Nanostructured Mno2 As Electrode Materials for Energy Storage

Total Page:16

File Type:pdf, Size:1020Kb

Nanostructured Mno2 As Electrode Materials for Energy Storage nanomaterials Review Nanostructured MnO2 as Electrode Materials for Energy Storage Christian M. Julien * ID and Alain Mauger Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Unité Mixte de Recherche 7590, Sorbonne Universités, 75005 Paris, France; [email protected] * Correspondence: [email protected]; Tel.: +33-144-272-443 Received: 14 October 2017; Accepted: 5 November 2017; Published: 17 November 2017 Abstract: Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO2 nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO2 particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined. Keywords: energy storage and conversion; nanomaterials; MnO2; lithium batteries; supercapacitors 1. Introduction In recent years, intense Research & Development input on nanotechnology has delivered nano-objects (particles with size ≈ 100 nm or less) that possess a rich combination of physical properties, inasmuch as they differ from those of the bulk and depend on polymorphism, morphology, size of particles, size distribution, coating, and the precursor used in the synthesis [1]. With the need for renewable energies, these nano-substances have undergone extensive research, in order to develop new systems that can be used for energy storage and/or conversion. Among them, transition-metal oxides including TiO2, MnO2,V2O5, etc. are stable and robust materials with tunable properties offering large surface areas. In the early ages, mineral manganese dioxides (MDOs) were used as black pigments for rock-art painting in paleolithic caves of the Magdalenian culture [2]; they can be considered as the first nanomaterials used up until then by human civilization. Today MnO2 is an important functional metal oxide, which is technologically attractive for applications in different fields such as catalysts [3–5], absorbent of toxic metals [6], ion-sieves, molecular-sieves [7], artificial oxidase [8], component of the dry cell (Leclanché cell) [9], inorganic pigment in ceramics, electrodes for electrochemical batteries (lithium, magnesium, sodium) [10–13], and electrodes for supercapacitors [14,15]. MnO2 has also been widely used in Duracell (alkaline) based barriers, photocatalytic activities, and electrolysis. Owing to its ability to absorb toxic ions, MnO2 has been also found to have important applications in water-cleaning [16,17]. MDOs are non-stoichiometric compounds, because of inevitable structural water molecules that are physisorbed. The engineering of manganese oxides used for energy storage and conversion has become more and more important to the point where a huge number of works is devoted to these materials. The great interest of MnO2 as an inorganic material in the battery industry is due to its theoretical −1 −1 −1 capacity (308 mAh·g comparable to 270 mAh·g of LiCoO2) and capacitance (1370 F·g ), natural abundance, low cost, and low toxicity [1]. MDOs crystallize with various morphologies and crystallographic forms including the a-, b-, g-, d- #-, l- and R-polymorphs, which are naturally Nanomaterials 2017, 7, 396; doi:10.3390/nano7110396 www.mdpi.com/journal/nanomaterials Nanomaterials 2017, 7, 396 2 of 41 Nanomaterialsabundance,2017 low, 7, 396cost, and low toxicity [1]. MDOs crystallize with various morphologies2 ofand 42 crystallographic forms including the α-, β-, γ-, δ- ε-, λ- and R-polymorphs, which are naturally occurring minerals such as hollandite (2 × 2), pyrolusite (1 × 1), nsutite (1 × 1)/(1 × 2) with hexagonal occurring(hex.) structure, minerals birnessite such as hollandite (1 × ∞), akhtenkite (2 × 2), pyrolusite (dense stack), (1 × 1), spinel nsutite (1 (1 ×× 1),1)/(1 and× ramsdellite2) with hexagonal (1 × 2), (hex.)respectively, structure, where birnessite (m × n) (1 denotes× ¥), akhtenkitethe tunnel dimension. (dense stack), The spinel polymorphism (1 × 1), and is ramsdellitedue to the different (1 × 2), × respectively,ways of linking where the (MnOm n6 )octahedral denotes the architectonic tunnel dimension. units throug The polymorphismh corner- or edge-sharing is due to the that different show waysvariations of linking in the the chain MnO and6 octahedral tunnel structures architectonic (see unitsFigure through 1) [18]. corner- For example, or edge-sharing the (3 × that3) tunnel show × variationsstructure of in todorokite-type the chain and tunnelMnO2 structures(octahedral (see molecular Figure1 )[sieve18 ].labeled For example, OMS-1) thehas (3a pore3) tunnelsize of structureabout 6.9 ofÅ [7]. todorokite-type Note that the MnOhollandite,2 (octahedral cryptomelane, molecular and sieve coronadite labeled minerals OMS-1) that has are a porestructurally size of aboutrelated 6.9 to Å (2 [ 7×]. 