WO 2010/129023 A9 11 November 2010 (11.11.2010) PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2010/129023 A9 11 November 2010 (11.11.2010) PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) CORRECTED VERSION (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2010/129023 A9 11 November 2010 (11.11.2010) PCT (51) International Patent Classification: (74) Agent: BAKER, C , Hunter; Wolf, Greenfield & Sacks, C07K 14/00 (2006.01) P.C., 600 Atlantic Avenue, Boston, MA 02210-2206 (US). (21) International Application Number: PCT/US20 10/00 1250 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 28 April 2010 (28.04.2010) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (26) Publication Langi English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/173,430 28 April 2009 (28.04.2009) US NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 61/321,428 6 April 2010 (06.04.2010) US SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for all designated States except US): PRESI¬ DENT AND FELLOWS OF HARVARD COLLEGE (84) Designated States (unless otherwise indicated, for every [US/US]; 17 Quincy Street, Cambridge, MA 02138 (US). kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (72) Inventors; and ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (75) Inventors/Applicants (for US only): LIU, David, R. TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, [US/US]; 3 Whitman Circle, Lexington, MA 02420 (US). ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MCNAUGHTON, Brian, R. [US/US]; 1146 Cambridge MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, Street, Apt. 2, Cambridge, MA 021 39 (US). CRONI- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, CAN, James, Joseph [US/US]; 70 Park Street, #3 1, ML, MR, NE, SN, TD, TG). Somerville, MA 02138 (US). THOMPSON, David, B. Published: [US/US]; 50 Follen Street, # 11, Cambridge, MA 02138 (US). — without international search report and to be republished upon receipt of that report (Rule 48.2(g)) [Continued on next page] (54) Title: SUPERCHARGED PROTEINS FOR CELL PENETRATION FIGURE 44B < o (57) Abstract: Compositions, preparations, systems, and related methods for delivering a supercharged protein, or a complex of a supercharged protein and an agent (e.g., nucleic acids, peptides, proteins, small molecules) to cells are provided. Such systems and methods include the use of supercharged proteins. For example, superpositively charged proteins may be associated with nucleic acids (which typically have a net negative charge) via electrostatic interactions. In some embodiments, such systems and methods o involve altering the primary sequence of a protein in order to "supercharge" the protein (e.g., to generate a superpositively-charged protein). In some embodiments, complexes comprising supercharged proteins and one or more agents to be delivered are useful as therapeutic agents. In some embodiments, complexes and/or pharmaceutical compositions thereof are administered to a subject in o need thereof. The inventive complexes or pharmaceutical compositions thereof may be used to treat proliferative diseases, infec tious diseases, cardiovascular diseases, inborn errors in metabolism, genetic diseases, etc. w o 2010/129023 A9 1I 11 II I 1 I1 II I II III II I III III III II (48) Date of publication of this corrected version: (15) Information about Correction: 5 May 20 11 see Notice of 5 May 201 1 SUPERCHARGED PROTEINS FOR CELL PENETRATION Government Support [0001] This invention was made with U.S. Government support under contract number R01 GM 065400 awarded by the National Institutes of Health/NIGMS. The U.S. Government has certain rights in the invention. Background of the Invention [0002] The effectiveness of an agent intended for use as a therapeutic, diagnostic, or other application is often highly dependent on its ability to penetrate cellular membranes or tissue to induce a desired change in biological activity. Although many therapeutic drugs, diagnostic or other product candidates, whether protein, nucleic acid, organic small molecule, or inorganic small molecule, show promising biological activity in vitro, many fail to reach or penetrate target cells to achieve the desired effect, often due to physiochemical properties that result in inadequate biodistribution in vivo. [0003] In particular, nucleic acids have great potential as effective therapeutic agents and as research tools. The generality and sequence-specificity of siRNA-mediated gene regulation has raised the possibility of using siRNAs as gene-specific therapeutic agents (Bumcrot et al., 2006, Nat. Chem. Biol., 2:71 1-19; incorporated herein by reference). The suppression of gene expression by short interfering RNA (siRNA) has also emerged as a