Feature Preserving Delaunay Mesh Generation from 3D Multi-Material Images Dobrina Boltcheva, Mariette Yvinec, Jean-Daniel Boissonnat

Total Page:16

File Type:pdf, Size:1020Kb

Feature Preserving Delaunay Mesh Generation from 3D Multi-Material Images Dobrina Boltcheva, Mariette Yvinec, Jean-Daniel Boissonnat Feature preserving Delaunay mesh generation from 3D multi-material images Dobrina Boltcheva, Mariette Yvinec, Jean-Daniel Boissonnat To cite this version: Dobrina Boltcheva, Mariette Yvinec, Jean-Daniel Boissonnat. Feature preserving Delaunay mesh generation from 3D multi-material images. Computer Graphics Forum, Wiley, 2009, pp.1455-1464. 10.1111/j.1467-8659.2009.01522.x. inria-00413248 HAL Id: inria-00413248 https://hal.inria.fr/inria-00413248 Submitted on 3 Sep 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eurographics Symposium on Geometry Processing 2009 Volume 28 (2009), Number 5 Marc Alexa and Michael Kazhdan (Guest Editors) Feature preserving Delaunay mesh generation from 3D multi-material images Dobrina Boltcheva, Mariette Yvinec, Jean-Daniel Boissonnat GEOMETRICA – INRIA Sophia Antipolis, France fi[email protected] Abstract Generating realistic geometric models from 3D segmented images is an important task in many biomedical appli- cations. Segmented 3D images impose particular challenges for meshing algorithms because they contain multi- material junctions forming features such as surface patches, edges and corners. The resulting meshes should preserve these features to ensure the visual quality and the mechanical soundness of the models. We present a feature preserving Delaunay refinement algorithm which can be used to generate high-quality tetrahedral meshes from segmented images. The idea is to explicitly sample corners and edges from the input image and to constrain the Delaunay refinement algorithm to preserve these features in addition to the surface patches. Our experimental results on segmented medical images have shown that, within a few seconds, the algorithm outputs a tetrahedral mesh in which each material is represented as a consistent submesh without gaps and overlaps. The optimization property of the Delaunay triangulation makes these meshes suitable for the purpose of realistic visualization or finite element simulations. Categories and Subject Descriptors (according to ACM CCS): Computational Geometry and Object Modeling [I.3.5]: Curve, surface, solid, and object representations—Modeling packages 1. Introduction the interface between 2 different regions of the image. Sec- ondly, the 1-junctions are edges defined as the intersection of Advanced medical applications, like numerical simulations 3 or more image regions. Thirdly, the 0-junctions are corner of physical or physiological processes, frequently require vertices appearing at the meeting point of 4 or more regions. meshed models of human organs rather than grey-level MRI or CT-scan images. Extracting geometric representa- tion from a medical image usually supposes that the image All these multi-material junctions form features in the in- has been segmented into several regions of interest made of put and are expected to be preserved and accurately repre- different materials. During this segmentation, every voxel is sented in the output mesh for many applications. Besides, if assigned a label so that connected voxels with the same label the image regions are meshed separately, it is not obvious to represent an anatomical structure. This paper focuses on the guarantee that the resulting meshes have conforming bound- next step and presents a method that, given a segmented 3D aries without gaps or overlaps along their common junctions. image, meshes simultaneously a set of regions with different In this paper, we present a feature preserving Delaunay re- labels. The resulting meshes are either surface meshes ap- finement algorithm which addresses this issue. The method proximating the boundaries of anatomical structures or vol- simultaneously meshes all image regions and builds a unique ume meshes of these structures. high-quality tetrahedral mesh where each anatomical struc- Building meshed models from multi-material images is ture is represented by a submesh. In addition, the method is very challenging. Indeed, in dimension 3, the different ma- constrained to preserve the 0-junctions between regions and terials are often organized in intricate geometric configura- to reconstruct accurately the 1-junctions as a set of consec- tions and they present three kinds of multi-material junc- utive Delaunay edges and the 2-junctions as surface patches tions. First, the 2-junctions are surface patches defined as composed of Delaunay facets. c 2009 The Author(s) Journal compilation c 2009 The Eurographics Association and Blackwell Publishing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA. D. Boltcheva & M. Yvinec & JD. Boissonnat / Feature preserving Delaunay mesh generation from 3D multi-material images 1.1. Related work [NF97, HK98]. More recently, an octree-based method has There are only a few surface mesh generation methods been proposed [ZHB07] that outputs tetrahedral or hexahe- which deal with multi-material 3D images. The most popu- dral meshes with consistent multi-material junctions. How- lar are extensions of the Marching Cubes algorithm handling ever, like the other grid-based methods, this algorithm does multi-material junction configurations. In an early work, not offer a mesh quality control and elements of poor qual- Hege et