2) Note tunnel that materials the hollandite, have water cryptomelane, and different and cation coronadite contents minerals such as that Ba are2+, K structurally+, and Pb2+, 2+ + 2+ relatedrespectively to (2 × [19].2) tunnel Conseque materialsntly, properties have water of and MDOs different depend cation stro contentsngly on such the ascrystalline Ba ,K , structure, and Pb , respectivelyparticle size, [and19]. morphology. Consequently, The properties crystallographic of MDOs data depend of some strongly MDO compounds on the crystalline are summarized structure, particlein Table size, 1. and morphology. The crystallographic data of some MDO compounds are summarized in Table1. FigureFigure 1.1. RepresentationRepresentation ofof thethe differentdifferent MnOMnO22 frameworksframeworks characterizedcharacterized byby theirtheir tunneltunnel ((mm ×× n)) structures.structures. ((a)) pyrolusitepyrolusite (1(1 × 1);1); ( (bb)) ramsdellite ramsdellite (1 (1 ×× 2);2); (c ()c )hollandite hollandite (2 (2 × ×2);2); (d ()d birnessite) birnessite (1 (1× ∞×);¥ (e);) (romanechitee) romanechite (2 × (2 3);× and3); and (f) spinel (f) spinel (1 × (1 1).× Reproduced1). Reproduced with with permission permission from from [18]. [ 18Elsevier,]. Elsevier, 2004. 2004. SinceSince MnOMnO22 was introduced as aa depolarizingdepolarizing elementelement inin zinc-alkalinezinc-alkaline cells,cells, aa majormajor stepstep waswas realizedrealized withwith thethe utilizationutilization ofof naturalnatural andand synthesizedsynthesized materialsmaterials suchsuch asas electrochemicallyelectrochemically (EMD), chemicallychemically (CMD),(CMD), andand heat-treatedheat-treated (HTMD)(HTMD) preparedprepared MnOMnO22.. All thesethese frameworksframeworks areare generallygenerally classifiedclassified asas membersmembers ofof thethe nsutitensutite group:group: thethe gγ-MnO-MnO22 andand #ε-MnO-MnO22 phases,phases, distinguisheddistinguished byby thethe qualityquality ofof theirtheir X-rayX-ray diffractiondiffraction diagramsdiagrams [[9].9]. DirectDirect synthesissynthesis ofof EMDEMD oror CMDCMD resultsresults inin structuralstructural defects:defects: (i)(i) thethe “De “De Wolff Wolff defects” defects” (denoted (denoted Pr) arePr) intergrowthare intergrowth of pyrolusite of pyrolusite in the ramsdellitein the ramsdellite matrix andmatrix (ii) theand micro-twinning(ii) the micro-twinning defects (denoted defects Tw). (denoted Figure 2Tw). shows Figure the degree 2 shows of micro-twinnings the degree of asmicro-twinnings a function of theas a pyrolusitefunction of intergrowththe pyrolusite in intergrowth synthesized in CMD, synthesized EMD, andCMD, HTMD EMD, manganeseand HTMD dioxides.manganese In dioxides. commercial In commercia EMD powders,l EMD Pr powders, and Tw are Pr closeand Tw to 45–55%are close and to 80–100%,45–55% and respectively. 80–100%, Beingrespectively. relatively Being cheap, relatively EMD materials cheap, EMD are widely material employeds are widely as electrodes employed inprimary as electrodes alkaline in batteriesprimary andalkaline supercapacitors. batteries and EMD supercapacitors. powders with manganese-cakeEMD powders microstructurewith manganese-cake (predominantly microstructureg-MnO2 phase)(predominantly deliver a γ specific-MnO2 dischargephase) deliver capacity a specific of 280 di mAhscharge·g−1 capacityusing 9 of mol 280·L −mAh·g1 KOH−1 electrolyteusing 9 mol·L [20−].1 AnKOH extensive electrolyte review [20]. An devoted extensive to electrolytic review devoted MnO to2 haselectrolytic been published MnO2 has recently been published [21]. Therefore, recently we[21]. simply Therefore, direct we the simply readers direct to this the review readers for to specificthis review properties for specific of EMD, properties and attention of EMD, in and the present work is thus focused on other syntheses and related MnO2 in the other a- and b-phases [21]. Nanomaterials 2017, 7, 396 3 of 41 Nanomaterials 2017, 7, 396 3 of 42 attention in the present work is thus focused on other syntheses and related MnO2 in the other α- and β-phases [21]. For the same reason, we did not detail any discussion on the MnO2-based Forsupercapacitors, the same reason, because we did a 43-page not detail review any discussion on them, including on the MnO experimental2-based supercapacitors, aspects and discussion, because a 43-pageprospective, review has on been them, recently including published
