Latency-Aware, Inline Data Deduplication for Primary Storage

Total Page:16

File Type:pdf, Size:1020Kb

Latency-Aware, Inline Data Deduplication for Primary Storage iDedup: Latency-aware, inline data deduplication for primary storage Kiran Srinivasan, Tim Bisson, Garth Goodson, Kaladhar Voruganti NetApp, Inc. fskiran, tbisson, goodson, [email protected] Abstract systems exist that deduplicate inline with client requests for latency sensitive primary workloads. All prior dedu- Deduplication technologies are increasingly being de- plication work focuses on either: i) throughput sensitive ployed to reduce cost and increase space-efficiency in archival and backup systems [8, 9, 15, 21, 26, 39, 41]; corporate data centers. However, prior research has not or ii) latency sensitive primary systems that deduplicate applied deduplication techniques inline to the request data offline during idle time [1, 11, 16]; or iii) file sys- path for latency sensitive, primary workloads. This is tems with inline deduplication, but agnostic to perfor- primarily due to the extra latency these techniques intro- mance [3, 36]. This paper introduces two novel insights duce. Inherently, deduplicating data on disk causes frag- that enable latency-aware, inline, primary deduplication. mentation that increases seeks for subsequent sequential Many primary storage workloads (e.g., email, user di- reads of the same data, thus, increasing latency. In addi- rectories, databases) are currently unable to leverage the tion, deduplicating data requires extra disk IOs to access benefits of deduplication, due to the associated latency on-disk deduplication metadata. In this paper, we pro- costs. Since offline deduplication systems impact la- pose an inline deduplication solution, iDedup, for pri- tency the least, they are currently the best option; how- mary workloads, while minimizing extra IOs and seeks. ever, they are inefficient. For example, offline systems Our algorithm is based on two key insights from real- require additional storage capacity to absorb the writes world workloads: i) spatial locality exists in duplicated prior to deduplication, and excess disk bandwidth to per- primary data; and ii) temporal locality exists in the access form reads and writes during deduplication. This ad- patterns of duplicated data. Using the first insight, we se- ditional disk bandwidth can impact foreground work- lectively deduplicate only sequences of disk blocks. This loads. Additionally, inline compression techniques also reduces fragmentation and amortizes the seeks caused by exist [5, 6, 22, 38] that are complementary to our work. deduplication. The second insight allows us to replace the expensive, on-disk, deduplication metadata with a The challenge of inline deduplication is to not increase smaller, in-memory cache. These techniques enable us the latency of the already latency sensitive, foreground to tradeoff capacity savings for performance, as demon- operations. Reads are affected by the fragmentation strated in our evaluation with real-world workloads. Our in data layout that naturally occurs when deduplicating evaluation shows that iDedup achieves 60-70% of the blocks across many disks. As a result, subsequent se- maximum deduplication with less than a 5% CPU over- quential reads of deduplicated data are transformed into head and a 2-4% latency impact. random IOs resulting in significant seek penalties. Most of the deduplication work occurs in the write path; i.e., generating block hashes and finding duplicate blocks. To 1 Introduction identify duplicates, on-disk data structures are accessed. This leads to extra IOs and increased latency in the write Storage continues to grow at an explosive rate of over path. To address these performance concerns, it is nec- 52% per year [10]. In 2011, the amount of data will sur- essary to minimize any latencies introduced in both the pass 1.8 zettabytes [17]. According to the IDC [10], to read and write paths. reduce costs and increase storage efficiency, more than We started with the realization that in order to improve 80% of corporations are exploring deduplication tech- latency a tradeoff must be made elsewhere. Thus, we nologies. However, there is a huge gap in the current ca- were motivated by the question: Is there a tradeoff be- pabilities of deduplication technology. No deduplication tween performance and the degree of achievable dedu- plication? While examining real-world traces [20], we Type Offline Inline developed two key insights that ultimately led to an an- Primary, NetApp ASIS [1], swer: i) spatial locality exists in the duplicated data; and latency EMC Celerra [11], iDedup ii) temporal locality exists in the accesses of duplicated sensitive StorageTank [16], (This paper) data. The first observation allows us to amortize the seeks caused by deduplication by only performing dedu- Secondary, EMC DDFS [41], throughput EMC Cluster [8] plication when a sequence of on-disk blocks are dupli- sensitive DeepStore [40], cated. The second observation enables us to