Record of Recent River Channel Instability, Cheakamus Valley, British Columbia

Total Page:16

File Type:pdf, Size:1020Kb

Record of Recent River Channel Instability, Cheakamus Valley, British Columbia Geomorphology 53 (2003) 317–332 www.elsevier.com/locate/geomorph Record of recent river channel instability, Cheakamus Valley, British Columbia John J. Claguea,b,*, Robert J.W. Turnerb,1, Alberto V. Reyesa,2 a Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 b Geological Survey of Canada, 101-605 Robson Street, Vancouver, British Columbia, Canada V6B 5J3 Received 14 May 2002; received in revised form 3 October 2002; accepted 4 October 2002 Abstract Rivers flowing from glacier-clad Quaternary volcanoes in southwestern British Columbia have high sediment loads and anabranching and braided planforms. Their floodplains aggrade in response to recurrent large landslides on the volcanoes and to advance of glaciers during periods of climate cooling. In this paper, we document channel instability and aggradation during the last 200 years in lower Cheakamus River valley. Cheakamus River derives much of its flow and nearly all of its sediment from the Mount Garibaldi massif, which includes a number of volcanic centres dominated by Mount Garibaldi volcano. Stratigraphic analysis and radiocarbon and dendrochronological dating of recent floodplain sediments at North Vancouver Outdoor School in Cheakamus Valley show that Cheakamus River aggraded its floodplain about 1–2 m and buried a valley-floor forest in the early or mid 1800s. The aggradation was probably caused by a large (ca. 15–25 Â 106 m3) landslide from the flank of Mount Garibaldi, 15 km north of our study site, in 1855 or 1856. Examination of historical aerial photographs dating back to 1947 indicates that channel instability triggered by this event persisted until the river was dyked in the late 1950s. Our observations are consistent with data from many other mountain areas that suggest rivers with large, but highly variable sediment loads may rapidly aggrade their floodplains following a large spike in sediment supply. Channel instability may persist for decades to centuries after the triggering event. Crown Copyright D 2002 Published by Elsevier Science B.V. All rights reserved. Keywords: Floodplain; Aggradation; Channel instability; Stratigraphy; Little Ice Age British Columbia; Canada 1. Introduction Rivers in British Columbia have responded in a complex manner to linked changes in sediment supply * Corresponding author. Department of Earth Sciences, Simon and climate on time scales ranging from years to Fraser University, Burnaby, British Columbia, Canada V5A 1S6. millennia (Church, 1981; Ryder and Church, 1986; Tel.: +1-604-291-4924; fax: +1-604-291-4198. Desloges and Church, 1987; Gottesfeld and Johnson- E-mail addresses: [email protected] (J.J. Clague), Gottesfeld, 1990; Jordan and Slaymaker, 1991; Ash- [email protected] (R.J.W. Turner), [email protected] (A.V. Reyes). more and Church, 2001). The principal responses have 1 Tel.: +1-604-666-4852; fax: +1-604 666-1124. been changes in river planform and aggradation and 2 Tel.: +1-604-291-3856; fax: +1-604-291-4198. degradation of channels and floodplains. The greatest 0169-555X/02/$ - see front matter. Crown Copyright D 2002 Published by Elsevier Science B.V. All rights reserved. doi:10.1016/S0169-555X(02)00321-5 318 J.J. Clague et al. / Geomorphology 53 (2003) 317–332 changes since the end of the Pleistocene occurred early Ryder, 1972), although conditioned by glaciation, are during postglacial time when rivers rapidly aggraded really delayed, indirect responses to climatic change. their valleys in response to the transfer of large amounts They are more directly linked to sediment availability of sediment to valley floors (Church and Ryder, 1972; than to climate at the time of aggradation or degrada- Clague, 1986). The fills produced by this short-lived tion. phase of