Recommended publications
  • Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: a Review
    materials Review Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review Guijun Yang and Soo-Jin Park * Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-32-876-7234 Received: 5 March 2019; Accepted: 9 April 2019; Published: 11 April 2019 Abstract: With the continuous development and progress of materials science, increasingly more attention has been paid to the new technology of powder synthesis and material preparation. The hydrothermal method is a promising liquid phase preparation technology that has developed rapidly during recent years. It is widely used in many fields, such as the piezoelectric, ferroelectric, ceramic powder, and oxide film fields. The hydrothermal method has resulted in many new methods during the long-term research process, such as adding other force fields to the hydrothermal condition reaction system. These force fields mainly include direct current, electric, magnetic (autoclaves composed of non-ferroelectric materials), and microwave fields. Among them, the microwave hydrothermal method, as an extension of the hydrothermal reaction, cleverly uses the microwave temperature to compensate for the lack of temperature in the hydrothermal method, allowing better practical application. This paper reviews the development of the hydrothermal and microwave hydrothermal methods, introduces their reaction mechanisms, and focuses on the practical application of the two methods. Keywords: hydrothermal method; microwave hydrothermal method; functional materials; application 1. Introduction During the process of continuous development of materials science, the research and development of new processes for material preparation and synthesis has always been an important part. For a long time, researchers have been searching for a material synthesis method with limited pollution, easy operation, excellent product performance, and low production cost [1–3].
    [Show full text]
  • The 3 Hours-Hydrothermal Synthesis of High Surface Area Superparamagnetic Fe3o4 Core-Shell Nanoparticles (Esty Octiana Sari)
    The 3 Hours-Hydrothermal Synthesis of High Surface Area Superparamagnetic Fe3O4 Core-Shell Nanoparticles (Esty Octiana Sari) THE 3 HOURS-HYDROTHERMAL SYNTHESIS OF HIGH SURFACE AREA SUPERPARAMAGNETIC Fe3O4 CORE-SHELL NANOPARTICLES Esty Octiana Sari,Ahmad Fadli andAmunAmri Department of Chemical Engineering Riau University Jl. HR Subrantas KM 12,5 Panam, Pekanbaru 28293, Riau E-mail: [email protected] Received: 2 May 2017 Revised: 27 September 2017 Accepted: 4 October 2017 ABSTRACT THE 3 HOURS-HYDROTHERMAL SYNTHESIS OF HIGH SURFACE AREA SUPERPARAMAGNETIC Fe3O4 CORE-SHELL NANOPARTICLES. The monodisperse core-shell Fe3O4 nanoparticles have been successfully synthesized by short times (3 hours) hydrothermal method at 220 oC from FeCl3, citrate, urea and PEG.The as-synthesized samples have been characterized using X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Bruneur-Emmet-Teller (BET) surface area analyzer, and Vibrating Sample Magnetometer (VSM). The XRD result shows the as-synthesized products are pure Fe3O4. The TEM image shows the magnetite nanoparticles have monodisperse core-shell shape. The BET result shows the magnetite nanoparticles have 650.757 m2/g surface area. The hysteresis curve shows the magnetite nanoparticles exhibit super paramagnetic properties. This simple method obtained 60 nm core-shell Fe3O4 particles with super paramagnetic, high surface area as well as hydrophilic properties. Those properties are promising for various biomedical application. The advantages of simple and short times methods with high quality of product make this method very promising to be applied. Keywords: Core-shell, Hydrothermal method, Superparamagnetic, Nanoparticles ABSTRAK 3 JAM-SINTETIS HIDROTERMALNANOPARTIKELCORE-SHELLSUPERPARAMAGNETIK Fe3O4 DENGAN LUAS PERMUKAAN TINGGI. Nanopartikel monodispersi Fe3O4 berbentuk core-shell o telah berhasil disintesis dengan metode hidrothermal waktu singkat (3 jam) pada suhu 220 C dari FeCl3, sitrat, urea dan PEG.
