Science Media Centre Fact Sheet Synthetic Biology

Total Page:16

File Type:pdf, Size:1020Kb

Science Media Centre Fact Sheet Synthetic Biology Science Media Centre Fact Sheet Synthetic Biology What is synthetic biology? The creation or modification of living biological systems through artificial means, drawing on natural biological principles and engineering techniques. This involves creating and manipulating biological components at the cellular and genetic level, with the ultimate aim of creating simple artificial organisms ('artificial life'). Is it a new area of research? The term "synthetic biology" first appeared in the literature in 1978, to describe bacteria that had been genetically engineered using recombinant DNA technology. In this respect, synthetic biology was largely synonymous with genetic engineering, though this has since changed. In 2000, the term "synthetic biology" was first used to describe the synthesis of unnatural organic molecules that function in living systems. More broadly in this sense, the term has been used with reference to efforts to "redesign life". (Ref: Benner, S. et al. "Synthetic Biology", Nature Reviews Genetics, July 2005) What are the techniques? The main techniques involved are genetic sequencing and synthesis of simple bacterial genomes - one of the primary aims is to construct a synthetic genome with the minimum number of genes necessary to support life - and then transplanting this into a bacterial cell, thereby creating a new type of organism. Another key aspect of synthetic biology is the creation of biological parts, devices and systems which do not occur in the natural world, as well as redesigning existing systems. For example, biological parts can be used to produce biologically-based devices, such as biosensors for urinary tract infections. Scientists at the J. Craig Venter Institute in the US (led by Craig Venter) are attempting to do this; so far they have successfully created an artificial genome but not yet (prior to the current paper) succeeded in integrating it into a bacterial cell. What are the applications? Synthesis of pharmaceuticals – synthetic organisms can be genetically 'programmed' to synthesise pharmaceutical compounds - e.g. the synthesis of the anti-malarial compound artemisinin by introducing novel metabolic enzymes into yeast (Ro et al., Nature 440; 2006) Living therapies – synthetic organisms can also be designed to carry out therapeutic functions - e.g. the use of modified bacteria to specifically target tumour cells in cancer therapy (Zhao et al. PNAS 2005). Although this example involves creating transgenic bacteria without using engineering principles, development of such therapies will be expanded and speeded up using synthetic biology approaches. Engineering human stem cells to have controlled outputs and characteristics – applications might include tissue regeneration or manipulation of the immune system to treat specific infections and diseases. Microbial biosensors – The fields of biomaterials and microbial biosensors are well established, but are moving rapidly into adopting synthetic biology approaches - e.g. University of Edinburgh’s IGEM 2006 project entry, which aimed to create an arsenic biosensor that could work in parts of the world most affected by poor water quality (e.g. Bangladesh). Also Imperial College London's entry in 2007 on biosensors for bacterial infections. Biological logic gates - the biological equivalents to a key component of computers and microprocessors - the aim is to be able to produce biological microprocessors which could control intracellular functions. New energy sources – e.g. biofuels such as sugar cane and maize are inefficient as much of the plant material is cellulose, which cannot be broken down easily. Synthetic micro-organisms could be developed to break down the cellulose. New materials - synthetic cells could be programmed to produce artificial materials with wide applications - e.g. the lab of US scientist Chris Voigt is working on engineering elements of Salmonella bacteria to secrete spider silk proteins, for possible use in artificial biomaterials. Non-biological devices that incorporate biological 'components' Who are the leading scientists/institutions in the UK? The following UK institutions are centres of synthetic biology research: Imperial College London (the EPSRC UK national Centre for Synthetic Biology and Innovation) University of Cambridge Newcastle University University of Edinburgh What are the safety and ethical issues? The