Answers to Anonymous Referee #1 We Want to Thank the Referees For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variations of Patagonian Glaciers, South America, Utilizing RADARSAT Images
Variations of Patagonian Glaciers, South America, utilizing RADARSAT Images Masamu Aniya Institute of Geoscience, University of Tsukuba, Ibaraki, 305-8571 Japan Phone: +81-298-53-4309, Fax: +81-298-53-4746, e-mail: [email protected] Renji Naruse Institute of Low Temperature Sciences, Hokkaido University, Sapporo, 060-0819 Japan, Phone: +81-11-706-5486, Fax: +81-11-706-7142, e-mail: [email protected] Gino Casassa Institute of Patagonia, University of Magallanes, Avenida Bulness 01855, Casilla 113-D, Punta Arenas, Chile, Phone: +56-61-207179, Fax: +56-61-219276, e-mail: [email protected] and Andres Rivera Department of Geography, University of Chile, Marcoleta 250, Casilla 338, Santiago, Chile, Phone: +56-2-6783032, Fax: +56-2-2229522, e-mail: [email protected] Abstract Combining RADARSAT images (1997) with either Landsat MSS (1987 for NPI) or TM (1986 for SPI), variations of major glaciers of the Northern Patagonia Icefield (NPI, 4200 km2) and of the Southern Patagonia Icefield (SPI, 13,000 km2) were studied. Of the five NPI glaciers studied, San Rafael Glacier showed a net advance, while other glaciers, San Quintin, Steffen, Colonia and Nef retreated during the same period. With additional data of JERS-1 images (1994), different patterns of variations for periods of 1986-94 and 1994-97 are recognized. Of the seven SPI glaciers studied, Pio XI Glacier, the largest in South America, showed a net advance, gaining a total area of 5.66 km2. Two RADARSAT images taken in January and April 1997 revealed a surge-like very rapid glacier advance. -
Glacial Lakes of the Central and Patagonian Andes
Aberystwyth University Glacial lakes of the Central and Patagonian Andes Wilson, Ryan; Glasser, Neil; Reynolds, John M.; Harrison, Stephan; Iribarren Anacona, Pablo; Schaefer, Marius; Shannon, Sarah Published in: Global and Planetary Change DOI: 10.1016/j.gloplacha.2018.01.004 Publication date: 2018 Citation for published version (APA): Wilson, R., Glasser, N., Reynolds, J. M., Harrison, S., Iribarren Anacona, P., Schaefer, M., & Shannon, S. (2018). Glacial lakes of the Central and Patagonian Andes. Global and Planetary Change, 162, 275-291. https://doi.org/10.1016/j.gloplacha.2018.01.004 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 09. Jul. 2020 Global and Planetary Change 162 (2018) 275–291 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Glacial lakes of the Central and Patagonian Andes T ⁎ Ryan Wilsona, , Neil F. -
The 2015 Chileno Valley Glacial Lake Outburst Flood, Patagonia
Aberystwyth University The 2015 Chileno Valley glacial lake outburst flood, Patagonia Wilson, R.; Harrison, S.; Reynolds, John M.; Hubbard, Alun; Glasser, Neil; Wündrich, O.; Iribarren Anacona, P.; Mao, L.; Shannon, S. Published in: Geomorphology DOI: 10.1016/j.geomorph.2019.01.015 Publication date: 2019 Citation for published version (APA): Wilson, R., Harrison, S., Reynolds, J. M., Hubbard, A., Glasser, N., Wündrich, O., Iribarren Anacona, P., Mao, L., & Shannon, S. (2019). The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology, 332, 51-65. https://doi.org/10.1016/j.geomorph.2019.01.015 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 09. Jul. 2020 Geomorphology 332 (2019) 51–65 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The 2015 Chileno Valley glacial lake outburst flood, Patagonia R. -
Glacial Lakes of the Central and Patagonian Andes
Aberystwyth University Glacial lakes of the Central and Patagonian Andes Wilson, Ryan; Glasser, Neil; Reynolds, John M.; Harrison, Stephan; Iribarren Anacona, Pablo; Schaefer, Marius; Shannon, Sarah Published in: Global and Planetary Change DOI: 10.1016/j.gloplacha.2018.01.004 Publication date: 2018 Citation for published version (APA): Wilson, R., Glasser, N., Reynolds, J. M., Harrison, S., Iribarren Anacona, P., Schaefer, M., & Shannon, S. (2018). Glacial lakes of the Central and Patagonian Andes. Global and Planetary Change, 162, 275-291. https://doi.org/10.1016/j.gloplacha.2018.01.004 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 26. Sep. 2021 Global and Planetary Change 162 (2018) 275–291 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Glacial lakes of the Central and Patagonian Andes T ⁎ Ryan Wilsona, , Neil F. -
Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers. -
Modeling Past and Future Surface Mass Balance of the Northern Patagonia Icefield
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Modeling past and future surface mass balance of the Northern Patagonia Icefield Schaefer, M ; Machguth, H ; Falvey, M ; Casassa, G Abstract: Glaciers are strongly retreating and thinning in Patagonia. We present new inferences about the climatic situation and the surface mass balance on the Northern Patagonia Icefield in the past and the future using a combined modeling approach. The simulations are driven by NCAR/NCEP Reanalysis and ECHAM5 data, which were physically downscaled using the Weather Research and Forecasting regional climate model and simple sub-grid parameterizations. The surface mass balance model was calibrated with geodetic mass balance data of three large non-calving glaciers and with point mass balance measurements. An increase of accumulation on the Northern Patagonia Icefield was detected from 1990– 2011 as compared to 1975–1990. Using geodetic mass balance data, calving losses from the Northern Patagonia Icefield could be inferred, which doubled in 2000–2009 as compared to 1975–2000. The21st century projection of future mass balance of the Northern Patagonia Icefield shows a strong increase in ablation from 2050 and a reduction of solid precipitation from 2080, both due to higher temperatures. The total mass loss in the 21st century is estimated to be 592±50 Gt with strongly increasing rates towards the end of the century. The prediction of the future mass balance of the Northern Patagonia Icefield includes several additional sources of errors due to uncertainties in the prediction of future climate and due to possible variations in ice dynamics, which might modify the geometry of the icefield and change the rate of mass losses due to calving. -
A Thesis Submitted to the Victoria University of Wellington in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Physical Geography
HAZARDOUS GEOMORPHIC PROCESSES IN THE EXTRATROPICAL ANDES WITH A FOCUS ON GLACIAL LAKE OUTBURST FLOODS By Pablo Iribarren Anacona A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Physical Geography Victoria University of Wellington 2016 i Abstract This study examines hazardous processes and events originating from glacier and permafrost areas in the extratropical Andes (Andes of Chile and Argentina) in order to document their frequency, magnitude, dynamics and their geomorphic and societal impacts. Ice-avalanches and rock-falls from permafrost areas, lahars from ice-capped volcanoes and glacial lake outburst floods (GLOFs) have occurred in the extratropical Andes causing ~200 human deaths in the Twentieth Century. However, data about these events is scarce and has not been studied systematically. Thus, a better knowledge of glacier and permafrost hazards in the extratropical Andes is required to better prepare for threats emerging from a rapidly evolving cryosphere. I carried out a regional-scale review of hazardous processes and events originating in glacier and permafrost areas in the extratropical Andes. This review, developed by means of a bibliographic analysis and the interpretation of satellite images, shows that multi-phase mass movements involving glaciers and permafrost and lahars have caused damage to communities in the extratropical Andes. However, it is noted that GLOFs are one the most common and far reaching hazards and that GLOFs in this region include some of the most voluminous GLOFs in historical time on Earth. Furthermore, GLOF hazard is likely to increase in the future in response to glacier retreat and lake development. -
Taken from Mountaineering in the Andes by Jill Neate Patagonia RGS-IBG Expedition Advisory Centre, 2Nd Edition, May 1994
