Regional Investigations of the Effects of Secondaries Upon the Martian Cratering Record
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Sherpa and the Snowman
THE SHERPA AND THE SNOWMAN Charles Stonor the "Snowman" exist an ape DOESlike creature dwelling in the unexplored fastnesses of the Himalayas or is he only a myth ? Here the author describes a quest which began in the foothills of Nepal and led to the lower slopes of Everest. After five months of wandering in the vast alpine stretches on the roof of the world he and his companions had to return without any demon strative proof, but with enough indirect evidence to convince them that the jeti is no myth and that one day he will be found to be of a a very remarkable man-like ape type thought to have died out thousands of years before the dawn of history. " Apart from the search for the snowman," the narrative investigates every aspect of life in this the highest habitable region of the earth's surface, the flora and fauna of the little-known alpine zone below the snow line, the unexpected birds and beasts to be met with in the Great Himalayan Range, the little Buddhist communities perched high up among the crags, and above all the Sherpas themselves that stalwart people chiefly known to us so far for their gallant assistance in climbing expeditions their yak-herding, their happy family life, and the wav they cope with the bleak austerity of their lot. The book is lavishly illustrated with the author's own photographs. THE SHERPA AND THE SNOWMAN "When the first signs of spring appear the Sherpas move out to their grazing grounds, camping for the night among the rocks THE SHERPA AND THE SNOWMAN By CHARLES STONOR With a Foreword by BRIGADIER SIR JOHN HUNT, C.B.E., D.S.O. -
Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
A Two-Step K-Ar Experiment on Mars: Dating the Diagenetic 10.1002/2017JE005445 Formation of Jarosite from Amazonian Groundwaters Key Points: P
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE A Two-Step K-Ar Experiment on Mars: Dating the Diagenetic 10.1002/2017JE005445 Formation of Jarosite from Amazonian Groundwaters Key Points: P. E. Martin1 , K. A. Farley1, M. B. Baker1, C. A. Malespin2, S. P. Schwenzer3 , B. A. Cohen2, • A third radiometric age dating 2 2 4 5 6 experiment has been conducted on P. R. Mahaffy , A. C. McAdam , D. W. Ming , P. M. Vasconcelos , and R. Navarro-González Mars 1 2 • The model formation age of Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA, NASA Goddard 3 4 plagioclase is greater than 4 Ga, while Space Flight Center, Greenbelt, MD, USA, Department of Physical Sciences, Open University, Milton Keynes, UK, NASA the model age for jarosite is less than Johnson Space Center, Houston, TX, USA, 5School of Earth Sciences, University of Queensland, Brisbane, Queensland, 3Ga Australia, 6Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, • The young jarosite age suggests the presence of liquid water in Gale Crater Mexico during the Amazonian period, most likely in the subsurface Abstract Following K-Ar dating of a mudstone and a sandstone, a third sample has been dated by the Curiosity rover exploring Gale Crater. The Mojave 2 mudstone, which contains relatively abundant jarosite, Supporting Information: σ • Supporting Information S1 yielded a young K-Ar bulk age of 2.57 ± 0.39 Ga (1 precision). A two-step heating experiment was implemented in an effort to resolve the K-Ar ages of primary and secondary mineralogical components Correspondence to: within the sample. -
Alluvial Fans As Potential Sites for Preservation of Biosignatures on Mars
Alluvial Fans as Potential Sites for Preservation of Biosignatures on Mars Phylindia Gant August 15, 2016 Candidate, Masters of Environmental Science Committee Chair: Dr. Deborah Lawrence Committee Member: Dr. Manuel Lerdau, Dr. Michael Pace 2 I. Introduction Understanding the origin of life Life on Earth began 3.5 million years ago as the temperatures in the atmosphere were cool enough for molten rocks to solidify (Mojzsis et al 1996). Water was then able to condense and fall to the Earth’s surface from the water vapor that collected in the atmosphere from volcanoes. Additionally, atmospheric gases from the volcanoes supplied Earth with