theoretical ability to design new organisms raises philosophical questions as well as safety, security and ethics issues, and will no doubt lead to extensive debate. These issues include: Is it right to synthesise life? Bioterrorism – developing new viruses/ recreating extinct viruses (e.g. 1918 influenza virus). However, some terrorism experts believe this method of attack is unlikely. Biohackers - As genetic information multiplies and the cost of hardware falls, could we see a new generation of "biohackers" akin to computer hackers? This is unlikely as regulation exists making it difficult to obtain key DNA sequences and very secure biofacilities are required for such research. Accidental leakage of new pathogens into the environment – However, scientists should be able to build in "self-destruction" mechanisms that prevent the new organism from replicating out of control. How does synthetic biology relate to systems biology? Systems biology refers broadly to the study of biological interactions and processes at the integrated 'systems' level and how different parts of biological systems interact. Synthetic biology draws on systems biology in seeking to understand and create synthetic biological devices and systems. Synthetic biology draws heavily on engineering principles and has a wide range of applications. The end point of systems biology is understanding biological systems, while the end point of synthetic biology is sometimes referred to as the 'industrialisation' of biology. Prepared with assistance from the Wellcome Trust Sources / further information Synthetic Biology Project, from the Woodrow Wilson Centre for Scholars http://www.synbioproject.org/about/ http://syntheticbiology.org/ info from the International Genetically Engineered Machines Competition: http://openwetware.org/images/f/f9/IGEM_Student_Book.pdf Royal Academy of Engineering report on synthetic biology: http://www.raeng.org.uk/news/publications/list/reports/Synthetic_biology.pdf This is a fact sheet issued by the Science Media Centre to provide background information on science topics relevant to breaking news stories. This is not intended as the 'last word' on a subject, but rather a summary of the basics and a pointer towards sources of more detailed information. These can be read as supplements to our roundups and/or briefings. For more information about our fact sheets, please contact Robin Bisson at the Science Media Centre on 020 7611 8345 or email [email protected] .
Recommended publications
  • Intelligent Design, Abiogenesis, and Learning from History: Dennis R
    Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question.
    [Show full text]
  • NASA Resources for Biology Classes
    NASA Resources for Biology classes For NC Bio. Obj. 1.2.3 - Cell adaptations help cells survive in particular environments Lesson Plan: Is it Alive? This lesson is designed to be a review of the characteristics of living things. http://marsed.asu.edu/sites/default/files/stem_resources/Is_it_Alive_HS_Lesson_2_16.pdf Lesson Plan: Building Blocks of Life Experiment with Yeast to simulate carbonaceous meteorites. https://er.jsc.nasa.gov/seh/Exploring_Meteorite_Mysteries.pdf#page=138 Video: ● Subsurface Astrobiology: Cave Habitats on Earth, Mars and Beyond: In our quest to explore other planets, we only have our own planet as an analogue to the environments we may find life. By exploring extreme environments on Earth, we can model conditions that may be present on other celestial bodies and select locations to explore for signatures of life. https://images.nasa.gov/details-ARC-20160809-AAV2863-SummerSeries-15-PenelopeBoston- Youtube.html ● Real World: Heart Rate and Blood Pressure: Learn about the physiological effects reduced gravity environments have on the human body. Use multiplication to calculate cardiac output and find out what effect space travel has on sensory-motor skills, stroke volume and heart rates of the astronauts. https://nasaeclips.arc.nasa.gov/video/realworld/real-world-heart-rate-and-blood- pressure ● Launchpad: Astrobiology: Are we alone in the universe? Where do we come from? Join NASA in the search for answers to these and many more questions about life in our solar system. Learn how astrobiologists use what we know about Earth to investigate Titan, Europa and other far-off worlds. https://nasaeclips.arc.nasa.gov/video/launchpad/launchpad-astrobiology Article: ● Synthetic Biology - ‘Worker Microbes’ for Deep Space Missions https://www.nasa.gov/content/synthetic-biology For NC Bio.
