crystals Review Nuclear Resonance Vibrational Spectroscopy: A Modern Tool to Pinpoint Site-Specific Cooperative Processes Hongxin Wang 1,* , Artur Braun 2,* , Stephen P. Cramer 1 , Leland B. Gee 3 and Yoshitaka Yoda 4 1 SETI Institute, Mountain View, CA 94043, USA;
[email protected] 2 Laboratory for High Performance Ceramics, Empa. Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland 3 LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;
[email protected] 4 Precision Spectroscopy Division, SPring-8/JASRI, Sayo 679-5198, Japan;
[email protected] * Correspondence: authors:
[email protected] (H.W.);
[email protected] (A.B.) Abstract: Nuclear resonant vibrational spectroscopy (NRVS) is a synchrotron radiation (SR)-based nu- clear inelastic scattering spectroscopy that measures the phonons (i.e., vibrational modes) associated with the nuclear transition. It has distinct advantages over traditional vibration spectroscopy and has wide applications in physics, chemistry, bioinorganic chemistry, materials sciences, and geology, as well as many other research areas. In this article, we present a scientific and figurative description of this yet modern tool for the potential users in various research fields in the future. In addition to short discussions on its development history, principles, and other theoretical issues, the focus of this article is on the experimental aspects, such as the instruments, the practical measurement issues, the data process, and a few examples of its applications. The article concludes with introduction to non-57Fe NRVS and an outlook on the impact from the future upgrade of SR rings. Citation: Wang, H.; Braun, A.; Cramer, S.P.; Gee, L.B.; Yoda, Y.