valuable tool for studying gene and protein function (Dorsett et al., 2004, Nat. Rev. Drug Discov., 3:318-29; Dykxhoorn et al., 2003, Nat. Rev. Mol. Cell. Biol., 4:457-67; Elbashir al., 2001, Nature, 4 11:494-98; each of which is incorporated herein by reference). However, the delivery of nucleic acids such as siRNAs to cells has been found to be unpredictable and is typically inefficient. One obstacle to effective delivery of nucleic acids to cells is inducing cells to take up the nucleic acid. Much work has been done to identify agents that can aid in the delivery of nucleic acids to cells. Commercially available cationic lipid reagents are typically used to transfect siRNA in cell culture. The effectiveness of cationic lipid-based siRNA delivery, however, varies greatly by cell type. Also, a number of cell lines including some primary neuron, T-cell, fibroblast, and epithelial cell lines have demonstrated resistance to common cationic lipid transfection techniques (Carlotti et al., 2004, Mol. Ther., 9:209-17; Ma et al, 2002, Neuroscience, 112:1-5; McManus et al., 2002, J. Immunol., 169:5754-60; Strait et al., 2007, Am. J. Physiol. Renal Physiol., 293:F601-06; each of which is incorporated herein by reference). Alternative transfection approaches including electroporation (Jantsch et ai, 2008, J. Immunol. Methods, 337:71-77; incorporated herein by reference) and virus- mediated siRNA delivery (Brummelkamp et ai, 2002, Cancer Cell, 2:243-47; Stewart et ai, 2003, RNA, 9:493-501; each of which is incorporated herein by reference) have also been used; however, these methods can be cytotoxic or perturb cellular function in unpredictable ways and have limited value for the delivery of nucleic acids (e.g., siRNA) as therapeutic agents in a subject. [0004] Recent efforts to address the challenges of nucleic acid delivery have resulted in a variety of new nucleic acid delivery platforms. These methods include lipidoids (Akinc et a , 2008, Nat. Biotechnoi, 26:561-69; incorporated herein by reference), cationic polymers (Segura and Hubbell, 2007, Bioconjug. Chem., 18:736-45; incorporated herein by reference), inorganic nanoparticles (Sokolova and Epple, Angew Chem. Int. Ed. Engl., 47:1382-95; incorporated herein by reference), carbon nanotubes (Liu et ai, 2007, Angew Chem. Int. Ed. Engl., 46:2023-27; incorporated herein by reference), cell-penetrating peptides (Deshayes et al, 2005, Cell Moi Life Sci., 62: 1839-49; and Meade and Dowdy, 2008, Adv. Drug Deliv. Rev., 60: 530-36; both of which are incorporated herein by reference), and chemically modified siRNA (Krutzfeldt et ai, 2005, Nature 438: 685-89; incorporated herein by reference). Each of these delivery systems offers benefits for particular applications; in most cases, however, questions regarding cytotoxicity, ease of preparation, stability, or generality remain. Easily prepared reagents capable of effectively delivering nucleic acids {e.g., siRNA) to a variety of cell lines without significant cytotoxicity therefore remain of considerable interest. [0005] Given the current interest in RNAi therapies and other nucleic acid-based therapies, there remains a need in the art for reagents and systems that can be used to deliver nucleic acids as well as other agents (e.g., peptides, proteins, small molecules) to a wide variety of cell types predictably and efficiently. [0006] Similarly, the inability of most proteins to spontaneously enter mammalian cells limits their usefulness as research tools and their potential as therapeutic agents. Proteins have demonstrated great potential as research tools (including hormones, cytokines, and antibodies) and as human therapeutics (including erythropoietin, insulin, and interferons). Due to the inability of most proteins to spontaneously enter cells, however, exogenous proteins are largely restricted to interacting with extracellular targets. Over the past decade, techniques for the delivery of proteins into mammalian cells have been developed to address intracellular targets. These techniques include lipid-based reagents (Zelphati et al, J. Biol. Chem. 276, 35103-351 10, 2001), nanoparticles (Hasadsri et al, J. Biol. Chem., 2009), vault ribonucleoprotein particles (Lai et al., ACSNano 3, 691-699, 2009), and genetic or chemical fusion to receptor ligands (Gabel et al, J. Cell Biol. 103, 1817-1827, 1986; Rizk et al, Proc. Natl. Acad. Sci. U.S.A. 106, 1101 1-1 1015, 2009) or cell-penetrating peptides (Wadia et al, Curr. Protein Pept. Sci. 4, 97-104, 2003; Zhou et al, Cell Stem Cell 4, 381-384, 2009). Perhaps the most common method for protein delivery is genetic fusion to protein transduction domains (PTDs) including the HIV-1 transactivator of transcription (Tat) peptide and polyarginine peptides.