al. [HSSZ97] proposed the first generalization of ity are always generated along boundaries. Quality improve- this algorithm for segmented data. Their look-up table sup- ment techniques are usually used as a post-processing step ports up to three different materials meeting at one grid cell. to deliver acceptable meshes. More recently, Wu and Sullivan [WS03] proposed another A powerful strategy based on Delaunay refinement, has extension dealing with up to eight different labels per cell. been proposed for meshing smooth surfaces [BO05] and vol- A well-known issue with MC methods is that they pro- umes bounded by smooth and piecewise smooth surfaces duce very dense meshes presenting staircase artefacts and [ORY05, RY07]. The refinement process is controlled by that they are composed of numerous distorted triangles. highly customizable quality and size criteria on triangular ∗ Meshes generated from a typical segmented medical image facets and on tetrahedra. Pons et al. [PSB 07] have adapted contain an average of 106 triangles. Thus, the initially gen- this mesh generation strategy to segmented images and have erated meshes are usually smoothed (using Laplacian based shown that the sizing criteria can be material-dependent filters) and decimated to obtain a mesh with reasonable size leading to high-quality volume meshes of the different ma- and quality. However, concurrently controlling the accuracy terials where 2-junctions are accurately represented by con- of this mesh filtering and preserving its topological proper- nected sets of Delaunay facets. However, in this work, 0- ties (such as the absence of self-intersections) turns out to and 1-junctions are not explicitly handled and they are not be a difficult and time consuming task. In addition, the usual accurately represented in the output mesh. One way to cir- methods do not guarantee that the resulting meshes are con- cumvent this drawback is to extract the 0- and 1-junctions forming at the 0- and 1-junctions where ambiguous topolog- from the input 3D image and to constrain the Delaunay re- ical configurations exist. finement to preserve them. However, it is well recognized that the presence of constrained edges where meeting sur- Less popular, but much simpler are Dual Contouring face patches form small angles, jeopardize the termination methods which operate on the dual grid obtained by shift- of the Delaunay refinement in 3D [She00]. Recent meth- ing the hexahedral image grid by half a cell width in each ods [CDR07] deal with this problem using the idea of pro- direction. These methods have been initially proposed for bi- tecting small angle regions with balls so that during the re- nary images [Gib98,Nie04] and output quadrilateral meshes finement no point is inserted into these protecting balls. corresponding to the intervoxel boundaries. As for the MC methods, the generated meshes need smoothing and deci- Very recently, Mayer et al. [MWK∗08] proposed a sam- mation in order to give acceptable tessellations in terms of pling strategy for segmented 3D images based on a dynamic quality and size. Dual contouring methods do not rely on particle system which explicitly samples all multi-material look-up tables and their extension to multi-material images junctions. The resulting set of points is then meshed using a is straightforward. Delaunay-based algorithm which outputs high-quality sur- face meshes where, in particular, corner vertices are pre- In a recent work, Bertram et al. [BH05] proposed an al- served and junction edges are accurately represented. How- gorithm for dual contouring of segmented medical images. ever, their sampling approach relies on heavy preprocessing The obtained non-manifold mesh is made of all quadrilat- computations and takes between 3 to 12 hours for small med-
Recommended publications
  • An Approach of Using Delaunay Refinement to Mesh Continuous Height Fields
    DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2017 An approach of using Delaunay refinement to mesh continuous height fields NOAH TELL ANTON THUN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION An approach of using Delaunay refinement to mesh continuous height fields NOAH TELL ANTON THUN Degree Programme in Computer Science Date: June 5, 2017 Supervisor: Alexander Kozlov Examiner: Örjan Ekeberg Swedish title: En metod att använda Delaunay-raffinemang för att skapa polygonytor av kontinuerliga höjdfält School of Computer Science and Communication Abstract Delaunay refinement is a mesh triangulation method with the goal of generating well-shaped triangles to obtain a valid Delaunay triangulation. In this thesis, an approach of using this method for meshing continuous height field terrains is presented using Perlin noise as the height field. The Delaunay approach is compared to grid-based meshing to verify that the theoretical time complexity O(n log n) holds and how accurately and deterministically the Delaunay approach can represent the height field. However, even though grid-based mesh generation is faster due to an O(n) time complexity, the focus of the report is to find out if De- launay refinement can be used to generate meshes quick enough for real-time applications. As the available memory for rendering the meshes is limited, a solution for providing a co- hesive mesh surface is presented using a hole filling algorithm since the Delaunay approach ends up leaving gaps in the mesh when a chunk division is used to limit the total mesh count present in the application.