    [Show full text]
  • V.Lelting and Transformation Remperatures of Mineral and \Llied Substances
    v.lelting and Transformation remperatures of Mineral and \llied Substances I F. c. KRACEK ONTRIBUTIONS TO GEOCHEMISTRY EOLOGICAL SURVEY BULLETIN 1144-D HTED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract~------------------------------------------------------- 1 General discussion----------------------------------------------- 1 Acknowledgments____________________________________________ 3 General references _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 Elements ------------------------------------------------------- 4 Oxides---------------------------------------------------------- 10 Oxide systems involving A120 3 ------------------------------------ 13 Oxide systems exclusive of Al2o3• B 2o 3, Si02 --------------------- 14 Silicate systems, binary__________________________________________ 17 Silicate systems, ternary _________________________________________ 21 Silicate systems, quaternary and higher ________ ----- _______________ 30 Silicate systems, miscellaneous ___________________________________ 32 Carbonates------------------------------------------------------ 33 Systems, miscellaneous __________________________________________ 36 References------------------------------------------------------ 63 ILLUSTRATIONS Figure 1. The system FeO --------------------------------------
    [Show full text]
  • Transfers Young, Stephanie Lynne, Chalfont St
    The Journal of Gemmology2010 / Volume 32 / Nos. 1–4 The Gemmological Association of Great Britain The Journal of Gemmology / 2009 / Volume 31 / No. 5–8 The Gemmological Association of Great Britain 27 Greville Street, London EC1N 8TN T: +44 (0)20 7404 3334 F: +44 (0)20 7404 8843 E: [email protected] W: www.gem-a.com Registered Charity No. 1109555 Registered office: Palladium House, 1–4 Argyll Street, London W1F 7LD President: Prof. A. H. Rankin Vice-Presidents: N. W. Deeks, R. A. Howie, E. A. Jobbins, M. J. O'Donoghue Honorary Fellows: R. A. Howie Honorary Life Members: H. Bank, D. J. Callaghan, T. M. J. Davidson, J. S. Harris, E. A. Jobbins, J. I. Koivula, M. J. O'Donoghue, C. M. Ou Yang, E. Stern, I. Thomson, V. P. Watson, C. H. Winter Chief Executive Officer: J. M. Ogden Council: J. Riley – Chairman, A. T. Collins, S. Collins, B. Jackson, C. J. E. Oldershaw, L. Palmer, R. M. Slater Members’ Audit Committee: A. J. Allnutt, P. Dwyer-Hickey, J. Greatwood, G. M. Green, J. Kalischer Branch Chairmen: Midlands – P. Phillips, North East – M. Houghton, North West – J. Riley, Scottish – B. Jackson, South East – V. Wetten, South West – R. M. Slater The Journal of Gemmology Editor: Dr R. R. Harding Assistant Editor: M. J. O’Donoghue Associate Editors: Dr A. J. Allnutt (Chislehurst), Dr C. E. S. Arps (Leiden), G. Bosshart (Horgen), Prof. A. T. Collins (London), J. Finlayson (Stoke on Trent), Dr J. W. Harris (Glasgow), Prof. R. A. Howie (Derbyshire), E. A. Jobbins (Caterham), Dr J.
    [Show full text]
  • Synthetic Quartz Crystal
    Synthetic Quartz Crystal n Terms and Definitions Synthetic Quartz Crystal: A single crystal grown using the Right-handed and left-handed quartz crystals: Crystals are hydrothermal synthesis method. divided into two types: right-handed and left-handed. A As-Grown Quartz Crystal: A synthetic quartz crystal grown difference in optical rotation creates the 2 types, but their naturally with no processing. physical properties are identical. Therefore, by cutting at the Lumbered Quartz Crystal: A synthetic quartz crystal with the X correct angle, the difference does not affect the characteristics and Z surfaces processed according to specified dimensions of a crystal oscillator. Generally right-handed quartz crystals are and angles using a diamond wheel #80. used in manufacture. Y-bar Synthetic Quartz Crystal: A synthetic quartz crystal grown Zone: A zone with a crystal that has grown from a seed crystal at by using a bar-like seed crystal elongated in the Y-axis direction. its core. There are Z, +X, -X, and S zones. Z-plate Synthetic Quartz Crystal: A synthetic quartz crystal Infrared Absorption Coefficient α: This value measured with an grown by using a plate-like seed crystal with a Y-axis direction infrared spectrophotometer is adopted as the infrared absorption length and X-axis direction width. coefficient α of a synthetic quartz crystal. The value is based on Inclusion: A general term for solid constituents (inclusions) that the absorption characteristic of the OH radical of a synthetic exist in synthetic quartz crystal; they can be observed when light quartz crystal that is around 3,800 to 3,000 cm–1 of the infrared is scattered through a liquid with a refractive index that is close transmittance curve.