Recommended publications
  • Nutrigenomics in Human Peripheral Blood Mononuclear Cells
    Nutrigenomics in human peripheral blood mononuclear cells The effects of fatty acids on gene expression profiles of human circulating cells as assessed in human intervention studies Mark Bouwens Promotor Prof. dr. Michael R. Müller Hoogleraar Voeding, Metabolisme en Genomics Afdeling Humane Voeding, Wageningen Universiteit Co-promotor Dr. ir. Lydia A. Afman Universitair docent Afdeling Humane Voeding, Wageningen Universiteit Promotiecommissie Prof. dr. Hannelore Daniel Technical University of Munich, Germany Dr. ir. Baukje de Roos Rowett Research Institute, Scotland Prof. dr. ir. Wim H.M. Saris Universiteit Maastricht Prof. dr. Huub F.J. Savelkoul Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoeksschool VLAG (Voeding, Levensmiddelentechnologie, Agrobiotechnologie en Gezondheid) Nutrigenomics in human peripheral blood mononuclear cells The effects of fatty acids on gene expression profiles of human circulating cells as assessed in human intervention studies Mark Bouwens Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 20 februari 2009 des namiddags te half twee in de Aula. Mark Bouwens Nutrigenomics in human peripheral blood mononuclear cells. The effects of fatty acids on gene expression profiles of human circulating cells as assessed in human intervention studies Thesis Wageningen University, Wageningen, the Netherlands, 2009. With abstract – with references – with summary in Dutch. ISBN: 978-90-8585-327-5 Abstract Nutrigenomics in human peripheral blood mononuclear cells. The effects of fatty acids on gene expression profiles of human circulating cells as assessed in human intervention studies PhD thesis by Mark Bouwens, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands, February 20, 2009 Peripheral blood mononuclear cells (PBMCs) are circulating immune cells.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Potential Role Vasculogenesis in Lupus Are Mediated
    Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 Kaplan is online at: on α average * The Journal of Immunology published online 30 August 2010 from submission to initial decision 4 weeks from acceptance to publication The Detrimental Effects of IFN- http://www.jimmunol.org/content/early/2010/08/30/jimmun ol.1001782 Vasculogenesis in Lupus Are Mediated by Repression of IL-1 Pathways: Potential Role in Atherogenesis and Renal Vascular Rarefaction J Immunol Seth G. Thacker, Celine C. Berthier, Deborah Mattinzoli, Maria Pia Rastaldi, Matthias Kretzler and Mariana J. Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2010/08/30/jimmunol.100178 2.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 28, 2021. Published August 30, 2010, doi:10.4049/jimmunol.1001782 The Journal of Immunology The Detrimental Effects of IFN-a on Vasculogenesis in Lupus Are Mediated by Repression of IL-1 Pathways: Potential Role in Atherogenesis and Renal Vascular Rarefaction Seth G. Thacker,*,1 Celine C. Berthier,†,1 Deborah Mattinzoli,‡ Maria Pia Rastaldi,‡ Matthias Kretzler,† and Mariana J.
    [Show full text]
  • Interrogating ARDS Risk and Severity Utilizing Genomic and Systems Biology Approaches
    Interrogating ARDS Risk and Severity Utilizing Genomic and Systems Biology Approaches Item Type text; Electronic Dissertation Authors Lynn, Heather D. Citation Lynn, Heather D. (2020). Interrogating ARDS Risk and Severity Utilizing Genomic and Systems Biology Approaches (Doctoral dissertation, University of Arizona, Tucson, USA). Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 14:43:39 Link to Item http://hdl.handle.net/10150/650808 INTERROGATING ARDS RISK AND SEVERITY UTILIZING GENOMIC AND SYSTEMS BIOLOGY APPROACHES by Heather Lynn _________________________ Copyright © Heather Lynn 2020 A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN PHYSIOLOGICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2020 Acknowledgements & Dedications Many people’s efforts and time besides my own went into the creation and refinement of this work. I would first like to acknowledge my mentor, Dr. Garcia, without whose support none of this would be possible. Secondly, I want to acknowledge my committee members (Drs Coletta, Karnes, Ledford, and Sun) that have contributed to both the scientific aspects of this thesis and to the personal task of mentoring and teaching me their own areas of expertise they brought to this project. Third, I would like to thank the support of the many professors and staff of the Physiological Sciences GIDP for financial, logistical, and intellectual support during graduate school.