    [Show full text]
  • The Principles for the Oversight of Synthetic Biology the Principles for the Oversight of Synthetic Biology
    The Principles for the Oversight of Synthetic Biology The Principles for the Oversight of Synthetic Biology Drafted through a collaborative process among civil society groups. For more information or copies of this declaration, contact: The Principles for the Eric Hoffman Food and technology policy campaigner Friends of the Earth U.S. Oversight of Synthetic Biology 1100 15th St. NW, 11th Floor Washington, D.C. 20005 202.222.0747 [email protected] www.foe.org Jaydee Hanson Policy director International Center for Technology Assessment 660 Pennsylvania Ave., SE, Suite 302 Washington, D.C. 20003 202.547.9359 [email protected] www.icta.org Jim Thomas Research program manager ETC Group 5961 Rue Jeanne Marce Montreal, Quebec Canada +1.514.273.9994 [email protected] The views expressed in this declaration represent those of the signers and do not necessarily represent those of individual contributors to Friends of the Earth U.S., International Center for Technology Assessment, ETC Group or the funding organizations. Funding thanks to CS Fund and Appleton Foundation. The Principles for the Oversight of Synthetic Biology The undersigned, a broad coalition of civil society groups, social movements, local and indigenous communities, public interest, environmental, scientif ic, human rights, religious and labor organizations concerned about various aspects of synthetic biology’s human health, environmental, social, economic, ethical and other impacts, offer the following declaration, The Principles for the Oversight of Synthetic Biology. Executive Summary Synthetic biology, an extreme form of genetic engi- and should include consideration of synthetic biology’s neering, is developing rapidly with little oversight or wide-ranging effects, including ethical, social and eco- regulation despite carrying vast uncertainty.
    [Show full text]
  • Genetics, Epigenetics and Disease a Literature Review By: Anthony M
    Genetics, Epigenetics and Disease A Literature Review By: Anthony M. Pasek Faculty Advisor: Rodger Tepe, PhD A senior research project submitted in partial requirement for the degree Doctor of Chiropractic August 11, 2011 Abstract Objective – This article provides an overview of the scientific literature available on the subject of genetic mechanisms of disease etiology as compared to epigenetic mechanisms of disease etiology. The effects of environmental influences on genetic expression and transgenerational inheritance will also be examined. Methods – Searches of the keywords listed below in the databases PubMed and EBSCO Host yielded referenced articles from indexed journals, literature reviews, pilot studies, longitudinal studies, and conference meeting reports. Conclusion – Although current research trends indicate a relationship between the static genome and the dynamic environment and offer epigenetics as a mechanism, further research is necessary. Epigenetic processes have been implicated in many diseases including diabetes mellitus, obesity, cardiovascular disease, metabolic disease, cancer, autism, Alzheimer’s disease, depression, and addiction. Keywords – genetics, central dogma of biology, genotype, phenotype, genomic imprinting, epigenetics, histone modification, DNA methylation, agouti mice, epigenetic drift, Överkalix, Avon Longitudinal Study of Parents and Children (ALSPAC). 2 Introduction Genetics has long been the central field of biology and it’s central dogma states that DNA leads to RNA, which leads to protein and ultimately determines human health or sickness1. The Human Genome Project marked a great triumph for humanity and researchers expected to solve the riddle of many complex diseases with the knowledge gleamed from this project. However, many more questions were raised than answered. Several rare genetic disorders including hemophilia and cystic fibrosis were explained by alterations in the genetic code but true genetic diseases only affect about one percent of the human population2.