    [Show full text]
  • Computing Three-Dimensional Constrained Delaunay Refinement Using the GPU
    Computing Three-dimensional Constrained Delaunay Refinement Using the GPU Zhenghai Chen Tiow-Seng Tan School of Computing School of Computing National University of Singapore National University of Singapore [email protected] [email protected] ABSTRACT collectively called elements, are split in this order in many rounds We propose the first GPU algorithm for the 3D triangulation refine- until there are no more bad tetrahedra. Each round, the splitting ment problem. For an input of a piecewise linear complex G and is done to many elements in parallel with many GPU threads. The a constant B, it produces, by adding Steiner points, a constrained algorithm first calculates the so-called splitting points that can split Delaunay triangulation conforming to G and containing tetrahedra elements into smaller ones, then decides on a subset of them to mostly of radius-edge ratios smaller than B. Our implementation of be Steiner points for actual insertions into the triangulation T . the algorithm shows that it can be an order of magnitude faster than Note first that a splitting point is calculated by a GPU threadas the best CPU algorithm while using a similar amount of Steiner the midpoint of a subsegment, the circumcenter of the circumcircle points to produce triangulations of comparable quality. of the subface, and the circumcenter of the circumsphere of the tetrahedron. Note second that not all splitting points calculated CCS CONCEPTS can be inserted as Steiner points in a same round as they together can potentially create undesirable short edges in T to cause non- • Theory of computation → Computational geometry; • Com- termination of the algorithm.
    [Show full text]
  • Efficient Mesh Optimization Schemes Based on Optimal Delaunay
    Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984 Contents lists available at ScienceDirect Comput. Methods Appl. Mech. Engrg. journal homepage: www.elsevier.com/locate/cma Efficient mesh optimization schemes based on Optimal Delaunay Triangulations q ⇑ Long Chen a, , Michael Holst b a Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA b Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA article info abstract Article history: In this paper, several mesh optimization schemes based on Optimal Delaunay Triangulations are devel- Received 15 April 2010 oped. High-quality meshes are obtained by minimizing the interpolation error in the weighted L1 norm. Received in revised form 2 November 2010 Our schemes are divided into classes of local and global schemes. For local schemes, several old and new Accepted 10 November 2010 schemes, known as mesh smoothing, are derived from our approach. For global schemes, a graph Lapla- Available online 16 November 2010 cian is used in a modified Newton iteration to speed up the local approach. Our work provides a math- ematical foundation for a number of mesh smoothing schemes often used in practice, and leads to a new Keywords: global mesh optimization scheme. Numerical experiments indicate that our methods can produce well- Mesh smoothing shaped triangulations in a robust and efficient way. Mesh optimization Mesh generation Ó 2010 Elsevier B.V. All rights reserved. Delaunay triangulation Optimal Delaunay Triangulation 1. Introduction widely used harmonic energy in moving mesh methods [8–10], summation of weighted edge lengths [11,12], and the distortion We shall develop fast and efficient mesh optimization schemes energy used in the approach of Centroid Voronoi Tessellation based on Optimal Delaunay Triangulations (ODTs) [1–3].
    [Show full text]
  • A Generic Framework for Delaunay Mesh Generation Clément Jamin, Pierre Alliez, Mariette Yvinec, Jean-Daniel Boissonnat
    CGALmesh: a Generic Framework for Delaunay Mesh Generation Clément Jamin, Pierre Alliez, Mariette Yvinec, Jean-Daniel Boissonnat To cite this version: Clément Jamin, Pierre Alliez, Mariette Yvinec, Jean-Daniel Boissonnat. CGALmesh: a Generic Framework for Delaunay Mesh Generation. ACM Transactions on Mathematical Software, Association for Computing Machinery, 2015, 41 (4), pp.24. 10.1145/2699463. hal-01071759 HAL Id: hal-01071759 https://hal.inria.fr/hal-01071759 Submitted on 6 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 CGALmesh: a Generic Framework for Delaunay Mesh Generation CLEMENT JAMIN, Inria and Universite´ Lyon 1, LIRIS, UMR5205 PIERRE ALLIEZ, Inria MARIETTE YVINEC, Inria JEAN-DANIEL BOISSONNAT, Inria CGALmesh is the mesh generation software package of the Computational Geometry Algorithm Library (CGAL). It generates isotropic simplicial meshes – surface triangular meshes or volume tetrahedral meshes – from input surfaces, 3D domains as well as 3D multi-domains, with or without sharp features. The under- lying meshing algorithm relies on restricted Delaunay triangulations to approximate domains and surfaces, and on Delaunay refinement to ensure both approximation accuracy and mesh quality. CGALmesh provides guarantees on approximation quality as well as on the size and shape of the mesh elements.