    [Show full text]
  • WO 2013/095793 Al 27 June 2013 (27.06.2013) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/095793 Al 27 June 2013 (27.06.2013) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US2012/063579 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 5 November 20 12 (05 .11.20 12) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (30) Priority Data: ZM, ZW. 61/579,530 22 December 201 1 (22. 12.201 1) US (84) Designated States (unless otherwise indicated, for every (71) Applicant: AVEO PHARMACEUTICALS, INC. kind of regional protection available): ARIPO (BW, GH, [US/US]; 75 Sidney Street, Fourth Floor, Cambridge, MA GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 02139 (US).
    [Show full text]
  • The Development of a Dual-Tag Affinity Purification System and Its
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2008 The Development of a Dual-Tag Affinity Purification System and its Application to Elucidate the Interacting Protein Network Surrounding the Human Telomere Binding Proteins TRF1, TRF2, and POT1 Richard John Giannone University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Giannone, Richard John, "The Development of a Dual-Tag Affinity Purification System and its Application to Elucidate the Interacting Protein Network Surrounding the Human Telomere Binding Proteins TRF1, TRF2, and POT1. " PhD diss., University of Tennessee, 2008. https://trace.tennessee.edu/utk_graddiss/523 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Richard John Giannone entitled "The Development of a Dual-Tag Affinity Purification System and its Applicationo t Elucidate the Interacting Protein Network Surrounding the Human Telomere Binding Proteins TRF1, TRF2, and POT1." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Life Sciences. Yisong Wang, Major Professor We have read this dissertation and recommend its acceptance: Yie Liu, W.
    [Show full text]
  • Comparative Analysis of Sequence Features Involved in the Recognition
    BMC Genomics BioMed Central Research article Open Access Comparative analysis of sequence features involved in the recognition of tandem splice sites Ralf Bortfeldt*1, Stefanie Schindler2, Karol Szafranski2, Stefan Schuster1 and Dirk Holste*3,4 Address: 1Department of Bioinformatics, Friedrich-Schiller University, Ernst-Abbe-Platz 2, D-07743 Jena, Germany, 2Fritz-Lipmann Institute for Aging Research, Beutenbergstraße 11, D-07745 Jena, Germany, 3Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030, Vienna, Austria and 4Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3-5, A-1030, Vienna, Austria Email: Ralf Bortfeldt* - [email protected]; Stefanie Schindler - [email protected]; Karol Szafranski - [email protected]; Stefan Schuster - [email protected]; Dirk Holste* - [email protected] * Corresponding authors Published: 30 April 2008 Received: 16 January 2008 Accepted: 30 April 2008 BMC Genomics 2008, 9:202 doi:10.1186/1471-2164-9-202 This article is available from: http://www.biomedcentral.com/1471-2164/9/202 © 2008 Bortfeldt et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The splicing of pre-mRNAs is conspicuously often variable and produces multiple alternatively spliced (AS) isoforms that encode different messages from one gene locus. Computational studies uncovered a class of highly similar isoforms, which were related to tandem 5'-splice sites (5'ss) and 3'-splice sites (3'ss), yet with very sparse anecdotal evidence in experimental studies.
