism Microsystems, and Prism Microsystems cannot guarantee the accuracy of any information presented after the date of publication.
    [Show full text]
  • 2 Linux Installation 5
    MRtrix Documentation Release 3.0 MRtrix contributors May 05, 2017 Install 1 Before you install 3 2 Linux installation 5 3 macOS installation 11 4 Windows installation 15 5 HPC clusters installation 19 6 Key features 23 7 Commands and scripts 25 8 Beginner DWI tutorial 27 9 Images and other data 29 10 Command-line usage 41 11 Configuration file 47 12 DWI denoising 49 13 DWI distortion correction using dwipreproc 51 14 Response function estimation 55 15 Maximum spherical harmonic degree lmax 61 16 Multi-tissue constrained spherical deconvolution 63 17 Anatomically-Constrained Tractography (ACT) 65 18 Spherical-deconvolution Informed Filtering of Tractograms (SIFT) 69 19 Structural connectome construction 73 20 Using the connectome visualisation tool 77 i 21 labelconvert: Explanation & demonstration 81 22 Global tractography 85 23 ISMRM tutorial - Structural connectome for Human Connectome Project (HCP) 89 24 Fibre density and cross-section - Single shell DWI 93 25 Fibre density and cross-section - Multi-tissue CSD 103 26 Expressing the effect size relative to controls 111 27 Displaying results with streamlines 113 28 Warping images using warps generated from other packages 115 29 Diffusion gradient scheme handling 117 30 Global intensity normalisation 123 31 Orthonormal Spherical Harmonic basis 125 32 Dixels and Fixels 127 33 Motivation for afdconnectivity 129 34 Batch processing with foreach 131 35 Frequently Asked Questions (FAQ) 135 36 Display issues 141 37 Unusual symbols on terminal 145 38 Compiler error during build 149 39 Hanging or Crashing 151 40 Advanced debugging 155 41 List of MRtrix3 commands 157 42 List of MRtrix3 scripts 307 43 List of MRtrix3 configuration file options 333 44 MRtrix 0.2 equivalent commands 341 ii MRtrix Documentation, Release 3.0 MRtrix provides a large suite of tools for image processing, analysis and visualisation, with a focus on the analysis of white matter using diffusion-weighted MRI Features include the estimation of fibre orientation distributions using constrained spherical deconvolution (Tournier et al.
    [Show full text]
  • Basics of UNIX
    Basics of UNIX August 23, 2012 By UNIX, I mean any UNIX-like operating system, including Linux and Mac OS X. On the Mac you can access a UNIX terminal window with the Terminal application (under Applica- tions/Utilities). Most modern scientific computing is done on UNIX-based machines, often by remotely logging in to a UNIX-based server. 1 Connecting to a UNIX machine from {UNIX, Mac, Windows} See the file on bspace on connecting remotely to SCF. In addition, this SCF help page has infor- mation on logging in to remote machines via ssh without having to type your password every time. This can save a lot of time. 2 Getting help from SCF More generally, the department computing FAQs is the place to go for answers to questions about SCF. For questions not answered there, the SCF requests: “please report any problems regarding equipment or system software to the SCF staff by sending mail to ’trouble’ or by reporting the prob- lem directly to room 498/499. For information/questions on the use of application packages (e.g., R, SAS, Matlab), programming languages and libraries send mail to ’consult’. Questions/problems regarding accounts should be sent to ’manager’.” Note that for the purpose of this class, questions about application packages, languages, li- braries, etc. can be directed to me. 1 3 Files and directories 1. Files are stored in directories (aka folders) that are in a (inverted) directory tree, with “/” as the root of the tree 2. Where am I? > pwd 3. What’s in a directory? > ls > ls -a > ls -al 4.
    [Show full text]
  • 27Th Large Installation System Administration Conference (LISA '13)
    conference proceedings Proceedings of the 27th Large Installation System Administration Conference 27th Large Installation System Administration Conference (LISA ’13) Washington, D.C., USA November 3–8, 2013 Washington, D.C., USA November 3–8, 2013 Sponsored by In cooperation with LOPSA Thanks to Our LISA ’13 Sponsors Thanks to Our USENIX and LISA SIG Supporters Gold Sponsors USENIX Patrons Google InfoSys Microsoft Research NetApp VMware USENIX Benefactors Akamai EMC Hewlett-Packard Linux Journal Linux Pro Magazine Puppet Labs Silver Sponsors USENIX and LISA SIG Partners Cambridge Computer Google USENIX Partners Bronze Sponsors Meraki Nutanix Media Sponsors and Industry Partners ACM Queue IEEE Security & Privacy LXer ADMIN IEEE Software No Starch Press CiSE InfoSec News O’Reilly Media Computer IT/Dev Connections Open Source Data Center Conference Distributed Management Task Force IT Professional (OSDC) (DMTF) Linux Foundation Server Fault Free Software Magazine Linux Journal The Data Center Journal HPCwire Linux Pro Magazine Userfriendly.org IEEE Pervasive © 2013 by The USENIX Association All Rights Reserved This volume is published as a collective work. Rights to individual papers remain with the author or the author’s employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all trademarks herein. ISBN 978-1-931971-05-8 USENIX Association Proceedings of the 27th Large Installation System Administration Conference November 3–8, 2013 Washington, D.C. Conference Organizers Program Co-Chairs David Nalley, Apache Cloudstack Narayan Desai, Argonne National Laboratory Adele Shakal, Metacloud, Inc.
    [Show full text]
  • Understanding and Taming SSD Read Performance Variability: HDFS Case Study
    Understanding and taming SSD read performance variability: HDFS case study Mar´ıa F. Borge Florin Dinu Willy Zwaenepoel University of Sydney University of Sydney EPFL and University of Sydney Abstract found in hardware. On the other hand, they can introduce their own performance bottlenecks and sources of variabil- In this paper we analyze the influence that lower layers (file ity [6, 21, 26]. system, OS, SSD) have on HDFS’ ability to extract max- In this paper we perform a deep dive into the performance imum performance from SSDs on the read path. We un- of a critical layer in today’s big data storage stacks, namely cover and analyze three surprising performance slowdowns the Hadoop Distributed File System (HDFS [25]). We par- induced by lower layers that result in HDFS read through- ticularly focus on the influence that lower layers have on put loss. First, intrinsic slowdown affects reads from every HDFS’ ability to extract the maximum throughput that the new file system extent for a variable amount of time. Sec- underlying storage is capable of providing. We focus on the ond, temporal slowdown appears temporarily and periodi- HDFS read path and on SSD as a storage media. We use cally and is workload-agnostic. Third, in permanent slow- ext4 as the file system due to its popularity. The HDFS read down, some files can individually and permanently become path is important because it can easily become a performance slower after a period of time. bottleneck for an application’s input stage which accesses We analyze the impact of these slowdowns on HDFS and slower storage media compared to later stages which are of- show significant throughput loss.
    [Show full text]