aggradation were incised over periods of Lesser changes in river planform and base level centuries to perhaps thousands of years in the early that are more directly linked to climatic change have Holocene after the supply of easily eroded drift became been documented in some river basins in British exhausted. These ‘‘paraglacial’’ effects (Church and Columbia and elsewhere (e.g., Meyer et al., 1992; Fig. 1. Map of the Cheakamus and lower Squamish River watersheds. Black areas are Quaternary volcanic rocks. The west flank of the Mount Garibaldi massif is the principal source of sediment to Cheakamus River. J.J. Clague et al. / Geomorphology 53 (2003) 317–332 319 Huisink, 1999). Some rivers in the Coast Mountains volcanic eruptions (Lipman and Mullineaux, 1981) of British Columbia aggraded their floodplains and may increase sediment delivery to rivers, causing acquired braided planforms during the Little Ice Age them to aggrade their valleys (Jordan and Slay- (Desloges, 1987; Desloges and Church, 1987; Got- maker, 1991). The perturbing event may be tesfeld and Johnson-Gottesfeld, 1990). These rivers short-lived, but its effects can persist for decades incised their floodplains and developed more anab- or even centuries. The cataclysmic eruptions of ranching planforms during the twentieth century, as Mount St. Helens in May 1980 and Mount Pinatubo climate warmed. Other researchers have documented in 1991, for example, triggered debris flows that climatically driven cycles of aggradation and degra- aggraded valleys many tens of kilometres from the dation at longer time scales. Huisink (1999),for volcanoes. The rivers that drain these volcanoes are example, reconstructed the complex response of the still adjusting to the eruptions (Simon, 1999; Hayes Maas River to alternating warm and cool intervals et al., 2002). during the Pleistocene–Holocene transition. Meyer This paper documents and attempts to explain a et al. (1992) attributed periods of late Holocene period of channel instability and aggradation in the alluvial fan growth and floodplain aggradation in Cheakamus River valley in southwestern British Yellowstone National Park to climatically driven Columbia. We date the perturbation and ascribe it to forest fire cycles. a large landslide at the head of a tributary of Chea- Other, more local factors can alter the equili- kamus River, 15 km north of our study area, in the brium of rivers, triggering base level and morpho- middle 1800s. We suggest that the river was still logical changes. Notably, large landslides (Hewitt, adjusting to this perturbation as late as the 1950s 1998), human disturbance (Knighton, 1989),and when it was dyked. Fig. 2. Shaded-relief, digital elevation model showing localities mentioned in the paper. 320 J.J. Clague et al. / Geomorphology 53 (2003) 317–332 Fig. 3. Map of the study area showing the known extent of the buried forest, giant living red cedars, and large cut cedar and hemlock stumps. J.J. Clague et al. / Geomorphology 53 (2003) 317–332 321 2. Setting Garibaldi massif (Fig. 2). Mount Garibaldi is a Pleistocene volcano that last erupted 11,000– Cheakamus River drains 1070 km2 of the Coast 12,000 years ago during deglaciation of the region Mountains of southwestern British Columbia (Fig. 1). (Mathews, 1952a). The western slopes of the vol- It is a major tributary of Squamish River, which it cano are steep and prone to landsliding. Near the enters 9 km north of Squamish at the head of Howe head of Rubble Creek is a near-vertical cliff in Sound. Cheakamus River and its tributaries head in highly jointed basalt. The cliff, which is named The alpine basins, many of which presently contain gla- Barrier, formed about 12,000 years ago when a lava ciers. flow erupted from a cone on the flank of Mount Of particular importance for our study are three Garibaldi and terminated against glacier ice filling tributaries of Cheakamus River, Rubble Creek, Cull- Cheakamus and Rubble Creek valleys (Mathews, iton Creek, and Cheekye River, which drain the 1952b). Large landslides from The Barrier have west flank of the snow- and ice-covered Mount swept down Rubble Creek to Cheakamus River Fig. 4. Lowermost Cheakamus River valley in 1947 (BC400-74) and 1996 (BCB96099-59); compare with Fig. 5. Note wide, braided and anabranching channel pattern in 1947. The active channel is narrower and more stable in 1996. 