    [Show full text]
  • Defining the Genomic Signature of the Parous Breast
    Peri et al. BMC Medical Genomics 2012, 5:46 http://www.biomedcentral.com/1755-8794/5/46 RESEARCH ARTICLE Open Access Defining the genomic signature of the parous breast Suraj Peri1†, Ricardo López de Cicco2†, Julia Santucci-Pereira2†, Michael Slifker1†, Eric A Ross1, Irma H Russo2, Patricia A Russo2, Alan A Arslan3,4, Ilana Belitskaya-Lévy5, Anne Zeleniuch-Jacquotte4, Pal Bordas6,7, Per Lenner7, Janet Åhman6, Yelena Afanasyeva4, Robert Johansson8, Fathima Sheriff2, Göran Hallmans8, Paolo Toniolo3,4,9 and Jose Russo2* Abstract Background: It is accepted that a woman's lifetime risk of developing breast cancer after menopause is reduced by early full term pregnancy and multiparity. This phenomenon is thought to be associated with the development and differentiation of the breast during pregnancy. Methods: In order to understand the underlying molecular mechanisms of pregnancy induced breast cancer protection, we profiled and compared the transcriptomes of normal breast tissue biopsies from 71 parous (P) and 42 nulliparous (NP) healthy postmenopausal women using Affymetrix Human Genome U133 Plus 2.0 arrays. To validate the results, we performed real time PCR and immunohistochemistry. Results: We identified 305 differentially expressed probesets (208 distinct genes). Of these, 267 probesets were up- and 38 down-regulated in parous breast samples; bioinformatics analysis using gene ontology enrichment revealed that up-regulated genes in the parous breast represented biological processes involving differentiation and development, anchoring of epithelial cells to the basement membrane, hemidesmosome and cell-substrate junction assembly, mRNA and RNA metabolic processes and RNA splicing machinery. The down-regulated genes represented biological processes that comprised cell proliferation, regulation of IGF-like growth factor receptor signaling, somatic stem cell maintenance, muscle cell differentiation and apoptosis.
    [Show full text]
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
    [Show full text]
  • Increased DNA Methylation Variability in Rheumatoid Arthritis Discordant Monozygotic Twins
    bioRxiv preprint doi: https://doi.org/10.1101/314963; this version posted May 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Increased DNA methylation variability in rheumatoid arthritis discordant monozygotic twins Amy P. Webster1,2*, Darren Plant3, Simone Ecker2, Flore Zufferey4, Jordana T. Bell4, Andrew Feber2, Dirk S. Paul5,6, Stephan Beck2, Anne Barton1,3, Frances M.K. Williams4#, Jane Worthington1,3#* 1 Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK 2 Department of Cancer Biology, UCL Cancer Institute, University College London, London, UK 3 NIHR Manchester Biomedical Research Centre, Manchester Academy of Health Sciences, Manchester University Foundation Trust, Manchester, UK 4 Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK 5 MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK 6 Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK #Joint senior authors * Corresponding authors: Professor Jane Worthington Email: [email protected] Telephone: +44 (0)161 275 5651 Fax: +44 (0)161 275 5043 Dr Amy P Webster Email: [email protected] Telephone: +44 (0)20 7679 6004 bioRxiv preprint doi: https://doi.org/10.1101/314963; this version posted May 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Alzheimerls Disease Gene Signature Says: Beware of Brain Viral Infections
    Porcellini et al. Immunity & Ageing 2010, 7:16 http://www.immunityageing.com/content/7/1/16 IMMUNITY & AGEING HYPOTHESIS Open Access Alzheimer’s disease gene signature says: beware of brain viral infections Elisa Porcellini, Ilaria Carbone, Manuela Ianni, Federico Licastro* Abstract Background: Recent findings from a genome wide association investigation in a large cohort of patients with Alzheimer’s disease (AD) and non demented controls (CTR) showed that a limited set of genes was in a strong association (p > l0-5) with the disease. Presentation of the hypothesis: In this report we suggest that the polymorphism association in 8 of these genes is consistent with a non conventional interpretation of AD etiology. Nectin-2 (NC-2), apolipoprotein E (APOE), glycoprotein carcinoembryonic antigen related cell adhesion molecule- 16 (CEACAM-16), B-cell lymphoma-3 (Bcl-3), translocase of outer mitochondrial membrane 40 homolog (T0MM-40), complement receptor-1 (CR-l), APOJ or clusterin and C-type lectin domain A family-16 member (CLEC-16A) result in a genetic signature that might affect individual brain susceptibility to infection by herpes virus family during aging, leading to neuronal loss, inflammation and amyloid deposition. Implications of the hypothesis: We hypothesized that such genetic trait may predispose to AD via complex and diverse mechanisms each contributing to an increase of individual susceptibility to brain viral infections Background plaque deposition or clearance of brain amyloid. Other The incidence of Alzheimer’s disease (AD) is rising mechanisms may be closely related with the etiology sharply and a large fraction of the elderly population and pathogenesis of sporadic AD.
    [Show full text]