X-Ray Discovery of a Dwarf-Galaxy Galaxy Collision Abstract
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
April Constellations of the Month
April Constellations of the Month Leo Small Scope Objects: Name R.A. Decl. Details M65! A large, bright Sa/Sb spiral galaxy. 7.8 x 1.6 arc minutes, magnitude 10.2. Very 11hr 18.9m +13° 05’ (NGC 3623) high surface brighness showing good detail in medium sized ‘scopes. M66! Another bright Sb galaxy, only 21 arc minutes from M65. Slightly brighter at mag. 11hr 20.2m +12° 59’ (NGC 3627) 9.7, measuring 8.0 x 2.5 arc minutes. M95 An easy SBb barred spiral, 4 x 3 arc minutes in size. Magnitude 10.5, with 10hr 44.0m +11° 42’ a bright central core. The bar and outer ring of material will require larger (NGC 3351) aperature and dark skies. M96 Another bright Sb spiral, about 42 arc minutes east of M95, but larger and 10hr 46.8m +11° 49’ (NGC 3368) brighter. 6 x 4 arc minutes, magnitude 10.1. Located about 48 arc minutes NNE of M96. This small elliptical galaxy measures M105 only 2 x 2.1 arc minutes, but at mag. 10.3 has very high surface brightness. 10hr 47.8m +12° 35’ (NGC 3379) Look for NGC 3384! (110NGC) and NGC 3389 (mag 11.0 and 12.2) which form a small triangle with M105. NGC 3384! 10hr 48.3m +12° 38’ See comment for M105. The brightest galaxy in Leo, this Sb/Sc spiral galaxy shines at mag. 9.5. Look for NGC 2903!! 09hr 32.2m +21° 30’ a hazy patch 11 x 4.7 arc minutes in size 1.5° south of l Leonis. -
The Skyscraper 2009 04.Indd
A Better Galaxy Guide: Early Spring M67: One of the most ancient open clusters known and Craig Cortis is a great novelty in this regard. Located 1.7° due W of mag NGC 2419: 3.25° SE of mag 6.2 66 Aurigae. Hard to find 4.3 Alpha Cancri. and see; at E end of short row of two mag 7.5 stars. Highly NGC 2775: Located 3.7° ENE of mag 3.1 Zeta Hydrae. significant and worth the effort —may be approximately (Look for “Head of Hydra” first.) 300,000 light years distant and qualify as an extragalactic NGC 2903: Easily found at 1.5° due S of mag 4.3 Lambda cluster. Named the Intergalactic Wanderer. Leonis. NGC 2683: Marks NW “crook” of coathanger-type triangle M95: One of three bright galaxies forming a compact with easy double star mag 4.2 Iota Cancri (which is SSW by triangle, along with M96 and M105. All three can be seen 4.8°) and mag 3.1 Alpha Lyncis (at 6° to the ENE). together in a low power, wide field view. M105 is at the NE tip of triangle, midway between stars 52 and 53 Leonis, mag Object Type R.A. Dec. Mag. Size 5.5 and 5.3 respectively —M95 is at W tip. Lynx NGC 3521: Located 0.5° due E of mag 6.0 62 Leonis. M65: One of a pair of bright galaxies that can be seen in NGC 2419 GC 07h 38.1m +38° 53’ 10.3 4.2’ a wide field view along with M66, which lies just E. -
Galaxies with Rows A
Astronomy Reports, Vol. 45, No. 11, 2001, pp. 841–853. Translated from Astronomicheski˘ı Zhurnal, Vol. 78, No. 11, 2001, pp. 963–976. Original Russian Text Copyright c 2001 by Chernin, Kravtsova, Zasov, Arkhipova. Galaxies with Rows A. D. Chernin, A. S. Kravtsova, A. V. Zasov, and V. P. Arkhipova Sternberg Astronomical Institute, Universitetskii˘ pr. 13, Moscow, 119899 Russia Received March 16, 2001 Abstract—The results of a search for galaxies with straight structural elements, usually spiral-arm rows (“rows” in the terminology of Vorontsov-Vel’yaminov), are reported. The list of galaxies that possess (or probably possess) such rows includes about 200 objects, of which about 70% are brighter than 14m.On the whole, galaxies with rows make up 6–8% of all spiral galaxies with well-developed spiral patterns. Most galaxies with rows are gas-rich Sbc–Scd spirals. The fraction of interacting galaxies among them is appreciably higher than among galaxies without rows. Earlier conclusions that, as a rule, the lengths of rows are similar to their galactocentric distances and that the angles between adjacent rows are concentrated