    [Show full text]
  • Revisiting Delaunay Refinement Triangular Mesh Generation
    Revisiting Delaunay Refinement Triangular Mesh Generation on Curve-bounded Domains Serge Gosselin and Carl Ollivier-Gooch Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada Email: [email protected] ABSTRACT gorithms eliminate small angles from a triangulation, thus improving its quality. The first practically rele- An extension of Shewchuk’s Delaunay Refinement al- vant algorithms are due to Ruppert [9] and Chew [3]. gorithm to planar domains bounded by curves is pre- These not only produce meshes of provably good qual- sented. A novel method is applied to construct con- ity, but also provide theoretical guarantees regarding strained Delaunay triangulations from such geome- mesh sizing and, under certain input conditions, termi- tries. The quality of these triangulations is then im- nation. Ruppert’s and Chew’s schemes are sufficiently proved by inserting vertices at carefully chosen lo- similar for Shewchuk to analyze them in a common cations. Amendments to Shewchuk’s insertion rules framework [10, 13]. His findings lead to an hybrid al- are necessary to handle cases resulting from the pres- gorithm improving quality guarantees and relaxing in- ence of curves. The algorithm accepts small input an- put restrictions. Shewchuk’s algorithm is presented in gles, although special provisions must be taken in their section 3. neighborhood. In practice, our algorithm generates graded triangular meshes where no angle is less than The aforementioned algorithms have the common 30◦, except near small input angles. Such meshes are shortcoming of only accepting input domains whose suitable for use in numerical simulations. boundaries are piecewise linear. This restriction can be impractical in applications where geometric infor- mation comes, for instance, in the form of parametric 1 INTRODUCTION curves.
    [Show full text]
  • Delaunay Refinement Algorithms for Numerical Methods
    Delaunay Refinement Algorithms for Numerical Methods Alexander Rand April 30, 2009 Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee: Noel Walkington, Chair Shlomo Ta’asan Giovanni Leoni Gary Miller Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Copyright c 2009 Alexander Rand Keywords: mesh generation, Delaunay refinement, finite element interpolation Abstract Ruppert’s algorithm is an elegant solution to the mesh generation problem for non-acute domains in two dimensions. This thesis develops a three-dimensional Delaunay refinement algorithm which produces a conforming Delaunay tetrahedral- ization, ensures a bound on the radius-edge ratio of nearby all tetrahedra, generates tetrahedra of a size related to the local feature size and the size of nearby small in- put angles, and is simple enough to admit an implementation. To do this, Delaunay refinement algorithms for estimating local feature size are constructed. These es- timates are then used to determine an appropriately sized protection region around acutely adjacent features of the input. Finally, a simple variant of Ruppert’s algo- rithm can be applied to produce a quality mesh. Additionally, some finite element interpolation results pertaining to Delaunay refinement algorithms in two dimensions are considered. iv Acknowledgments My work has been supported by many people of whom a number will surely be omitted. First and foremost, I acknowledge the years of support from my family: my parents, my grandparents, and my sister. They have truly shaped who I am today. Many of my undergraduate professors encouraged my decision to pursue further studies in mathematics.