    [Show full text]
  • Botany Genetics Mendelian Inheritance
    References 1. Elrod S., Stansfield W., 2002, Genetics, 4th Edition, Tata McGraw-Hill 2. Strickberger M. W., 1985, Genetics, 3rd Edition, Macmillan Publishing Company 3. Griffiths A. J., Wessler S.R., Lewontin R.C., Carrol S. B., 2008, Introduction to Genetic Analysis, 9th Edition, W. H. Freeman and Company 4. Klug W.S., Cumming M.R., Spencer C. A., Palladino M. A., 2009, Concepts of Genetics, 9th Edition, Benjamin Cummings Publication 5. Tamarin R. H., 2002, Principles of Genetics, 7th Edition, Tata McGraw-Hill 6. Hartwell L.H., Hood L., Goldberg M.L., Reynolds A.E., Silver L. M., Veres R. C., 2004, Genetics, 2nd Edition, McGraw-Hill 7. Pierce B.A., Genetics: A Conceptual Approach, 4th edition, W.H. Freeman 8. T.H. Noel Ellis, Julie M.I. Hofer, Gail M. Timmerman-Vaughan, Clarice J. Coyne and Roger P. Hellens, 2011, Mendel, 150 years on, Trends in Plant Science, Vol. 16, 590-596 Genetics Botany Mendelian Inheritance Learn More / Supporting Materials / Source of Further Reading 2.1 Glossary Starting Term Defination Related Term Character <Character> < Genotype > < Genotype of an organism is the gene combination it possesses. Genotype of phenotypically yellow seeded F1 may be YY or Yy.> <Character> < Phenotype > < Phenotype refers to the observable attributes of an organism. Plants with either of the two genotypes Yy or Yy are phenotypically yellow seeded.> <Character> < Homozygote > < A plant with a pair of identical alleles is called as Homozygote (Y/Y or y/y).> <Character> < Heterozygote > < a plant in which the <term2> allele of the pair differ is called as heterozygote (Y/y).> <Character> < locus > < A locus (plural: loci) is the location of a gene on a chromosome.
    [Show full text]
  • Synthetic Biology and the CBD Five Key Decisions for COP 13 & COP-MOP 8
    Synthetic Biology and the CBD Five key decisions for COP 13 & COP-MOP 8 Synthetic biology threatens to undermine all What Is Synthetic Biology? three objectives of the Convention if Parties fail to act on the following 5 key issues: Synthetic biology describes the next generation of biotechnologies that attempt to engineer, re- 1. Operational Definition. It’s time for the design, re-edit and synthesize biological systems, CBD to adopt an operational definition of including at the genetic level. synthetic biology. Synthetic biology goes far beyond the first 2. Precaution: Gene drives. Gene drives pose generation of ‘transgenic’ engineered organisms. wide ecological and societal threats and should Predicted to be almost a 40 billion dollar (US) be placed under a moratorium. market by 2020, industrial activity in synthetic 3. Biopiracy: Digital Sequences. Synthetic biology is rapidly exploding as new genome biology allows for digital theft and use of DNA editing tools and cheaper synthesis of DNA sequences – this must be addressed by both the make it easier and faster to genetically re-design CBD and the Nagoya Protocol. or alter biological organisms. Synthetic biology-derived products already on 4. Socio-economic Impacts: Sustainable Use. the market include biosynthesized versions of The CBD needs a process to address impacts flavors, fragrances, fuels, pharmaceuticals, of synthetic biology on sustainable use of textiles, industrial chemicals, cosmetic and food biodiversity. ingredients. A next generation of synthetically 5. Cartagena Protocol: Risk Assessment. engineered (including ‘genome edited’) crops, Parties to the COP-MOP 8 need to clearly insects and animals are also nearing move forward with elaborating risk assessment commercialization.
    [Show full text]
  • Future Directions of Synthetic Biology for Energy & Power
    Future Directions of Synthetic Biology for Energy & Power March 6–7, 2018 Michael C. Jewett, Northwestern University Workshop funded by the Basic Research Yang Shao-Horn, Massachusetts Institute of Technology Office, Office of the Under Secretary of Defense Christopher A. Voigt, Massachusetts Institute of Technology for Research & Engineering. This report does not necessarily reflect the policies or positions Prepared by: Kate Klemic, VT-ARC of the US Department of Defense Esha Mathew, AAAS S&T Policy Fellow, OUSD(R&E) Preface OVER THE PAST CENTURY, SCIENCE AND TECHNOLOGY HAS BROUGHT RE- MARKABLE NEW CAPABILITIES TO ALL SECTORS OF THE ECONOMY; from telecommunications, energy, and electronics to medicine, transpor- tation and defense. Technologies that were fantasy decades ago, such as the internet and mobile devices, now inform the way we live, work, and interact with our environment. Key to this technologi- cal progress is the capacity of the global basic research community to create new knowledge and to develop new insights in science, technology, and engineering. Understanding the trajectories of this fundamental research, within the context of global challenges, em- powers stakeholders to identify and seize potential opportunities. The Future Directions Workshop series, sponsored by the Basic Re- search Directorate of the Office of the Under Secretary of Defense for Research and Engineering, seeks to examine emerging research and engineering areas that are most likely to transform future tech- nology capabilities. These workshops gather distinguished academic researchers from around the globe to engage in an interactive dia- logue about the promises and challenges of emerging basic research areas and how they could impact future capabilities.