322 J.J. Clague et al. / Geomorphology 53 (2003) 317–332 many times in the Holocene, most recently in 1855 or 1856 (Moore and Mathews, 1978). The upper reach of Culliton Creek contains a similar cliff developed in fractured basalts (Mathews, 1952b). This cliff, like The Barrier, is vulnerable to land- slides, although neither it nor the valley has been studied. Cheekye River heads in steep slopes devel- oped in late Pleistocene pyroclastic rocks. These slopes formed when the west half of Mount Gar- ibaldi volcano collapsed into Cheakamus Valley during deglaciation. A large fan (Cheekye fan, Fig. 2) has formed over Holocene time at the mouth of Cheekye River from hundreds of debris flows derived from the head of the basin. The most recent Cheekye debris flow to reach Cheakamus River occurred in 1958 (Jones, 1959). Our study area is located on the grounds of the North Vancouver Outdoor School (NVOS) about 4 km northeast of the confluence of Cheakamus and Squamish River, and 3 km north of Cheekye fan (Figs. 2 and 3). This part of Cheakamus valley is up to 850 m wide and is floored by a floodplain underlain by thick Quaternary sediments (Jordan- Knox et al., 2001). Bedrock slopes and the Cheekye fan constrict the floodplain to a width of about 100 m at the south, or downstream, end of the study area. The valley also narrows north of the mouth of Culliton Creek, and from there north to near Rubble Creek, Cheakamus River flows in a bedrock canyon (Cheakamus Canyon). A dam, built in 1955 to generate electricity, blocks Cheakamus River just north of Rubble Creek (Fig. 2). 3. Methods Historic changes in the planform of Cheakamus River at NVOS were documented by comparing British Columbia Government aerial photographs dating from 1947 to 1996.
Recommended publications
  • Washington Division of Geology and Earth Resources Open File Report
    l 122 EARTHQUAKES AND SEISMOLOGY - LEGAL ASPECTS OPEN FILE REPORT 92-2 EARTHQUAKES AND Ludwin, R. S.; Malone, S. D.; Crosson, R. EARTHQUAKES AND SEISMOLOGY - LEGAL S.; Qamar, A. I., 1991, Washington SEISMOLOGY - 1946 EVENT ASPECTS eanhquak:es, 1985. Clague, J. J., 1989, Research on eanh- Ludwin, R. S.; Qamar, A. I., 1991, Reeval­ Perkins, J. B.; Moy, Kenneth, 1989, Llabil­ quak:e-induced ground failures in south­ uation of the 19th century Washington ity of local government for earthquake western British Columbia [abstract). and Oregon eanhquake catalog using hazards and losses-A guide to the law Evans, S. G., 1989, The 1946 Mount Colo­ original accounts-The moderate sized and its impacts in the States of Califor­ nel Foster rock avalanches and auoci­ earthquake of May l, 1882 [abstract). nia, Alaska, Utah, and Washington; ated displacement wave, Vancouver Is­ Final repon. Maley, Richard, 1986, Strong motion accel­ land, British Columbia. erograph stations in Oregon and Wash­ Hasegawa, H. S.; Rogers, G. C., 1978, EARTHQUAKES AND ington (April 1986). Appendix C Quantification of the magnitude 7.3, SEISMOLOGY - NETWORKS Malone, S. D., 1991, The HAWK seismic British Columbia earthquake of June 23, AND CATALOGS data acquisition and analysis system 1946. [abstract). Berg, J. W., Jr.; Baker, C. D., 1963, Oregon Hodgson, E. A., 1946, British Columbia eanhquak:es, 1841 through 1958 [ab­ Milne, W. G., 1953, Seismological investi­ earthquake, June 23, 1946. gations in British Columbia (abstract). stract). Hodgson, J. H.; Milne, W. G., 1951, Direc­ Chan, W.W., 1988, Network and array anal­ Munro, P. S.; Halliday, R. J.; Shannon, W.
