Praschberger, R., Lowe, S. A., Malintan, N. T., Giachello, C. N. G., Patel, N., Houlden, H., Kullmann, D. M., Baines, R. A., Usowicz, M. M., Krishnakumar, S. S., Hodge, J. J. L., Rothman, J. E., & Jepson, J. E. C. (2017). Mutations in Membrin/GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity. Cell Reports, 21(1), 97-109. https://doi.org/10.1016/j.celrep.2017.09.004 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1016/j.celrep.2017.09.004 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Cell Press at http://www.sciencedirect.com/science/article/pii/S2211124717312652. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Article Mutations in Membrin/GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity Graphical Abstract Authors Roman Praschberger, Simon A. Lowe, Nancy T. Malintan, ..., James J.L. Hodge, James E. Rothman, James E.C. Jepson Correspondence
[email protected] In Brief In this study, Praschberger et al. utilize in vitro assays, patient-derived cells, and Drosophila models to unravel how mutations in the essential Golgi SNARE protein Membrin cause progressive myoclonus epilepsy and to demonstrate a selective vulnerability of developing neurons to partial impairment of ER-to- Golgi trafficking.