near 120◦ are confirmed. It is concluded that the rows must be transient hydrodynamic structures that develop in normal galaxies. c 2001 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION images were reproduced by Vorontsov-Vel’yaminov and analyze the general properties of these objects. The long, straight features found in some galaxies, which usually appear as straight spiral-arm rows and persist in spite of differential rotation of the galaxy 2. THE SAMPLE OF GALAXIES disks, pose an intriguing problem. These features, WITH STRAIGHT ROWS first described by Vorontsov-Vel’yaminov (to whom we owe the term “rows”) have long escaped the To identify galaxies with rows, we inspected about attention of researchers. -
ALABAMA University Libraries
THE UNIVERSITY OF ALABAMA University Libraries Hot Diffuse Emission in the Nuclear Starburst Region of NGC 2903 Jimmy A. Irwin – University of Alabama et al. Deposited 09/12/2018 Citation of published version: Yukita, M., et al. (2012): Hot Diffuse Emission in the Nuclear Starburst Region of NGC 2903. The Astrophysical Journal, 758(2). http://dx.doi.org/10.1088/0004-637X/758/2/105 © 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. The Astrophysical Journal, 758:105 (17pp), 2012 October 20 doi:10.1088/0004-637X/758/2/105 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. HOT DIFFUSE EMISSION IN THE NUCLEAR STARBURST REGION OF NGC 2903 Mihoko Yukita1, Douglas A. Swartz2, Allyn F. Tennant3, Roberto Soria4, and Jimmy A. Irwin1 1 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA 2 Universities Space Research Association, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812, USA 3 Space Science Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812, USA 4 International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia Received 2012 June 14; accepted 2012 August 30; published 2012 October 5 ABSTRACT We present a deep Chandra observation of the central regions of the late-type barred spiral galaxy NGC 2903. The Chandra data reveal soft (kTe ∼ 0.2–0.5 keV) diffuse emission in the nuclear starburst region and extending ∼2 (∼5 kpc) to the north and west of the nucleus. Much of this soft hot gas is likely to be from local active star-forming regions; however, besides the nuclear region, the morphology of hot gas does not strongly correlate with the bar or other known sites of active star formation. -
SAC's 110 Best of the NGC
SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog. -
Arxiv:2011.04984V1 [Astro-Ph.GA]
Received: 00 Month 0000 Revised: 00 Month 0000 Accepted: 00 Month 0000 DOI: xxx/xxxx ORIGINAL PAPER New dwarfs around the curly spiral galaxy M 63 I.D. Karachentsev1 | F. Neyer, R. Späni, T. Zilch2 1Russian Academy of Sciences, Special Astrophysical Observatory, N.Arkhyz, KChR, Russia We present a deep (50 hours exposed) image of the nearby spiral galaxy M63 2Fachgruppe Astrofotografie, Tief Belichtete (NGC5055), taken with a 0.14-m aperture telescope. The galaxy halo exhibits the Galaxien group of Vereinigung der Sternfreunde e.V., PO Box 1169, D-64629, known very faint system of stellar streams extending across 110 kpc. We found 5 Heppenheim, Germany very low-surface-brightness dwarf galaxies around M63. Assuming they are satel- Correspondence lites of M63, their median parameters are: absolute B-magnitude –8.8 mag, linear *Russian Academy of Sciences, Special diameter 1.3 kpc, surface brightness ∼ 27.8 mag/sq. arcsec and linear projected sep- Astrophysical Observatory, N.Arkhyz, aration 93 kpc. Based on four brighter satellites with measured radial velocities, we KChR, Russia Email: [email protected] 11 derived a low orbital mass estimate of M63 to be (5.1±1.8)10 M⊙ on a scale of Present Address ∼ 216 kpc. The specific property of M63 is its declining rotation curve. Taking into *Russian Academy of Sciences, Special Astrophysical Observatory, N.Arkhyz, account the declining rotation curves of the M63 and three nearby massive galaxies KChR, Russia NGC2683, NGC2903, NGC3521, we recognize their low mean orbital mass-to-K- band luminosity ratio, (4.8±1.1) M⊙∕L⊙, that is only ∼ 1∕6 of the corresponding ratio for the Milky Way and M31. -