    [Show full text]
  • Squamish Estuary
    OCEAN WATCH | Howe Sound Edition SPECIES AND HABITATS Squamish Estuary AUTHOR Edith B. Tobe, Registered Professional What is happening in Biologist, Squamish River Watershed Society REVIEWER the Squamish Estuary? Gary Williams, M.Sc., R.P.Bio, Professional Wetland Scientist, GL Williams and Associates Ltd. The Squamish Estuary is situated at the head of Howe Sound, one of the southernmost fjords in British Columbia, where the Squamish River drains over 3,650 square kilometers of coastal rainforest into the ocean. An estuary is formed when fresh water mixes with marine waters to create a brackish tidally influenced zone. Estuaries are one of the most productive ecosystems on the planet, providing habitat for fisheries, waterfowl, and wildlife. There have been many anthropomorphic impacts to the Squamish Estuary since it was settled first by First Nations and later by Europeans and other cultures. The impacts have included urbanization, diking and logging and resulted in loss of habitat, changes to hydrology, and introduction of con- tamination. Figure 1. The brownfield site, a former log sort in the central Estuary, is the location of current restoration efforts. (Photo: Colin Bates, June 2015) Squamish Estuary | Page 123 OCEAN WATCH | Howe Sound Edition SPECIES AND HABITATS Organizations such as the Squamish River Water- lish tidal channels, mud flats and sedge marshes on shed Society (SRWS) have been working for close to the site. In 2015, efforts included removal of a large 20 years on re-establishing the estuary to its origin- amount of wood waste, grading the site, and trans- al function by reconnecting tidal channels, installing planting Lyngbye’s sedge (Carex lyngbyei), the dom- culverts, planting aquatic and terrestrial vegetation, inant grassy plant in the estuary and in many Pacific and creating wildlife habitat for aquatic and terrestrial coastal marshes.
    [Show full text]
  • Dacite Block and Ash Avalanche Hazards in Mountainous Terrain: 2360 Yr
    DACITE BLOCK AND ASH AVALANCHE HAZARDS IN MOUNTAINOUS TERRAIN: 2360 YR. BP ERUPTION OF MOUNT MEAGER, BRITISH COLUMBIA by MARTIN L. STEWART B.Sc, (Honours), Carleton University, 1998 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF EARTH AND OCEAN SCIENCES We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December 2002 © Martin L. Stewart, 2002 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of LoM^ r QatA^ Sc/t^n? The University of British Columbia Vancouver, Canada Date IB * zooi DE-6 (2/88) Abstract The Mount Meager volcanic complex hosts deposits from the youngest known explosive volcanic eruption in Canada (2360 yr. BP). These deposits reflect the consequences of erupting dacite magmas into a region of extreme topographic relief. Regions of this kind represent one of the most hazardous and, potentially, high risk natural environments on the planet. Mapping of the Pebble Creek Formation deposits has elucidated a unique distribution of hazardous events of varying intensity, timing, and frequency associated with the 2360 yr.
    [Show full text]
  • Garibaldi Provincial Park 2010 Olympic Venue
    1 Garibaldi Provincial Park 2010 Olympic Venue Garibaldi Provincial Park, located in the traditional territory of the Squamish people, forms much of the backdrop to Whistler/ Blackcomb, site of the downhill events of the 2010 Winter Games. Sitting in the heart of the Coast Mountains, the park takes its name from the towering 2,678 metre peak, Mount Garibaldi. Garibaldi Park is known for its pristine beauty and spectacular natural features. Just 70 km north of Vancouver, the park offers over 90 km of established hiking trails, and is a favourite year-round destination for outdoor enthusiasts. Interesting Garibaldi Park Facts • The southern portion of Garibaldi Park is home to the Garibaldi Volcano, part of the Garibaldi Volcanic Belt and made up of Mount Garibaldi, Atwell Peak, and Dalton Dome. This stratavolcano, so named because of its conelike layers of hardened lava, rock and volcanic ash, last erupted 10,000 to 13,000 years ago under glacial ice. It is this event that is responsible for forming some of the fascinating geological features in the park, such as Opal Cone, the Table and Black Tusk. • The “Barrier” is a natural rock formation created by the volcanic explosion of Mount Price thousands of years ago; the lava created a natural dam for the melt streams from nearby glaciers. As a result Garibaldi Lake formed. The lake reaches depths of up to 300 metres in places and is rich in silt (or ‘rock flour’), which gives the lake its characteristic milky blue colour. www.bcparks.ca 2 Garibaldi Provincial Park 2010 Olympic Venue History In 1860, while surveying Howe Sound on board the Royal Navy ship H.M.S.