    [Show full text]
  • Lecture Notes on Delaunay Mesh Generation
    Lecture Notes on Delaunay Mesh Generation Jonathan Richard Shewchuk February 5, 2012 Department of Electrical Engineering and Computer Sciences University of California at Berkeley Berkeley, CA 94720 Copyright 1997, 2012 Jonathan Richard Shewchuk Supported in part by the National Science Foundation under Awards CMS-9318163, ACI-9875170, CMS-9980063, CCR-0204377, CCF-0430065, CCF-0635381, and IIS-0915462, in part by the University of California Lab Fees Research Program, in part bythe Advanced Research Projects Agency and Rome Laboratory, Air Force Materiel Command, USAF under agreement number F30602- 96-1-0287, in part by the Natural Sciences and Engineering Research Council of Canada under a 1967 Science and Engineering Scholarship, in part by gifts from the Okawa Foundation and the Intel Corporation, and in part by an Alfred P. Sloan Research Fellowship. Keywords: mesh generation, Delaunay refinement, Delaunay triangulation, computational geometry Contents 1Introduction 1 1.1 Meshes and the Goals of Mesh Generation . ............ 3 1.1.1 Domain Conformity . .... 4 1.1.2 ElementQuality ................................ .... 5 1.2 A Brief History of Mesh Generation . ........... 7 1.3 Simplices, Complexes, and Polyhedra . ............. 12 1.4 Metric Space Topology . ........ 15 1.5 HowtoMeasureanElement ........................... ....... 17 1.6 Maps and Homeomorphisms . ....... 21 1.7 Manifolds....................................... ..... 22 2Two-DimensionalDelaunayTriangulations 25 2.1 Triangulations of a Planar Point Set . ............. 26 2.2 The Delaunay Triangulation . .......... 26 2.3 The Parabolic Lifting Map . ......... 28 2.4 TheDelaunayLemma................................ ...... 30 2.5 The Flip Algorithm . ....... 32 2.6 The Optimality of the Delaunay Triangulation . ................ 34 2.7 The Uniqueness of the Delaunay Triangulation . ............... 35 2.8 Constrained Delaunay Triangulations in the Plane .
    [Show full text]
  • Decoupling Method for Parallel Delaunay Two-Dimensional Mesh Generation
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2007 Decoupling method for parallel Delaunay two-dimensional mesh generation Leonidas Linardakis College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Computer Sciences Commons Recommended Citation Linardakis, Leonidas, "Decoupling method for parallel Delaunay two-dimensional mesh generation" (2007). Dissertations, Theses, and Masters Projects. Paper 1539623520. https://dx.doi.org/doi:10.21220/s2-mqsk-5d79 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Decoupling Method for Parallel Delaunay 2D Mesh Generation Leonidas Linardakis Athens Greece M.Sc. C.S. College of William & M ary M.Sc. Mathematics University of Ioannina A Dissertation presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Doctor of Philosophy Department of Computer Science The College of William and Mary August 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Copyright 2007 Leonidas Linardakis Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPROVAL PAGE This Dissertation
    [Show full text]
  • Template-Based Remeshing for Image Decomposition
    Template-based Remeshing for Image Decomposition Mario A. S. Lizier Marcelo F. Siqueira Joel Daniels II Claudio T. Silva Luis G. Nonato ICMC-USP DIMAp-UFRN SCI-Utah SCI-Utah ICMC-USP Sao˜ Carlos, Brazil Natal, Brazil Salt Lake City, USA Salt Lake City, USA Sao˜ Carlos, Brazil [email protected] [email protected] [email protected] [email protected] [email protected] Abstract—This paper presents a novel quad-based remesh- from a description of the domain is intrinsically harder than ing scheme, which can be regarded as a replacement for generating triangle meshes. Yet, quadrilateral meshes are the triangle-based improvement step of an existing image- more appropriate than triangle meshes for some numerical based mesh generation technique called Imesh. This remesh- ing scheme makes it possible for the algorithm to gener- methods and simulations [7]. ate good quality quadrilateral meshes directly from imaging Contributions. We describe an extension of Imesh which data. The extended algorithm combines two ingredients: (1) generates quadrilateral meshes directly from imaging data. a template-based triangulation-to-quadrangulation conversion strategy and (2) an optimization-based smoothing procedure. Our extension combines two ingredients: a template-based Examples of meshes generated by the extended algorithm, and triangulation-to-quadrangulation conversion strategy, and an an evaluation of the quality of those meshes are presented as optimization-based smoothing procedure. The former aims well. at generating quadrilateral meshes that respect the image Keywords-Image-based mesh generation; template-based object boundaries (as defined by the mesh partition step of mesh; remeshing; mesh smoothing; mesh segmentation; Bezier´ Imesh).