maintain an (No motivation NEC HydraStor [9], in-memory fingerprint cache to detect duplicates in lieu for systems in Venti [31], SiLo [39], of any on-disk structures. The first observation mitigates this category) Sparse Indexing [21], fragmentation and addresses the extra read path latency; ChunkStash [7], whereas, the second one removes extra IOs and lowers Foundation [32], write path latency. These observations lead to two con- Symantec [15], trol parameters: i) the minimum number of sequential EMC Centera [24], duplicate blocks on which to perform deduplication; and GreenBytes [13] ii) the size of the in-memory fingerprint cache. By ad- Table 1: Table of related work:. The table shows how this pa- justing these parameters, a tradeoff is made between the per, iDedup, is positioned relative to some other relevant work. capacity savings of deduplication and the performance Some primary, inline deduplication file systems (like ZFS [3]) impact to the foreground workload. are omitted, since they are not optimized for latency. This paper describes the design, implementation and without affecting latency, rather than the lack of benefit evaluation of our deduplication system (iDedup) built to deduplication provides for primary workloads. Our sys- exploit the spatial and temporal localities of duplicate tem is specifically targeted at this gap. data in primary workloads. Our evaluation shows that The remainder of this section further describes the dif- good capacity savings are achievable (between 60%-70% ferences between primary and secondary deduplication of maximum) with a small impact to latency (2-4% on systems and describes the unique challenges faced by average). In summary, our key contributions include: primary deduplication systems. • Insights on spatial and temporal locality of dupli- cated data in real-world, primary workloads. 2.1 Classifying deduplication systems • Design of an inline deduplication algorithm that leverages both spatial and temporal locality. Although many classifications for deduplication systems • Implementation of our deduplication algorithm in an exist, they are usually based on internal implementation enterprise-class, network attached storage system. details, such as the fingerprinting (hashing) scheme or • Implementation of efficient data structures to reduce whether fixed sized or variable sized blocks are used. Al- resource overheads and improve cacheability. though important, these schemes are usually orthogonal • Demonstration of a viable tradeoff between perfor- to the types of workloads their system supports. Similar mance and capacity savings via deduplication. to other storage systems, deduplication systems can be • Evaluation of our algorithm using data from real- broadly classified as primary or secondary depending on world, production, enterprise file system traces. the workloads they serve. Primary systems are used for primary workloads. These workloads tend to be latency The remainder of the paper is as follows: Section 2 sensitive and use RPC based protocols, such as NFS [30], provides background and motivation of the work; Sec- CIFS [37] or iSCSI [35]. On the other hand, secondary tion 3 describes the design of our deduplication system; systems are used for archival or backup purposes. These Section 4 describes the system’s implementation; Sec- workloads process large amounts of data, are throughput tion 5 evaluates the implementation; Section 6 describes sensitive and are based on streaming protocols. related work, and Section 7 concludes. Primary and secondary deduplication systems can be further subdivided into inline and offline deduplication 2 Background and motivation systems. Inline systems deduplicate requests in the write path before the data is written to disk. Since inline dedu- Thus far, the majority of deduplication research has tar- plication introduces work into the critical write path, it geted improving deduplication within the backup and often leads to an increase in request latency. On the other archival (or secondary storage) realm. As shown in Ta- hand, offline systems tend to wait for system idle time to ble 1, very few systems provide deduplication for latency deduplicate previously written data. Since no operations sensitive primary workloads. We believe that this is due are introduced within the write path; write latency is not to the significant challenges in performing deduplication affected, but reads remain fragmented. 2 Content addressable storage (CAS) systems (e.g., [24, 31]) naturally perform inline deduplication, since blocks are typically addressed by their fingerprints. Both archival and CAS systems are sometimes used for pri- mary storage. Likewise, a
Recommended publications
  • Achieving Superior Manageability, Efficiency, and Data Protection With