    [Show full text]
  • Garibaldi Provincial Park M ASTER LAN P
    Garibaldi Provincial Park M ASTER LAN P Prepared by South Coast Region North Vancouver, B.C. Canadian Cataloguing in Publication Data Main entry under title: Garibaldi Provincial Park master plan On cover: Master plan for Garibaldi Provincial Park. Includes bibliographical references. ISBN 0-7726-1208-0 1. Garibaldi Provincial Park (B.C.) 2. Parks – British Columbia – Planning. I. British Columbia. Ministry of Parks. South Coast Region. II Title: Master plan for Garibaldi Provincial Park. FC3815.G37G37 1990 33.78”30971131 C90-092256-7 F1089.G3G37 1990 TABLE OF CONTENTS GARIBALDI PROVINCIAL PARK Page 1.0 PLAN HIGHLIGHTS 1 2.0 INTRODUCTION 2 2.1 Plan Purpose 2 2.2 Background Summary 3 3.0 ROLE OF THE PARK 4 3.1 Regional and Provincial Context 4 3.2 Conservation Role 6 3.3 Recreation Role 6 4.0 ZONING 8 5.0 NATURAL AND CULTURAL RESOURCE MANAGEMENT 11 5.1 Introduction 11 5.2 Natural Resources Management: Objectives/Policies/Actions 11 5.2.1 Land Management 11 5.2.2 Vegetation Management 15 5.2.3 Water Management 15 5.2.4 Visual Resource Management 16 5.2.5 Wildlife Management 16 5.2.6 Fish Management 17 5.3 Cultural Resources 17 6.0 VISITOR SERVICES 6.1 Introduction 18 6.2 Visitor Opportunities/Facilities 19 6.2.1 Hiking/Backpacking 19 6.2.2 Angling 20 6.2.3 Mountain Biking 20 6.2.4 Winter Recreation 21 6.2.5 Recreational Services 21 6.2.6 Outdoor Education 22 TABLE OF CONTENTS VISITOR SERVICES (Continued) Page 6.2.7 Other Activities 22 6.3 Management Services 22 6.3.1 Headquarters and Service Yards 22 6.3.2 Site and Facility Design Standards
    [Show full text]
  • Community Risk Assessment
    COMMUNITY RISK ASSESSMENT Squamish-Lillooet Regional District Abstract This Community Risk Assessment is a component of the SLRD Comprehensive Emergency Management Plan. A Community Risk Assessment is the foundation for any local authority emergency management program. It informs risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflects their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property. SLRD Emergency Program [email protected] Version: 1.0 Published: January, 2021 SLRD Community Risk Assessment SLRD Emergency Management Program Executive Summary This Community Risk Assessment (CRA) is a component of the Squamish-Lillooet Regional District (SLRD) Comprehensive Emergency Management Plan and presents a survey and analysis of known hazards, risks and related community vulnerabilities in the SLRD. The purpose of a CRA is to: • Consider all known hazards that may trigger a risk event and impact communities of the SLRD; • Identify what would trigger a risk event to occur; and • Determine what the potential impact would be if the risk event did occur. The results of the CRA inform risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflect their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property.
