Revisiting Delaunay Refinement Triangular Mesh Generation on Curve-bounded Domains Serge Gosselin and Carl Ollivier-Gooch Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada Email:
[email protected] ABSTRACT gorithms eliminate small angles from a triangulation, thus improving its quality. The first practically rele- An extension of Shewchuk’s Delaunay Refinement al- vant algorithms are due to Ruppert [9] and Chew [3]. gorithm to planar domains bounded by curves is pre- These not only produce meshes of provably good qual- sented. A novel method is applied to construct con- ity, but also provide theoretical guarantees regarding strained Delaunay triangulations from such geome- mesh sizing and, under certain input conditions, termi- tries. The quality of these triangulations is then im- nation. Ruppert’s and Chew’s schemes are sufficiently proved by inserting vertices at carefully chosen lo- similar for Shewchuk to analyze them in a common cations. Amendments to Shewchuk’s insertion rules framework [10, 13]. His findings lead to an hybrid al- are necessary to handle cases resulting from the pres- gorithm improving quality guarantees and relaxing in- ence of curves. The algorithm accepts small input an- put restrictions. Shewchuk’s algorithm is presented in gles, although special provisions must be taken in their section 3. neighborhood. In practice, our algorithm generates graded triangular meshes where no angle is less than The aforementioned algorithms have the common 30◦, except near small input angles. Such meshes are shortcoming of only accepting input domains whose suitable for use in numerical simulations. boundaries are piecewise linear. This restriction can be impractical in applications where geometric infor- mation comes, for instance, in the form of parametric 1 INTRODUCTION curves.