    An Oracle White Paper December 2010 Achieving Superior Manageability, Efficiency, and Data Protection with Oracle’s Sun ZFS Storage Software Achieving Superior Manageability, Efficiency, and Data Protection with Oracle’s Sun ZFS Storage Software Introduction ......................................................................................... 2 Oracle’s Sun ZFS Storage Software ................................................... 3 Simplifying Storage Deployment and Management ............................ 3 Browser User Interface (BUI) ......................................................... 3 Built-in Networking and Security ..................................................... 4 Transparent Optimization with Hybrid Storage Pools ...................... 4 Shadow Data Migration ................................................................... 5 Third-party Confirmation of Management Efficiency ....................... 6 Improving Performance with Real-time Storage Profiling .................... 7 Increasing Storage Efficiency .............................................................. 8 Data Compression .......................................................................... 8 Data Deduplication .......................................................................... 9 Thin Provisioning ............................................................................ 9 Space-efficient Snapshots and Clones ......................................... 10 Reducing Risk with Industry-leading Data Protection ........................ 10 Self-Healing
    [Show full text]
  • A Large-Scale Study of File-System Contents
    A Large-Scale Study of File-System Contents John R. Douceur and William J. Bolosky Microsoft Research Redmond, WA 98052 {johndo, bolosky}@microsoft.com ABSTRACT sizes are fairly consistent across file systems, but file lifetimes and file-name extensions vary with the job function of the user. We We collect and analyze a snapshot of data from 10,568 file also found that file-name extension is a good predictor of file size systems of 4801 Windows personal computers in a commercial but a poor predictor of file age or lifetime, that most large files are environment. The file systems contain 140 million files totaling composed of records sized in powers of two, and that file systems 10.5 TB of data. We develop analytical approximations for are only half full on average. distributions of file size, file age, file functional lifetime, directory File-system designers require usage data to test hypotheses [8, size, and directory depth, and we compare them to previously 10], to drive simulations [6, 15, 17, 29], to validate benchmarks derived distributions. We find that file and directory sizes are [33], and to stimulate insights that inspire new features [22]. File- fairly consistent across file systems, but file lifetimes vary widely system access requirements have been quantified by a number of and are significantly affected by the job function of the user. empirical studies of dynamic trace data [e.g. 1, 3, 7, 8, 10, 14, 23, Larger files tend to be composed of blocks sized in powers of two, 24, 26]. However, the details of applications’ and users’ storage which noticeably affects their size distribution.
    [Show full text]
  • Netbackup ™ Enterprise Server and Server 8.0 - 8.X.X OS Software Compatibility List Created on September 08, 2021
    Veritas NetBackup ™ Enterprise Server and Server 8.0 - 8.x.x OS Software Compatibility List Created on September 08, 2021 Click here for the HTML version of this document. <https://download.veritas.com/resources/content/live/OSVC/100046000/100046611/en_US/nbu_80_scl.html> Copyright © 2021 Veritas Technologies LLC. All rights reserved. Veritas, the Veritas Logo, and NetBackup are trademarks or registered trademarks of Veritas Technologies LLC in the U.S. and other countries. Other names may be trademarks of their respective owners. Veritas NetBackup ™ Enterprise Server and Server 8.0 - 8.x.x OS Software Compatibility List 2021-09-08 Introduction This Software Compatibility List (SCL) document contains information for Veritas NetBackup 8.0 through 8.x.x. It covers NetBackup Server (which includes Enterprise Server and Server), Client, Bare Metal Restore (BMR), Clustered Master Server Compatibility and Storage Stacks, Deduplication, File System Compatibility, NetBackup OpsCenter, NetBackup Access Control (NBAC), SAN Media Server/SAN Client/FT Media Server, Virtual System Compatibility and NetBackup Self Service Support. It is divided into bookmarks on the left that can be expanded. IPV6 and Dual Stack environments are supported from NetBackup 8.1.1 onwards with few limitations, refer technote for additional information <http://www.veritas.com/docs/100041420> For information about certain NetBackup features, functionality, 3rd-party product integration, Veritas product integration, applications, databases, and OS platforms that Veritas intends to replace with newer and improved functionality, or in some cases, discontinue without replacement, please see the widget titled "NetBackup Future Platform and Feature Plans" at <https://sort.veritas.com/netbackup> Reference Article <https://www.veritas.com/docs/100040093> for links to all other NetBackup compatibility lists.