Spiral Galaxies Stripped Bare 27 October 2010
Spiral galaxies stripped bare 27 October 2010 ISAAC, it has a greater sensitivity to faint infrared radiation. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its Six spectacular spiral galaxies are seen in a clear new pinwheel structure. It lies in the zodiacal light in pictures from ESO's Very Large Telescope at the constellation of Virgo (the Maiden). Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I The galaxy in the second image is Messier 100, camera to help astronomers understand how the also known as NGC 4321, which was discovered in remarkable spiral patterns in galaxies form and evolve. the 18th century. It is a fine example of a "grand From left to right the galaxies are NGC 5427, Messier design" spiral galaxy - a class of galaxies with very 100 (NGC 4321), NGC 1300, NGC 4030, NGC 2997 and prominent and well-defined spiral arms. About 55 NGC 1232. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
Galactic Mapping with General Relativity and the Observed Rotation
Galactic mapping with general relativity and the observed rotation curves N. S. Magalhaes Department of Exact and Earth Sciences Federal University of Sao Paulo, Diadema, SP, Brazil and F. I. Cooperstock Department of Physics and Astronomy University of Victoria, Victoria, BC, Canada July 31, 2015 Abstract Typically, stars in galaxies have higher velocities than predicted by Newtonian gravity in conjunction with observable galactic matter. To account for the phenomenon, some researchers modified Newtonian gravi- tation; others introduced dark matter in the context of Newtonian gravity. We employed general relativity successfully to describe the galactic veloc- ity profiles of four galaxies: NGC 2403, NGC 2903, NGC 5055 and the Milky Way. Here we map the density contours of the galaxies, achieving good concordance with observational data. In our Solar neighbourhood, we found a mass density and density fall-off fitting observational data satisfactorily. From our GR results, using the threshold density related to the observed optical zone of a galaxy, we had found that the Milky Way was indicated to be considerably larger than had been believed to be the case. To our knowledge, this was the only such existing theoreti- cal prediction ever presented. Very recent observational results by Xu et al. have confirmed our prediction. As in our previous studies, galactic masses are consistently seen to be higher than the baryonic mass deter- mined from observations but still notably lower than those deduced from arXiv:1508.07491v1 [astro-ph.GA] 29 Aug 2015 the approaches relying upon dark matter in a Newtonian context. In this work, we calculate the non-luminous fraction of matter for our sample of galaxies that is derived from applying general relativity to the dynamics of the galaxies. -
Galaxy NGC 2903
A&A 411, 41–53 (2003) Astronomy DOI: 10.1051/0004-6361:20030952 & c ESO 2003 Astrophysics An X-ray halo in the “hot-spot” galaxy NGC 2903 D. Tsch¨oke1, G. Hensler1, and N. Junkes2 1 Institut f¨ur Theoretische Physik und Astrophysik, Universit¨at Kiel, 24098 Kiel, Germany 2 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany Received 2 February 2001/ Accepted 16 June 2003 Abstract. In this paper we present ROSAT PSPC and HRI observations of the “hot-spot” galaxy NGC 2903. This isolated system strikingly reveals a soft extended X-ray feature reaching in north-west direction up to a projected distance of 5.2 kpc from the center into the halo. The residual X-ray emission in the disk reveals the same extension as the Hα disk. No eastern counterpart of the western X-ray halo emission has been detected. The