    [Show full text]
  • Large-Scale Synthesis Route of Tio2 Nanomaterials with Controlled Morphologies Using Hydrothermal Method and Tio2 Aggregates As Precursor
    nanomaterials Article Large-Scale Synthesis Route of TiO2 Nanomaterials with Controlled Morphologies Using Hydrothermal Method and TiO2 Aggregates as Precursor Wenpo Luo 1 and Abdelhafed Taleb 1,2,* 1 Institut de Recherche de Chimie Paris, PSL Research University Chimie ParisTech—CNRS, 75005 Paris, France; [email protected] 2 Sorbonne Université, 75231 Paris, France * Correspondence: [email protected]; Tel.: +33-1-85-78-41-97 Abstract: TiO2 of controlled morphologies have been successfully prepared hydrothermally using TiO2 aggregates of different sizes. Different techniques were used to characterize the prepared TiO2 powder such as XRD, XPS, FEGSEM, EDS, and HRTEM. It was illustrated that the prepared TiO2 powders are of high crystallinity with different morphologies such as nanobelt, nanourchin, and nanotube depending on the synthesis conditions of temperature, time, and additives. The mechanism behind the formation of prepared morphologies is proposed involving nanosheet intermediate formation. Furthermore, it was found that the nanoparticle properties were governed by those of TiO2 nanoparticles aggregate used as a precursor. For example, the size of prepared nanobelts was proven to be influenced by the aggregates size used as a precursor for the synthesis. Keywords: TiO2 nanoparticles; aggregates; morphologies Citation: Luo, W.; Taleb, A. Large-Scale Synthesis Route of TiO2 Nanomaterials with Controlled Morphologies Using Hydrothermal 1. Introduction Method and TiO2 Aggregates as Recently, tremendous efforts have been devoted to developing innovative strategies Precursor. Nanomaterials 2021, 11, 365. to synthesize nanomaterials with the desired morphologies and properties. Particularly https://doi.org/10.3390/ the one-dimensional (1D) structure of TiO2 nanomaterials exhibits interesting properties nano11020365 compared to other TiO2 nanoparticles: it has lower carrier recombination rate and higher charge carrier mobility, thanks to the grain boundaries and junctions absence.
    [Show full text]
  • Module 8 Unit-3 NSNT Hydrothermal Synthesis Hydrothermal
    Module 8_Unit-3_NSNT Hydrothermal Synthesis Hydrothermal processing has gained much interest for synthesizing advanced nanomaterials as well as composites exhibiting tailored properties. This technique has been used to produce nanostructured materials for a broad range of applications which include electronics and optoelectronic devices, catalysis, biomedicine, biophotonics, etc. The word ‘hydrothermal’ has its origin in geology and Sir Roderick Murchison, a British geologist, was the first to use it. He attributed the variations in earth’s crust and the subsequent forming rocks as well as minerals to hydrothermal action of water at very high temperatures and pressures. Incidentally, the largest naturally occurring single crystal (beryl crystal, more than 1kg), as well as the largest man-made single crystal (quartz crystal, of several kgs), both have originated via hydrothermal process [1-2]. Hydrothermal synthesis belongs to a group of syntheses techniques in which substances in high- temperature and high pressure aqueous solution are crystallized. This is also called as the “hydrothermal method” [1]. According to Byrappa [3], hydrothermal processing is “any heterogeneous chemical reaction in the presence of a solvent (aqueous or non-aqueous) above room temperature and at pressures > 1 atm in a closed system” [2]. Hydrothermal processing includes techniques such as hydrothermal synthesis, hydrothermal crystal growth, hydrothermal transformation, hydrothermal sintering, etc. Hydrothermal processing of nanomaterials yields highly pure, homogenous, symmetrical crystal structures having novel properties. It also allows greater size control, low temperature synthesis, more control over composition of the end product, dense compounds, and can be used to produce compounds in relatively short time durations. Hydrothermal is a solution processing technique which involves processing of super heated aqueous solutions.