    [Show full text]
  • Redefine Blockchain Storage
    Redefine Blockchain Storage Redefine Blockchain Storage YottaChain Foundation October 2018 V0.95 www.yottachain.io1/109 Redefine Blockchain Storage CONTENTS ABSTRACT........................................................................................... 7 1. BACKGROUND..............................................................................10 1.1. Storage is the best application scenario for blockchain....... 10 1.1.1 What is blockchain storage?....................................... 10 1.1.2. Storage itself has decentralized requirements........... 10 1.1.3 Amplification effect of data deduplication.................11 1.1.4 Storage can be directly TOKENIZE on the chain......11 1.1.5 chemical reactions of blockchain + storage................12 1.1.6 User value of blockchain storage................................12 1.2 IPFS........................................................................................14 1.2.1 What IPFS Resolved...................................................14 1.2.2 Deficiency of IPFS......................................................15 1.3Data Encryption and Data De-duplication..............................18 1.3.1Data Encryption........................................................... 18 1.3.2Data Deduplication...................................................... 19 1.3.3 Data Encryption OR Data Deduplication, which one to sacrifice?.......................................................................... 20 www.yottachain.io2/109 Redefine Blockchain Storage 2. INTRODUCTION TO YOTTACHAIN..........................................22
    [Show full text]
  • On the Performance Variation in Modern Storage Stacks
    On the Performance Variation in Modern Storage Stacks Zhen Cao1, Vasily Tarasov2, Hari Prasath Raman1, Dean Hildebrand2, and Erez Zadok1 1Stony Brook University and 2IBM Research—Almaden Appears in the proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17) Abstract tions on different machines have to compete for heavily shared resources, such as network switches [9]. Ensuring stable performance for storage stacks is im- In this paper we focus on characterizing and analyz- portant, especially with the growth in popularity of ing performance variations arising from benchmarking hosted services where customers expect QoS guaran- a typical modern storage stack that consists of a file tees. The same requirement arises from benchmarking system, a block layer, and storage hardware. Storage settings as well. One would expect that repeated, care- stacks have been proven to be a critical contributor to fully controlled experiments might yield nearly identi- performance variation [18, 33, 40]. Furthermore, among cal performance results—but we found otherwise. We all system components, the storage stack is the corner- therefore undertook a study to characterize the amount stone of data-intensive applications, which become in- of variability in benchmarking modern storage stacks. In creasingly more important in the big data era [8, 21]. this paper we report on the techniques used and the re- Although our main focus here is reporting and analyz- sults of this study. We conducted many experiments us- ing the variations in benchmarking processes, we believe ing several popular workloads, file systems, and storage that our observations pave the way for understanding sta- devices—and varied many parameters across the entire bility issues in production systems.
    [Show full text]
  • Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
    Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3
    [Show full text]
  • Primary Data Deduplication – Large Scale Study and System Design
    Primary Data Deduplication – Large Scale Study and System Design Ahmed El-Shimi Ran Kalach Ankit Kumar Adi Oltean Jin Li Sudipta Sengupta Microsoft Corporation, Redmond, WA, USA Abstract platform where a variety of workloads and services compete for system resources and no assumptions of We present a large scale study of primary data dedupli- dedicated hardware can be made. cation and use the findings to drive the design of a new primary data deduplication system implemented in the Our Contributions. We present a large and diverse Windows Server 2012 operating system. File data was study of primary data duplication in file-based server analyzed from 15 globally distributed file servers hosting data. Our findings are as follows: (i) Sub-file deduplica- data for over 2000 users in a large multinational corpora- tion is significantly more effective than whole-file dedu- tion. plication, (ii) High deduplication savings previously ob- The findings are used to arrive at a chunking and com- tained using small ∼4KB variable length chunking are pression approach which maximizes deduplication sav- achievable with 16-20x larger chunks, after chunk com- ings while minimizing the generated metadata and pro- pression is included, (iii) Chunk compressibility distri- ducing a uniform chunk size distribution. Scaling of bution is skewed with the majority of the benefit of com- deduplication processing with data size is achieved us- pression coming from a minority of the data chunks, and ing a RAM frugal chunk hash index and data partitioning (iv) Primary datasets are amenable to partitioned dedu- – so that memory, CPU, and disk seek resources remain plication with comparable space savings and the par- available to fulfill the primary workload of serving IO.