luminosity of the extraplanar X-ray gas is several 1038 erg s−1, comparable to X-ray halos in other starburst galaxies. It has a plasma temperature of about 0.2 keV. The estimated −1 star formation rate derived from X-rays and Hα results in 1–2 M yr . Since galactic superwinds, giant kpc-scale galactic outflows, seem to be a common phenomenon observed in a number of edge-on galaxies, especially in the X-ray regime, and are produced by excess star-formation activity, the existence of hot halo gas as found in NGC 2903 can be attributed to events such as central starbursts. That such a starburst has taken place in NGC 2903 must be proven. -
Nuclear Activity in Circumnuclear Ring Galaxies
International Journal of Astronomy and Astrophysics, 2016, 6, 219-235 Published Online September 2016 in SciRes. http://www.scirp.org/journal/ijaa http://dx.doi.org/10.4236/ijaa.2016.63018 Nuclear Activity in Circumnuclear Ring Galaxies María P. Agüero1, Rubén J. Díaz2,3, Horacio Dottori4 1Observatorio Astronómico de Córdoba, UNCand CONICET, Córdoba, Argentina 2ICATE, CONICET, San Juan, Argentina 3Gemini Observatory, La Serena, Chile 4Instituto de Física, UFRGS, Porto Alegre, Brazil Received 23 May 2016; accepted 26 July 2016; published 29 July 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We have analyzed the frequency and properties of the nuclear activity in a sample of galaxies with circumnuclear rings and spirals (CNRs), compiled from published data. From the properties of this sample a typical circumnuclear ring can be characterized as having a median radius of 0.7 kpc (mean 0.8 kpc, rms 0.4 kpc), located at a spiral Sa/Sb galaxy (75% of the hosts), with a bar (44% weak, 37% strong bars). The sample includes 73 emission line rings, 12 dust rings and 9 stellar rings. The sample was compared with a carefully matched control sample of galaxies with very similar global properties but without detected circumnuclear rings. We discuss the relevance of the results in regard to the AGN feeding processes and present the following results: 1) bright companion galaxies seem -
Photometric Distances to Six Bright Resolved Galaxies?
ASTRONOMY & ASTROPHYSICS MARCH II 2000, PAGE 425 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 142, 425–432 (2000) Photometric distances to six bright resolved galaxies? I.O. Drozdovsky1 and I.D. Karachentsev2 1 Astronomical Institute, St.-Petersburg State University, Petrodvoretz 198904, Russia 2 Special Astrophysical Observatory, N. Arkhyz, KChR 357147, Russia Received September 27; accepted October 18, 1999 Abstract. We present photometry of the brightest stars in et al. 1994; Georgiev et al. 1997; Makarova et al. 1997; six nearby spiral and irregular galaxies with corrected ra- Karachentsev et al. 1997; Makarova & Karachentsev dial velocities from 340 to 460 km s−1. Three of them are 1998; Karachentsev & Drozdovsky 1998; Tikhonov & resolved into stars for the first time. Based on luminosity Karachentsev 1998). Besides several early type objects of the brightest blue stars we estimate the following dis- (NGC 404, NGC 4150, NGC 4736, NGC 4826, and Maffei tances to the galaxies: 5.0 Mpc for NGC 784, 9.2 Mpc for 1) all of the galaxies are resolved into stars, moreover NGC 2683, 8.9 Mpc for NGC 2903, 4.1 Mpc for NGC 5204, most of them for the first time. 6.8 Mpc for NGC 5474, and 8.7 Mpc for NGC 5585. Here we present large-scale images of three previously unobserved galaxies: NGC 784, NGC 2683, NGC 2903, Key words: galaxies: distances — galaxies: general as well as of three galaxies, NGC 5204, NGC 5474, and NGC 5585, from the M 101 group imaged with a higher angular resolution. 1. Introduction 2. Observations and photometry This paper completes a series of publications devoted The first four galaxies were observed in February 1995 to photometry of the brightest stars in nearby late type at the 2.5-m Nordic telescope with a subarcsec seeing.