    [Show full text]
  • Hydrothermal Synthesis and Characterization of Cucro2 Laminar
    ARTICLE IN PRESS Journal of Crystal Growth 310 (2008) 5375–5379 Contents lists available at ScienceDirect Journal of Crystal Growth journal homepage: www.elsevier.com/locate/jcrysgro Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals Shu Zhou a, Xiaodong Fang a,Ã, Zanhong Deng a,DaLia, Weiwei Dong a, Ruhua Tao a, Gang Meng a, Tao Wang a, Xuebin Zhu b a Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China b Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China article info abstract Article history: CuCrO2 laminar nanocrystals were successfully synthesized by a simple hydrothermal technique. The Received 15 July 2008 nanocrystals have a quasi-hexagonal shape with a wide range of size distribution varying from about 10 Received in revised form to 80 nm and thickness less than 10 nm. The results of selected-area electron diffraction (SAED) data and 19 September 2008 high-resolution transmission electron microscopy (HRTEM) indicate the formation of well-formulated, Accepted 24 September 2008 single-crystal CuCrO . The dominant growth of nuclei is driven along the faces of {0 1 2}, and the growth Communicated by H. Fujioka 2 Available online 14 October 2008 along the c-axis is very slow, which directly results in the formation of CuCrO2 laminar nanocrystals. Optical properties of CuCrO2 laminar nanocrystals were investigated by UV–vis–Nis absorption PACS: spectrum, and direct bandgap was estimated to be 2.95 eV. 61.46.Df & 2008 Elsevier B.V.
    [Show full text]
  • Compilation of Crystal Growers and Crystal Growth Projects Research Materials Information Center
    ' iW it( 1 ' ; cfrv-'V-'T-'X;^ » I V' 1l1 II V/ f ,! T-'* «( V'^/ l "3 ' lyJ I »t ; I« H1 V't fl"j I» I r^fS' ^SllMS^W'/r V '^Wl/ '/-D I'ril £! ^ - ' lU.S„AT(yMIC-ENERGY COMMISSION , : * W ! . 1 I i ! / " n \ V •i" "4! ) U vl'i < > •^ni,' 4 Uo I 1 \ , J* > ' . , ' ^ * >- ' y. V * / 1 \ ' ' i S •>« \ % 3"*V A, 'M . •. X * ^ «W \ 4 N / . I < - Vl * b >, 4 f » ' ->" ' , \ .. _../.. ~... / -" ' - • «.'_ " . Ife .. -' < p / Jd <2- ORNL-RMIC-12 THIS DOCUMENT CONFIRMED AS UNCLASSIFIED DIVISION OF CLASSIFICATION COMPILATION OF CRYSTAL GROWERS AND CRYSTAL GROWTH PROJECTS RESEARCH MATERIALS INFORMATION CENTER \i J>*\,skJ if Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22t51 Price: Printed Copy $3.00; Microfiche $0.95 This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. ORNL-RMIC-12 UC-25 - Metals, Ceramics, and Materials Contract No. W-7405-eng-26 COMPILATION OF CRYSTAL GROWERS AND CRYSTAL GROWTH PROJECTS T. F. Connolly Research Materials Information Center Solid State Division NOTICE This report was prepared as an account of work sponsored by the Unitsd States Government.