    [Show full text]
  • CD ROM Drives and Their Handling Under RISC OS Explained
    28th April 1995 Support Group Application Note Number: 273 Issue: 0.4 **DRAFT** Author: DW CD ROM Drives and their Handling under RISC OS Explained This Application Note details the interfacing of, and protocols underlying, CD ROM drives and their handling under RISC OS. Applicable Related Hardware : Application All Acorn computers running Notes: 266: Developing CD ROM RISC OS 3.1 or greater products for Acorn machines 269: File transfer between Acorn and foreign platforms Every effort has been made to ensure that the information in this leaflet is true and correct at the time of printing. However, the products described in this leaflet are subject to continuous development and Support Group improvements and Acorn Computers Limited reserves the right to change its specifications at any time. Acorn Computers Limited Acorn Computers Limited cannot accept liability for any loss or damage arising from the use of any information or particulars in this leaflet. Acorn, the Acorn Logo, Acorn Risc PC, ECONET, AUN, Pocket Acorn House Book and ARCHIMEDES are trademarks of Acorn Computers Limited. Vision Park ARM is a trademark of Advance RISC Machines Limited. Histon, Cambridge All other trademarks acknowledged. ©1995 Acorn Computers Limited. All rights reserved. CB4 4AE Support Group Application Note No. 273, Issue 0.4 **DRAFT** 28th April 1995 Table of Contents Introduction 3 Interfacing CD ROM Drives 3 Features of CD ROM Drives 4 CD ROM Formatting Standards ("Coloured Books") 5 CD ROM Data Storage Standards 7 CDFS and CD ROM Drivers 8 Accessing Data on CD ROMs Produced for Non-Acorn Platforms 11 Troubleshooting 12 Appendix A: Useful Contacts 13 Appendix B: PhotoCD Mastering Bureaux 14 Appendix C: References 14 Support Group Application Note No.
    [Show full text]
  • Data Deduplication Techniques
    2010 International Conference on Future Information Technology and Management Engineering Data Deduplication Techniques Qinlu He, Zhanhuai Li, Xiao Zhang Department of Computer Science Northwestern Poly technical University Xi'an, P.R. China [email protected] Abstract-With the information and network technology, rapid • Within a single file (complete agreement with data development, rapid increase in the size of the data center, energy compression) consumption in the proportion of IT spending rising. In the great green environment many companies are eyeing the green store, • Cross-document hoping thereby to reduce the energy storage system. Data de­ • Cross-Application duplication technology to optimize the storage system can greatly reduce the amount of data, thereby reducing energy consumption • Cross-client and reduce heat emission. Data compression can reduce the number of disks used in the operation to reduce disk energy • Across time consumption costs. By studying the data de-duplication strategy, processes, and implementations for the following further lay the Data foundation of the work. Center I Keywords-cloud storage; green storage ; data deduplication V I. INTRODUCTION Now, green-saving business more seriously by people, especially in the international fmancial crisis has not yet cleared when, how cost always attached great importance to the Figure 1. Where deduplication can happend issue of major companies. It is against this background, the green store data de-duplication technology to become a hot Duplication is a data reduction technique, commonly used topic. in disk-based backup systems, storage systems designed to reduce the use of storage capacity. It works in a different time In the large-scale storage system environment, by setting period to fmd duplicate files in different locations of variable the storage pool and share the resources, avoid the different size data blocks.
    [Show full text]
  • The Effectiveness of Deduplication on Virtual Machine Disk Images
    The Effectiveness of Deduplication on Virtual Machine Disk Images Keren Jin Ethan L. Miller Storage Systems Research Center Storage Systems Research Center University of California, Santa Cruz University of California, Santa Cruz [email protected] [email protected] ABSTRACT quired while preserving isolation between machine instances. Virtualization is becoming widely deployed in servers to ef- This approach better utilizes server resources, allowing many ficiently provide many logically separate execution environ- different operating system instances to run on a small num- ments while reducing the need for physical servers. While ber of servers, saving both hardware acquisition costs and this approach saves physical CPU resources, it still consumes operational costs such as energy, management, and cooling. large amounts of storage because each virtual machine (VM) Individual VM instances can be separately managed, allow- instance requires its own multi-gigabyte disk image. More- ing them to serve a wide variety of purposes and preserving over, existing systems do not support ad hoc block sharing the level of control that many users want. However, this between disk images, instead relying on techniques such as flexibility comes at a price: the storage required to hold overlays to build multiple VMs from a single “base” image. hundreds or thousands of multi-gigabyte VM disk images, Instead, we propose the use of deduplication to both re- and the inability to share identical data pages between VM duce the total storage required for VM disk images and in- instances. crease the ability of VMs to share disk blocks. To test the One approach saving disk space when running multiple effectiveness of deduplication, we conducted extensive eval- instances of operating systems on multiple servers, whether uations on different sets of virtual machine disk images with physical or virtual, is to share files between them; i.