carbon, hydrogen, nitrogen, and oxygen. Even though the oxygen was not free oxygen, it was possible for life to begin from the primordial ooze. The environment was ripe for life to begin, but how would it begin? This question has intrigued humanity since the dawn of civilization. Why search for life on Mars There are several different scientific ways to answer the question of how life began. Some scientists believe that life started out here on Earth, evolving from a single celled organism called Archaea. Archaea are a likely choice because they presently live in harsh environments similar to the early Earth environment such as hot springs, deep sea vents, and saline water (Wachtershauser 2006). Another possibility for the beginning of evolution is that life traveled to Earth on a meteorite from Mars (Whitted 1997). Even though Mars is anaerobic, carbonate-poor and sulfur rich, it was warm and wet when Earth first had organisms evolving (Lui et al. -
Challenges Using Small Craters for Dating Planetary Surfaces
Workshop on Issues in Crater Studies and the Dating of Planetary Surfaces (2015) 9051.pdf CHALLENGES USING SMALL CRATERS FOR DATING PLANETARY SURFACES. J.-P. Williams1 and A. V. Pathare2, 1Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 ([email protected]), 2Planetary Science Institute, Tuscon, AZ 85719 ([email protected]). Introduction: Impact craters can be used to esti- mate the age of a planetary surface, given knowledge of the rate of crater accumulation, and are the primary method for age dating planetary surfaces (excluding Earth) (e.g. [1][2]). The factors shaping crater produc- tion at diameters < 100 m are not well understood and under debate. However, because of the frequency at which these craters form, they are utilized to discrimi- nate surface ages of geologically young regions and features at a higher spatial resolution. This level of resolution is required to establish the temporal relation of recent geologic activity on the Moon such as Co- pernican impacs, including North Ray, South Ray, and Cone craters, sites used to anchor the crater chronolo- Fig 1. Impact melt deposit on the ejecta of Giordano gy, and Mars such as gully, landslide, and outflow Bruno crater and crater SFD on and off of the melt channel formation, volcanic resurfacing, sedimenta- deposit with nominal lunar regolith and hard rock tion, exhumation, dune activity, glaciation and other isochrons [7]. periglacial landforms, and the possible relation of such 7 features to obliquity variations of ~10 y timescale. Self-Secondary Craters: The melt deposit also il- Radiometric and cosmic ray exposure ages of lustrates another issue that may confound crater count- Apollo and Luna samples, correlated with crater popu- ing on the ejecta of craters. -
USGS Open-File Report 2006-1263
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Nampa, Idaho 2006 Edited By Tracy K.P. Gregg,1 Kenneth L. Tanaka,2 and R. Stephen Saunders3 Open-File Report 2006-1263 2006 Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 1 The State University of New York at Buffalo, Department of Geology, 710 Natural Sciences Complex, Buffalo, NY 14260-3050. 2 U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001. 3 NASA Headquarters, Office of Space Science, 300 E. Street SW, Washington, DC 20546. Report of the Annual Mappers Meeting Northwest Nazarene University Nampa, Idaho June 30 – July 2, 2006 Approximately 18 people attended this year’s mappers meeting, and many more submitted abstracts and maps in absentia. The meeting was held on the campus of Northwest Nazarene University (NNU), and was graciously hosted by NNU’s School of Health and Science. Planetary mapper Dr. Jim Zimbelman is an alumnus of NNU, and he was pivotal in organizing the meeting at this location. Oral and poster presentations were given on Friday, June 30. Drs. Bill Bonnichsen and Marty Godchaux led field excursions on July 1 and 2. USGS Astrogeology Team Chief Scientist Lisa Gaddis led the meeting with a brief discussion of the status of the planetary mapping program at USGS, and a more detailed description of the Lunar Mapping Program. She indicated that there is now a functioning website (http://astrogeology.usgs.gov/Projects/PlanetaryMapping/Lunar/) which shows which lunar quadrangles are available to be mapped. -