Taken from Mountaineering in the Andes by Jill Neate Patagonia RGS-IBG Expedition Advisory Centre, 2nd edition, May 1994 PATAGONIA From Puerto Aisen to Punta Arenas on Magellan’s Strait, a distance of about 900 kilometres, the peaks of the Andes are quite low (few exceed 3000 metres) and rise for the most part from immense expanses of ice which maintain an average elevation of 1500 metres, and which are commonly referred to as the Patagonian ice-caps. In this region there is no distinct cordillera forming the boundary between Chile and Argentina, the various mountain chains being diffuse and not always forming the watershed. The area, which is bounded on the west by a complex series of islands, peninsulas and fiords, and on the east by a series of lakes, has been the subject of several boundary disputes and is still imperfectly surveyed. The famous explorer Alberto De Agostini wrote of this land, ‘The singular beauty of its fiords, the majesty of its mountains, the imposing vastness of its glaciers, which descend almost to the sea in a green frame of exuberant virgin forest, make of this region one of the most picturesque and enticing quarters of the globe’. At lat. 48ºS. the deep Baker Fiord on the Pacific coast is linked by the Rio Pascua to Lago San Martin to the south-east, thus constituting the only major interruption in the glacier system. The ice-cap to the north is referred to in these notes as Hielo Patagònico Norte (‘H.P.N.’); the much more extensive ice- cap to the south as Hielo Patagònico Sur (‘H.P.S.’). -
Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers. -
Glacial Lakes of the Central and Patagonian Andes
Aberystwyth University Glacial lakes of the Central and Patagonian Andes Wilson, Ryan; Glasser, Neil; Reynolds, John M.; Harrison, Stephan; Iribarren Anacona, Pablo; Schaefer, Marius; Shannon, Sarah Published in: Global and Planetary Change DOI: 10.1016/j.gloplacha.2018.01.004 Publication date: 2018 Citation for published version (APA): Wilson, R., Glasser, N., Reynolds, J. M., Harrison, S., Iribarren Anacona, P., Schaefer, M., & Shannon, S. (2018). Glacial lakes of the Central and Patagonian Andes. Global and Planetary Change, 162, 275-291. https://doi.org/10.1016/j.gloplacha.2018.01.004 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 26. Sep. 2021 Global and Planetary Change 162 (2018) 275–291 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Glacial lakes of the Central and Patagonian Andes T ⁎ Ryan Wilsona, , Neil F. -
The 2015 Chileno Valley Glacial Lake Outburst Flood, Patagonia
Aberystwyth University The 2015 Chileno Valley glacial lake outburst flood, Patagonia Wilson, R.; Harrison, S.; Reynolds, John M.; Hubbard, Alun; Glasser, Neil; Wündrich, O.; Iribarren Anacona, P.; Mao, L.; Shannon, S. Published in: Geomorphology DOI: 10.1016/j.geomorph.2019.01.015 Publication date: 2019 Citation for published version (APA): Wilson, R., Harrison, S., Reynolds, J. M., Hubbard, A., Glasser, N., Wündrich, O., Iribarren Anacona, P., Mao, L., & Shannon, S. (2019). The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology, 332, 51-65. https://doi.org/10.1016/j.geomorph.2019.01.015 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 24. Sep. 2021 Geomorphology 332 (2019) 51–65 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The 2015 Chileno Valley glacial lake outburst flood, Patagonia R. -
Abstract Book, ###(###), CECS, Valdivia, Chile
Co-Sponsors Collaborators Edition of 500 copies Compañía Impresora Meza Ltda. Santiago, Chile January 2010 Abstracts should be cited as: Name of authors. 2010. Title. International Glaciological Conferen- ce VICC 2010 “Ice and Climate Change: A View from the South”, Valdivia, Chile, 1-3 February 2010. Abstract Book, ###(###), CECS, Valdivia, Chile. WELCOME OF THE DIRECTOR When one studies a very complicated system, a very pre- cious tool to have at hand is an extreme regime, whe- re key features of the complex problem are exhibited bla- tantly in a simplified context, without cumbersome details. In cosmology, that is, the study of the Universe as a who- le, the black hole provides such a tool, and recent advance- ments have shown it to be, not only a key witness of, but also a key actor in, determining the present state of the Universe. The motivation for starting the research activity in glaciology at CECS about ten years ago followed that approach, with climate pla- ying the role of the Universe and ice playing the role of the black hole. Since then, the field has become somewhat of a band wagon, and the phenomenon of climate change nowadays fascinates mankind. The sociological reasons for this are probably connected with atavistic feelings about eternal persistence of the human species, our planet, and the like. To the theoretical physicist who writes these words, and who has been forced by fact, to become used to the possibility that the Universe as a whole will come to an end, this fascination with climate change is quite remarkable and somewhat worrisome.