    [Show full text]
  • Molecular Biology and Applied Genetics
    MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included.
    [Show full text]
  • 1 Genetics, Genomics and Cell Biology, Spring 2013 Instructors
    Genetics, Genomics and Cell Biology, Spring 2013 Monday, Wednesday, Friday 9-10 AM, 2050 VLSB Instructors Michael Levine, Ph.D. ([email protected]; office hours Friday 3-5 PM, 243 Dwinelle) Craig Miller, Ph.D. ([email protected]; office hours: Friday 3-5 PM, 243 Dwinelle) Rebecca Heald, Ph.D. ([email protected]; office hours: TBA) GSIs Jeremy Amon ([email protected]; office hours TBA) Peter Combs ([email protected]; office hours TBA) Anna Maria Desai ([email protected]; office hours TBA) Anna Park ([email protected]; office hours TBA) Jennifer Parks ([email protected]; office hours TBA) Course focus This course will introduce students to key concepts in genetic analysis, eukaryotic cell biology, and state-of-the-art approaches in genomics. Lectures will highlight basic knowledge of cellular processes that form the basis for human diseases. Prerequisite courses will have introduced students to the concepts of cells, the central dogma of molecular biology, and gene regulation. Emphasis in this course will be on eukaryotic cell processes, including cellular organization, dynamics and signaling. Grading Midterm 1 (Feb 21, 7:00-9:00 PM) 100 points Midterm 2 (Mar 14, 7:00-9:00 PM) 100 points Final exam (May 13, 7-10 PM) 200 points Quizzes (3 total, 25 points each) 75 points Mini Quizzes (10 total, 2.5 points each) 25 points Total 500 points Quizzes are given during discussion sections with weekly mini quizzes and one 25 point quiz during each third of the course. Your lowest mini quiz score will be dropped and your mini quiz total score will be based upon the remaining 9 mini quizzes.
    [Show full text]
  • Economic Botany, Genetics and Plant Breeding
    BSCBO- 302 B.Sc. III YEAR Economic Botany, Genetics And Plant Breeding DEPARTMENT OF BOTANY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Economic Botany, Genetics and Plant Breeding BSCBO-302 Expert Committee Prof. J. C. Ghildiyal Prof. G.S. Rajwar Retired Principal Principal Government PG College Government PG College Karnprayag Augustmuni Prof. Lalit Tewari Dr. Hemant Kandpal Department of Botany School of Health Science DSB Campus, Uttarakhand Open University Kumaun University, Nainital Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Board of Studies Prof. Y. S. Rawat Prof. C.M. Sharma Department of Botany Department of Botany DSB Campus, Kumoun University HNB Garhwal Central University, Nainital Srinagar Prof. R.C. Dubey Prof. P.D.Pant Head, Department of Botany Director I/C, School of Sciences Gurukul Kangri University Uttarakhand Open University Haridwar Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Programme Coordinator Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University Haldwani, Nainital Unit Written By: Unit No. 1. Prof. I.S.Bisht 1, 2, 3, 5, 6, 7 National Bureau of Plant Genetic Resources (ICAR) & 8 Regional Station, Bhowali (Nainital) Uttarakhand UTTARAKHAND OPEN UNIVERSITY Page 1 Economic Botany, Genetics and Plant Breeding BSCBO-302 2-Dr. Pooja Juyal 04 Department of Botany Uttarakhand Open University Haldwani 3. Dr. Atal Bihari Bajpai 9 & 11 Department of Botany, DBS PG College Dehradun-248001 4-Dr. Urmila Rana 10 & 12 Department of Botany, Government College, Chinayalisaur, Uttarakashi Course Editor Prof. Y.S. Rawat Department of Botany DSB Campus, Kumaun University Nainital Title : Economic Botany, Genetics and Plant Breeding ISBN No.