    [Show full text]
  • Hydrothermal Synthesis Study
    Advances in Science and Technology Vol. 45 (2006) pp. 184-193 online at http://www.scientific.net © (2006) Trans Tech Publications, Switzerland Hydrothermal Synthesis of Advanced Ceramic Powders Wojciech L. Suchanek1, a and Richard E. Riman2, b 1Sawyer Technical Materials, LLC, 35400 Lakeland Boulevard, Eastlake, OH 44095, USA 2Rutgers University, Department of Materials Science and Engineering, 607 Taylor Road, Piscataway, NJ 08855, USA [email protected], [email protected] Keywords: Hydrothermal synthesis, review powder synthesis, morphology control, hydroxyapatite, PZT, alumina, zinc oxide, carbon nanotubes. Abstract. This paper briefly reviews hydrothermal synthesis of ceramic powders and shows how understanding the underlying physico-chemical processes occurring in the aqueous solution can be used for engineering hydrothermal crystallization processes. Our overview covers the current status of hydrothermal technology for inorganic powders with respect to types of materials prepared, ability to control the process, and use in commercial manufacturing. General discussion is supported with specific examples derived from our own research (hydroxyapatite, PZT, Į-Al2O3, ZnO, carbon nanotubes). Hydrothermal crystallization processes afford excellent control of morphology (e.g., spherical, cubic, fibrous, and plate-like) size (from a couple of nanometers to tens of microns), and degree of agglomeration. These characteristics can be controlled in wide ranges using thermodynamic variables, such as reaction temperature, types and concentrations of the reactants, in addition to non-thermodynamic (kinetic) variables, such as stirring speed. Moreover, the chemical composition of the powders can be easily controlled from the perspective of stoichiometry and formation of solid solutions. Finally, hydrothermal technology affords the ability to achieve cost effective scale-up and commercial production.
    [Show full text]
  • Fast Crystallization of SUZ-4 Zeolite with Hydrothermal Synthesis: Part I Temperature and Time Effect
    AvailableAvailable online online at www.sciencedirect.com at www.sciencedirect.com Procedia Engineering ProcediaProcedia Engineering Engineering 00 (2012) 32 (2012)000–000 198 – 204 www.elsevier.com/locate/procedia I-SEEC2011 Fast Crystallization of SUZ-4 Zeolite with Hydrothermal Synthesis: Part I Temperature and Time Effect P. Vongvoradit and P. Worathanakul∗ Department of Chemical engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, 10800, Thailand Elsevier use only: Received 30 September 2011; Revised 10 November 2011; Accepted 25 November 2011. Abstract SUZ-4 zeolites were synthesized by hydrothermal technique under autogenous pressure with SiO2:Al2O3 ratio of 21.22 using silica-sol and tetraethlyammonium hydroxide as a silica source and a template, respectively. Effect of temperature with 150, 165, and 180°C and crystallization time with 24, 18, and 12 h were studied to obtain the suitable conditions at crystallization. SUZ-4 zeolite synthesis using short time compared to the conventional method was successful synthesized. The synthesized SUZ-4 zeolites were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), BET-N2 adsorption, and X-ray fluorescence (XRF). The results show that SUZ-4 zeolite was obtained from rapid crystallization having a narrow pore size distribution and needle-shaped crystals. Highly crystallined SUZ-4 depended on enhanced temperature and time of crystallization conditions. © 2010 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of I-SEEC2011 Keywords: SUZ-4 zeolite; hydrothermal synthesis; needle-shaped; fast crystallization 1. Introduction Zeolite is a crystalline aluminosilicate with a three-dimensional framework structure that forms uniformly sized pores of molecular dimensions.
    [Show full text]
  • And One-Dimensional Titanium Oxide-Based Nano-Photocatalysts Dimitrios Giannakoudakis, Gregory Chatel, Juan Carlos Colmenares
    Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nano-photocatalysts Dimitrios Giannakoudakis, Gregory Chatel, Juan Carlos Colmenares To cite this version: Dimitrios Giannakoudakis, Gregory Chatel, Juan Carlos Colmenares. Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nano-photocatalysts. Topics in current chemistry, Springer, 2020, 378 (1), 10.1007/s41061-019-0262-3. hal-02378286 HAL Id: hal-02378286 https://hal.archives-ouvertes.fr/hal-02378286 Submitted on 25 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Topics in Current Chemistry (2020) 378:2 https://doi.org/10.1007/s41061-019-0262-3 REVIEW Mechanochemical Forces as a Synthetic Tool for Zero‑ and One‑Dimensional Titanium Oxide‑Based Nano‑photocatalysts Dimitrios A. Giannakoudakis1 · Gregory Chatel2 · Juan Carlos Colmenares1 Received: 30 July 2019 / Accepted: 22 October 2019 © The Author(s) 2019 Abstract A new feld where the utilization of mechanochemistry can create new opportunities is materials chemistry, and, more interestingly, the synthesis of novel nanomateri- als. Ball-milling procedures and ultrasonic techniques can be regarded as the most important mechanochemical synthetic tools, since they can act as attractive alterna- tives to the conventional methods.
    [Show full text]