    [Show full text]
  • Porting FUSE to L4re
    Großer Beleg Porting FUSE to L4Re Florian Pester 23. Mai 2013 Technische Universit¨at Dresden Fakult¨at Informatik Institut fur¨ Systemarchitektur Professur Betriebssysteme Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann H¨artig Betreuender Mitarbeiter: Dipl.-Inf. Carsten Weinhold Erkl¨arung Hiermit erkl¨are ich, dass ich diese Arbeit selbstst¨andig erstellt und keine anderen als die angegebenen Hilfsmittel benutzt habe. Declaration I hereby declare that this thesis is a work of my own, and that only cited sources have been used. Dresden, den 23. Mai 2013 Florian Pester Contents 1. Introduction 1 2. State of the Art 3 2.1. FUSE on Linux . .3 2.1.1. FUSE Internal Communication . .4 2.2. The L4Re Virtual File System . .5 2.3. Libfs . .5 2.4. Communication and Access Control in L4Re . .6 2.5. Related Work . .6 2.5.1. FUSE . .7 2.5.2. Pass-to-Userspace Framework Filesystem . .7 3. Design 9 3.1. FUSE Server parts . 11 4. Implementation 13 4.1. Example Request handling . 13 4.2. FUSE Server . 14 4.2.1. LibfsServer . 14 4.2.2. Translator . 14 4.2.3. Requests . 15 4.2.4. RequestProvider . 15 4.2.5. Node Caching . 15 4.3. Changes to the FUSE library . 16 4.4. Libfs . 16 4.5. Block Device Server . 17 4.6. File systems . 17 5. Evaluation 19 6. Conclusion and Further Work 25 A. FUSE operations 27 B. FUSE library changes 35 C. Glossary 37 V List of Figures 2.1. The architecture of FUSE on Linux . .3 2.2. The architecture of libfs .
    [Show full text]
  • Paratrac: a Fine-Grained Profiler for Data-Intensive Workflows
    ParaTrac: A Fine-Grained Profiler for Data-Intensive Workflows Nan Dun Kenjiro Taura Akinori Yonezawa Department of Computer Department of Information and Department of Computer Science Communication Engineering Science The University of Tokyo The University of Tokyo The University of Tokyo 7-3-1 Hongo, Bunkyo-Ku 7-3-1 Hongo, Bunkyo-Ku 7-3-1 Hongo, Bunkyo-Ku Tokyo, 113-5686 Japan Tokyo, 113-5686 Japan Tokyo, 113-5686 Japan [email protected] [email protected] [email protected] tokyo.ac.jp tokyo.ac.jp tokyo.ac.jp ABSTRACT 1. INTRODUCTION The realistic characteristics of data-intensive workflows are With the advance of high performance distributed com- critical to optimal workflow orchestration and profiling is puting, users are able to execute various data-intensive an effective approach to investigate the behaviors of such applications by harnessing massive computing resources [1]. complex applications. ParaTrac is a fine-grained profiler Though workflow management systems have been developed for data-intensive workflows by using user-level file system to alleviate the difficulties of planning, scheduling, and exe- and process tracing techniques. First, ParaTrac enables cuting complex workflows in distributed environments [2{5], users to quickly understand the I/O characteristics of from optimal workflow management still remains a challenge entire application to specific processes or files by examining because of the complexity of applications. Therefore, one low-level I/O profiles. Second, ParaTrac automatically of important and practical demands is to understand and exploits fine-grained data-processes interactions in workflow characterize the data-intensive applications to help workflow to help users intuitively and quantitatively investigate management systems (WMS) refine their orchestration for realistic execution of data-intensive workflows.
    [Show full text]