    [Show full text]
  • Teaching Activities
    S QUAMISH RIVERS & ESTUARY Squamish Streams Around the Corner Grades: 4-7 Subject, Science, Language Arts Time required:30 –60 minutes Key Concepts: Everyday actions make a difference in watershed and estuary health.. Objectives: To identify local streams and protected areas Background: To use research, mapping and Materials interviewing skills; In British Columbia, there are many different use a variety of ways to types of protected areas. They include public Maps collect and record data; lands in networks of national, provincial and regional parks, wildlife management areas, (community & school) recreation areas, wilderness areas, ecological reserves, nature sanctuaries, greenways and Student Journals municipal parks, cultural heritage sites, heri- Pencil or pen Key Words: tage buildings and more. They also include water areas that are protected but not owned by the Streams, protected areas public but are protected by a range of fed- eral, provincial or local regulations. These types of protected areas include local areas such as water-courses (rivers, streams, lakes, Skills: ponds, wetlands) and their riparian Analysis, discussion, listing, writing/ (streamside) areas, environmentally sensitive drawing areas, and other areas of noted local impor- tance. 1 Squamish Streams Around the Corner Protected areas range in size from vast expanses of wilderness areas to tiny pockets memorabilia. of nature covering a few hectares or less. 4. Ask each group to brainstorm a list of Together, protected areas on public and places and people in their community private lands provide ways to protect natural that might be able to help them answer ecosystems such as streams as well as to the following questions about their enhance and restore local natural areas.
    [Show full text]
  • 2010-08-17 Package Council COMPLETE
    R EGULAR MEETING OF MUNICIPAL COUNCIL AGENDA TUESDAY, AUGUST 17, 2 0 1 0 , STARTING AT 5:30 PM In the Franz Wilhelmsen Theatre at Maurice Young Millennium Place 4335 Blackcomb Way, Whistler, BC V0N 1B4 APPROVAL OF AGENDA Approval of the Regular Council agenda of August 17, 2010. ADOPTION OF MINUTES Adoption of the Regular Council minutes of August 3, 2010. PUBLIC QUESTION AND ANSWER PERIOD PRESENTATIONS/DELEGATIONS Whistler Half Marathon A presentation by Dave Clark, Race Director, regarding the Whistler Half Marathon for June 2011. RBC GranFondo A presentation by Neil McKinnon, GranFondo Canada co-founder, regarding the RBC Gran Fondo for September 11, 2010. Pay Parking An update regarding pay parking by Bob MacPherson, General Manager of Community Life. BC Transit A presentation by Manuel Achadinha, CEO, Peter Rantucci, Director – Regional Transit Systems, and Johann van Schaik, Regional Transit Manager – South Coast, regarding Key Performance Indicators for BC Transit. MAYOR’S REPORT ADMINISTRATIVE REPORTS RBC GranFondo Whistler That Council endorses the Special Occasion License application of Fraser Boyer for the Special Occasion Liquor RBC GranFondo Whistler to be held on Saturday, September 11, 2010. License Report No. 10-081 File No. 7627.2 Regular Council Meeting Agenda August 17, 2010 Page 2 Whistler Aggregates That Council considers giving first reading to Official Community Plan Amendment Rezoning Bylaw (Material Extraction) No. 1931, 2009; Report No. 10-086 File No. RZ. 1025 That Council considers giving second reading to
    [Show full text]
  • Cheakamus River – Balls to the Wall
    Cheakamus River – Balls To The Wall Vitals Locale: Whistler, British Columbia What It's Like: Extension of the Upper Cheak - great class IV-IV+ river running, and a bonus waterfall. Some wood. Class: IV-IV+ Scouting/Portaging: Scouting is ok. Difficult to portage in spots, if you're forced to. Falls is easy to walk. Level: Online gauge: http://wateroffice.ec.gc.ca/report/report_e.html?type=realTime&stn=08GA072 Cheakamus River - this gauge is at the put in. Time: 2-3 hours for a relaxed first trip. When To Go: All season, very pushy at high flows. Reasonable minimum is 2.1. Info From: Many visits. Other Beta: None. Description Gauge info: if you have previous experience on the Cheak, note that the gauge changed sometime before the 2015 season and now reads about 0.1 m lower than it used to. Levels are adjusted appropriately on this page. The Cheakamus River is synonymous with Whistler kayaking, largely because of the ultra-classic Upper Cheak section near Function Junction. Unbeknownst to many and maybe avoided by others because of tales of epic log jams and the Whistler waste water treatment plant, there is an equally fun and perhaps more adventurous stretch that departs from the Upper Cheak take out and ends at the confluence with Callaghan Creek. It's a little bit harder, a little bit more committing, it has a great waterfall for those so inclined and there is a lot more wood in the river. You can run it as a stand-alone section of whitewater if you want something short, but it's best combined with the Upper Cheak to make a great hour or two of river running.