Role of Glaciers in Halting Syrtis Major Lava Flows to Preserve and Divert a Fluvial System
ROLE OF GLACIERS IN HALTING SYRTIS MAJOR LAVA FLOWS TO PRESERVE AND DIVERT A FLUVIAL SYSTEM A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Geology in The Department of Geology and Geophysics by Connor Michael Matherne B.S., Louisiana State University, 2017 December 2019 ACKNOWLEDGMENTS Special thanks to J.R. Skok and Jack Mustard for conceiving the initial ideas behind this project and to Suniti Karunatillake and J.R. Skok for their guidance. Additionally, thank you to my committee members Darrell Henry and Peter Doran for aid in understanding the complex volcanic and climate history for this location. This work has benefited from reviews and discussions with Tim Goudge, Steven Ruff, Jim Head, and Bethany Ehlmann. We thank Caleb Fassett for providing the CTX DEM processing of the outlet fan and Tim Goudge for providing the basin Depression CTX DEM. All data and observations used in this study are publically available from the NASA PDS. Derived products such as produced CTX DEMs can be attained through processing or contacting the primary author. Connor Matherne was supported by the Frank’s Chair funds, W.L. Calvert Memorial Scholarship, NASA-EPSCoR funded LASpace Graduate Student Research Assistantship grant, and Louisiana Board of Regents Research Award Program grant LEQSF-EPS(2017)-RAP-22 awarded to Karunatillake. J.R. Skok was supported with the MDAP award NNX14AR93G. Suniti Karunatillake’s work was supported by NASA- MDAP grant 80NSSC18K1375. ii TABLE OF CONTENTS Acknowledgments.............................................................................................................. -
Distant Secondary Craters and Age Constraints on Young Martian Terrains
Lunar and Planetary Science XXXVI (2005) 2111.pdf DISTANT SECONDARY CRATERS AND AGE CONSTRAINTS ON YOUNG MARTIAN TERRAINS. A. McEwen1, B. Preblich1, E. Turtle1, D. Studer1, N. Artemieva2, M. Golombek3, M. Hurst4, R. Kirk5, and D. Burr5, 1LPL, [email protected], 2Russian Academy of Sciences, 3JPL, 4BYU, 5USGS. Introduction: Are small (less than ~1 km climate change occurred in the very recent geologic diameter) craters on Mars and the Moon dominated past, perhaps correlated with the most recent cycle of by primary impacts, by secondary impacts of much high obliquity [10]. However, age constraints based larger primary craters, or are both primaries and on small craters must be reconsidered if secondary secondaries significant? This question is critical to craters dominate the population. age constraints for young terrains and for older Zunil: This 10.1-km diameter crater in the terrains covering small areas, where only small young volcanic plains of Cerberus has rays of craters are superimposed on the unit. If the martian secondary craters extending up to 1600 km from the rayed crater Zunil [1] is representative of large primary [1, 11]. This is the first discovery of a large impact events on Mars, then the density of rayed crater on Mars, similar to rayed craters like secondaries should exceed the density of primaries at Tycho on the Moon. Zunil provides a well-preserved diameters a factor of ~1000 smaller than that of the example of a primary crater with enormous numbers largest contributing primary crater. On the basis of (~107) of distant secondary craters. There are few morphology and depth/diameter measurements, most secondary craters within ~16 crater radii; they were small craters on Mars could be secondaries. -
Bibliography