    [Show full text]
  • Basic Genetic Concepts & Terms
    Basic Genetic Concepts & Terms 1 Genetics: what is it? t• Wha is genetics? – “Genetics is the study of heredity, the process in which a parent passes certain genes onto their children.” (http://www.nlm.nih.gov/medlineplus/ency/article/002048. htm) t• Wha does that mean? – Children inherit their biological parents’ genes that express specific traits, such as some physical characteristics, natural talents, and genetic disorders. 2 Word Match Activity Match the genetic terms to their corresponding parts of the illustration. • base pair • cell • chromosome • DNA (Deoxyribonucleic Acid) • double helix* • genes • nucleus Illustration Source: Talking Glossary of Genetic Terms http://www.genome.gov/ glossary/ 3 Word Match Activity • base pair • cell • chromosome • DNA (Deoxyribonucleic Acid) • double helix* • genes • nucleus Illustration Source: Talking Glossary of Genetic Terms http://www.genome.gov/ glossary/ 4 Genetic Concepts • H describes how some traits are passed from parents to their children. • The traits are expressed by g , which are small sections of DNA that are coded for specific traits. • Genes are found on ch . • Humans have two sets of (hint: a number) chromosomes—one set from each parent. 5 Genetic Concepts • Heredity describes how some traits are passed from parents to their children. • The traits are expressed by genes, which are small sections of DNA that are coded for specific traits. • Genes are found on chromosomes. • Humans have two sets of 23 chromosomes— one set from each parent. 6 Genetic Terms Use library resources to define the following words and write their definitions using your own words. – allele: – genes: – dominant : – recessive: – homozygous: – heterozygous: – genotype: – phenotype: – Mendelian Inheritance: 7 Mendelian Inheritance • The inherited traits are determined by genes that are passed from parents to children.
    [Show full text]
  • Synthetic Biology an Overview of the Debates
    SYNTHETIC BIOLOGY PROJECT / SYNBIO 3 SYNTHETIC BIOLOGY Ethical Issuesin SYNBIO 3/JUNE2009 An overview ofthedebates Contents Preface 3 Executive Summary 4 Who is doing what, where are they doing it and how is this current work funded? 6 How distinct is synthetic biology from other emerging areas of scientific and technological innovation? 9 Ethics: What harms and benefits are associated with synthetic biology? 12 The pro-actionary and pre-cautionary frameworks 18 N OVERVIEW OF THE DEBATES N OVERVIEW OF A Competing—and potentially complementary—views about non-physical harms (harms to well-being) 23 The most contested harms to well-being 25 Conclusion: Moving the debate forward 26 References 29 ETHICAL ISSUES IN SYNTHETIC BIOLOGY: ETHICAL ISSUES IN SYNTHETIC BIOLOGY: ii The opinions expressed in this report are those of the authors and do not necessarily reflect views Sloan Foundation. Wilson International Center for Scholars or the Alfred P. of the Woodrow Ethical Issues in SYNTHETIC BIOLOGY An overview of the debates Erik Parens, Josephine Johnston, and Jacob Moses The Hastings Center, Garrison, New York SYNBIO 3 / JUNE 2009 2 ETHICAL ISSUES IN SYNTHETIC BIOLOGY: AN OVERVIEW OF THE DEBATES Preface Synthetic biology will allow scientists and where such topics are divided into two broad engineers to create biological systems categories: concerns about physical and non- that do not occur naturally as well as to physical harms. While physical harms often re-engineer existing biological systems to trigger debates about how to proceed among perform novel and beneficial tasks. This researchers, policymakers, and the public, emerging field presents a number of non-physical harms present more difficult opportunities to address ethical issues early conundrums.
    [Show full text]