    [Show full text]
  • Tetgen a Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator
    TetGen A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator Version 1.4 User’s Manual January 18, 2006 Hang Si [email protected] http://tetgen.berlios.de c 2002, 2004, 2005, 2006 Abstract TetGen generates tetrahedral meshes and Delaunay tetrahedral- izations. The tetrahedral meshes are suitable for finite element and finite volume methods. The algorithms implemented are the state of the art. This documents briefly explains the problems solved by TetGen and is a detailed user’s guide. Readers will learn how to create tetra- hedral meshes using input files from the command line. Furthermore, the programming interface for calling TetGen from other programs is explained. keywords: tetrahedral mesh, Delaunay tetrahedralization, con- strained Delaunay tetrahedralization, mesh quality, mesh generation 2 Contents 1 Introduction 5 1.1DelaunayTriangulationandTheConvexHull......... 5 1.2ConstrainedDelaunayTetrahedralization............ 8 1.2.1 Piecewise Linear Complex . ............. 12 1.3QualityTetrahedralMesh.................... 13 1.3.1 TheRadius-EdgeRatioQualityMeasure........ 14 2 Getting Started 16 2.1Compilation............................ 16 2.1.1 Unix/Linux........................ 16 2.1.2 Windows 9x/NT/2000/XP . ............. 17 2.2Testing............................... 17 2.3Visualization........................... 20 2.3.1 TetView.......................... 20 2.3.2 OtherMeshViewers................... 21 3UsingTetGen 22 3.1CommandLineSyntax...................... 22 3.2CommandLineSwitches..................... 22
    [Show full text]
  • Mesh Generation
    Mesh Generation Pierre Alliez Inria Sophia Antipolis - Mediterranee 2D Delaunay Refinement 2D Triangle Mesh Generation Input: . PSLG C (planar straight line graph) . Domain bounded by edges of C Output: . triangle mesh T of such that . vertices of C are vertices of T . edges of C are union of edges in T . triangles of T inside have controlled size and quality Key Idea . Break bad elements by inserting circumcenters (Voronoi vertices) [Chew, Ruppert, Shewchuk,...] “bad” in terms of size or shape Basic Notions C: PSLG describing the constraints T: Triangulation to be refined Respect of the PSLG . Edges a C are split until constrained subedges are edges of T . Constrained subedges are required to be Gabriel edges . An edge of a triangulation is a Gabriel edge if its smallest circumcirle encloses no vertex of T . An edge e is encroached by point p if the smallest circumcirle of e encloses p. Refinement Algorithm C: PSLG bounding the domain to be meshed. T: Delaunay triangulation of the current set of vertices T|: T Constrained subedges: subedges of edges of C Initialise with T = Delaunay triangulation of vertices of C Refine until no rule apply . Rule 1 if there is an encroached constrained subedge e insert c = midpoint(e) in T (refine-edge) . Rule 2 if there is a bad facet f in T| c = circumcenter(f) if c encroaches a constrained subedge e refine-edge(e). else insert(c) in T 2D Delaunay Refinement PSLG Background Constrained Delaunay Triangulation Delaunay Edge An edge is said to be a Delaunay edge, if it is inscribed in an empty circle
    [Show full text]
  • Delaunay Meshing of Isosurfaces
    Delaunay Meshing of Isosurfaces Tamal K. Dey Joshua A. Levine Department of Computer Science and Engineering The Ohio State University Columbus, OH, 43201, USA {tamaldey|levinej}@cse.ohio-state.edu Abstract on provable algorithms for meshing surfaces [3, 4, 7, 19] some [4, 7] employ a Delaunay refinement strategy that fits We present an isosurface meshing algorithm, DELISO, our requirement. based on the Delaunay refinement paradigm. This The Delaunay refinement paradigm works on a simple paradigm has been successfully applied to mesh a variety principle: build the Delaunay triangulation over a set of of domains with guarantees for topology, geometry, mesh points in the domain and then repeatedly insert additional gradedness, and triangle shape. A restricted Delaunay tri- domain points until certain criteria are satisfied. The main angulation, dual of the intersection between the surface and challenge is a proof of termination. For the case of sur- the three dimensional Voronoi diagram, is often the main faces, one guides the refinement using a subcomplex of ingredient in Delaunay refinement. Computing and storing the three dimensional Delaunay triangulation called the re- three dimensional Voronoi/Delaunay diagrams become bot- stricted Delaunay triangulation. To provide a topological tlenecks for Delaunay refinement techniques since isosur- guarantee between the output mesh and the input surface, a face computations generally have large input datasets and theorem by Edelsbrunner and Shah [12] regarding the topo- output meshes. A highlight of our algorithm is that we find logical ball property is applied. This theorem says that if a simple way to recover the restricted Delaunay triangula- every Voronoi face of dimension k which intersects the sur- tion of the surface without computing the full 3D structure.
    [Show full text]