Bibliography Acu˜na, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Basilevsky, A. T., Litvak, M. L., Mitrofanov, I. G., Boynton, Mitchell, D., Carlson, C. W., McFadden, J., Anderson, W., Saunders, R. S., and Head, J. W. (2003). Search for K. A., R`eme, H., Mazelle, C., Vignes, D., Wasilewski, P., Traces of Chemically Bound Water in the Martian Surface and Cloutier, P. (1999). Global Distribution of Crustal Layer Based on HEND Measurements onboard the 2001 Magnetization Discovered by the Mars Global Surveyor Mars Odyssey Spacecraft. Solar System Research, 37, MAG/ER Experiment. Science, 284, 790–793. 387–396. Allen, C. C. (1979). Volcano-ice interactions on Mars. J. Geo- Basilevsky, A. T., Rodin, A. V., Kozyrev, A. S., Mitrofanov, phys. Res., 84(13), 8048–8059. I. G., Neukum, G., Werner, S. C., Head, J. W., Boynton, W., and Saunders, R. S. (2004). Mars: The Terra Arabia Anderson, C. E. (1987). An overview of the theory of hy- Low Epithermal Neutron Flux Anomaly. In Lunar and drocodes. Int. J. Impact Eng., 5, 33–59. Planetary Institute Conference Abstracts, page 1091. Basilevsky, A. T., Neukum, G., Ivanov, B. A., Werner, S. K., Arvidson, R. E., Coradini, M., Carusi, A., Coradini, A., Gesselt, S., Head, J. W., Denk, T., Jaumann, R., Hoff- Fulchignoni, M., Federico, C., Funiciello, R., and Sa- mann, H., Hauber, E., and McCord, T. (2005). Morphol- lomone, M. (1976). Latitudinal variation of wind erosion ogy and geological structure of the western part of the of crater ejecta deposits on Mars. Icarus, 27, 503–516. Olympus Mons volcano on Mars from the analysis of the Mars Express HRSC imagery. -
Timeline of Our Mysterious World.Pdf
Our Mysterious World--a collection of weirdness http://www.geocities.com/nmdecke/MysteriousWorld.html (1 of 455)11/10/2007 12:44:11 AM Our Mysterious World--a collection of weirdness This is a timeline of weird and "Art Bell-ish" events and happenings that I have been collecting off the internet for a while. Yes, many of the entries contradict each other, and others are most likely patent lies, but all of these are in the public literature and you can sort them out for yourselves… Due to some positive notes from readers, I have decided to start updating this list after about a year of ignoring it. I will be adding new stuff bit by bit, with the latest batch on August 1, 2007. Go back to my homepage for more good stuff, please and thank you. Any comments or additions? Send them to me at [email protected] Alpha and Omega Immanentizing of the Eschaton. Whatever the hell that means… 75,000,000 BC Xenu ordered nuking of earth (Per Scientology). Radioactive dust still in geologic strata in the areas of the American southwestern deserts, African deserts, and Gobi desert. Geologists can't explain the "fused green glass" that has been found in such sites as Pierrelatte in Gabon, the Euphrates Valley, the Sahara Desert, the Gobi Desert, Iraq, the Mojave Desert, Scotland, the Old and Middle Kingdoms of Egypt, and south-central Turkey. From the same time period, scientists have found a number of uranium deposits that appear to have been mined or depleted in antiquity. -
Detection of Small Lunar Secondary Craters in Circular Polarization Ratio Radar Images Kassandra S
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E06008, doi:10.1029/2009JE003491, 2010 Click Here for Full Article Detection of small lunar secondary craters in circular polarization ratio radar images Kassandra S. Wells,1 Donald B. Campbell,1 Bruce A. Campbell,2 and Lynn M. Carter2 Received 20 August 2009; revised 4 February 2010; accepted 22 February 2010; published 17 June 2010. [1] The identification of small (D < a few kilometers) secondary craters and their global distributions are of critical importance to improving our knowledge of surface ages in the solar system. We investigate a technique by which small, distal secondary craters can be discerned from the surrounding primary population of equivalent size based on asymmetries in their ejecta blankets. The asymmetric ejecta blankets are visible in radar circular polarization ratio (CPR) but not as optical albedo features. Measurements with our new technique reveal 94 secondary craters on the Newton and Newton‐A crater floors near the lunar south pole. These regions are not in an obvious optical ray, but the orientation of asymmetric secondary ejecta blankets suggests that they represent an extension of the Tycho crater ray that crosses Clavius crater. Including the secondary craters at Newton and Newton‐A skews the terrain age inferred by crater counts. It is reduced by few percentages by their removal, from 3.8 to 3.75 Gyr at Newton‐A. Because “hidden rays” like that identified here may also occur beyond the edges of other optically bright lunar crater rays, we assess the effect that similar but hypothetical populations would have on lunar terrains of various ages.