    [Show full text]
  • CHEAKAMUS RIVER Coho Salmon Production from Constructed Off-Channel Habitat, 2001
    LOWER MAINLAND BCH HABITAT RESTORATION 2000-2001 CHEAKAMUS RIVER Coho Salmon Production From Constructed Off-Channel Habitat, 2001 M. Foy, Biologist; H. Beardmore, Engineer; S. Gidora, Bio-technician Resource Restoration Group, Habitat and Enhancement Branch Lower Fraser Area, Pacific Region, Fisheries and Oceans Canada August, 2002 1 TABLE OF CONTENTS EXECUTIVE SUMMARY……………………………………………….……………...3 1. INTRODUCTION……………………………………………………………………..3 2. STUDYAREA………………………………………………………….………………3 3. METHODS…………………………………………………………………………….4 3.1. Coho population estimate, off-channel habitat……………………4 3.1.1. Downstream weir counts………………………………………….4 3.1.2. Minnow trap mark-recapture estimate…………………………..5 3.1.3. Total coho production from constructed habitat………………..5 3.2. Coho population estimate, Cheakamus watershed………….…………….5 3.2.1. Marked population………………………………………………..5 3.2.2. Recovery of marked fish………………………………………….6 3.2.3. Coho production estimate, Cheakamus watershed……………..6 4. RESULTS……………………………………………………………….……………..6 4.1. Coho population estimate, off-channel habitat……………………6 4.1.1. Downstream weir counts………………………………………….6 4.1.2. Minnow trapping mark-recapture estimate……………………..7 4.1.3. Total coho production from constructed habitat………………..7 4.2. Coho population estimate, Cheakamus watershed………….…………….7 4.2.1. Marked population………………………………………………..7 4.2.2 Recovery of marked fish…………………………………………..7 4.2.3. Coho production, Cheakamus watershed……………………….7 5. DISCUSSION………………………………………………………………………….8 6. CONCLUSIONS………………………………………………………………………9 7. ACKNOWLEDGEMENTS…………………………………………………………..9
    [Show full text]
  • Garibaldi Lake (Saturday, August 6, 2016)
    BMN HIKE REPORT Garibaldi Lake (Saturday, August 6, 2016) by Terry Puls View at the outlet of Garibaldi Lake, looking back toward Castle Towers Mountain and Mt. Carr. Terry Puls photo. Even an early 6:00 am start did not deter a group of BMN hikers from our August hike to Garibaldi Provincial Park to visit Taylor Meadows and Garibaldi Lake. Eleven of us met at our meeting location in Coquitlam under clear skies, though the air had a chill to it that would prove to provide the group with comfortable temperatures for the hike. Shortly after 6:00 we headed off by car to the trailhead where we would meet four others. Upon arriving at the Rubble Creek trailhead, we were greeted by two park rangers who warned us that the area was extremely busy and that there was a bear in the area. We never saw any signs of the bear; however, the crowds were certainly present. Even with our early start the parking lots were near capacity. After a quick introduction we headed off on our journey. The trail is in great shape and at a favourable grade, so we were able to make it to the 6 km junction fairly quickly, while enjoying the sights of some fairly impressive Douglas-fir trees along the way. Once at the 6 km junction, we regathered the group and, after a short break, headed for Taylor Meadows. Upon entering the Taylor Meadows area, some of our party caught a glimpse of a grouse alongside the trail. Once at the meadows, the views start to open up and we enjoyed the view of the Black Tusk and some of the other peaks in the area.
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]