<<

PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76-002

ODESSA, TEXAS APRIL 1, 1977)<.

REVISED FEBRUARY 15, 1982

FUNDAMENTALS OF GAS TREATING

MANUAL FOR DESIGN OF GAS TREATERS

Robert S. Purgason

Perry Gas Processor~ Inc. Odessa, Texas

Presented To

The Gas Conditioning Conference, , 1976, 1978, 1979, 1980, 1981, 1982

Norman, Oklahoma

i Page i to 45 FUNDAMENTALS OF GAS TREATING

Introduction .••••.••.••...••.•

Section 1: Monoethanol/Diethanol Amine Process 2

A. Description of the Process . 2

B. Design Calculations 3 1. Input Data. • ••• 4 2. Circulation .•.••. 4 3. Contactor ••••••••• 5 4. Regeneration Vessels • • ••• 5 5. Heat Loads • • • • . • •••• 5 a. Re boiler ...... 5 b. Solution Exchangers .•••• 5 c. Solution Coolers •••• 5 d. Reflux Condenser •••••••••••. 5

c. Cost •••••..••• 6 1. Capital Investment • 6 2. Operating Expenses • 6

D. Graphs and Tables Table 1-1: Amine Unit Operating Costs 7 Table 1-2: Regeneration Vessel Sizes • 8 Figure 1-2: Typical Flow Sheet 9 Figure 1-3: Contactor Capacities 10 Figure 1-4: Cost Curve •••• 12

Sectoin 2: Iron Sponge Process 13

A. Description of Process 13

B. Design Calculations •• . ••••• 14 1. Linear Velocity ••• 14 2. Space Velocity •••••••••••• 14 3. Bed Life •••.• 15 4. Air Regeneration ••••• 16

c. Cost •••••.••• 16 1. Capital Investment • 16 2. Operating Expenses . 16

D. Graphs and Tables Table 2-1: Bed Capacity for Various Vessels 17 Figure 2-1: Typical Flow Sheet . • • . . • • . 18 Figure 2-2: Bed Life • • • • • • • • • • 19 Figure 2-3: Bed Capacities . • • . • • 20

ii FUNDAMENTIALS OF GAS TREATING - Continued

Section 3: Proprietary Liquid Processes ...... 2 1 A. Diglycolamine (Econamine) (Description, Advantages and Applications) . 21 B. Sulfinol (Description, Advantages and Applications) . 22 c. Propylene Carbonate (Description, Advantages and Applications) . 22 D. (Description, Advantages and Applications) . . . 23 E. MDEA (Description, Advantages and Applications) • 23 F. Typical Flow Sheets 23 Figure 3-1: Propylene Carbonate •••••• • • 24 Figure 3-2: Selexol •••• 25 Section 4: Proprietary Solid Processes (Mol Sieves) . 26 A. Description of Process • • . . .•• 26 B. Advantages and Applications ••• 27 C. Figure 4-1: Typical Flow Sheet ••••• 28 Section 5: Proprietary Processes with Direct Reduction to •••••••••••• 29 A. Townsend Process (Description) • • • 29 B. Stretford Process (Description) 30 C. Takahax Process (Description) ••••• 31 Section 6: Sulfur Recovery Processes ••••• 32 A. for Sulfur Recovery 32 1. Description of Process ••• 32 2. Capital Investment .••.•••••.••• 33 B. Recycle Selectox Sulfur Recovery Process 34 1. Description of Process . 34 2. Capital Investment ••• 35 C. Graphs and Tables Table 6-1: Annual Operating Costs for Claus Sulfur Recovery Plants with Incinerators ••••••••• 36 Table 6-2: Annual Costs for Claus Sulfur Recovery Plants with Wellman-Lord 37 Figure 6-1: Typical Claus Plant for Sulfur Recovery ••.••••. 38 Figure 6-2: 3-Stage Claus plus Incinerator - Capital Cost ..•••••..• 39 Figure 6-3: 2-Stage Claus plus Wellman-Lord - Capital Cost •••••••••••• 40 Figure 6-4: Sulfur in Inlet Gas •••••• 41 Figure 6-5: Typical Recycle Selectox Flow Sheet 42 Section 7: References 43

iii F U N D A M E N T A L S 0 F G A S T R E A T I N G

INTRODUCTION

In this paper it is our intention to review the fundamentals of gas treating by liquid and solid processes. In Section l we describe the

Ethanolamine Process for treating gas to remove constituents.

In Section 2 Iron Sponge as a solid gas treating process is described.

In Section 3 we present a description of Proprietary liquid processes, and in Section 4 Proprietary solid processes are discussed.

Section 5 presents proprietary processes that incorporate sulfur recovery. A brief description of the Claus Recovery Process and the

Recycle Selectox Sulfur Recovery Process are presented in Section 6.

References and selected reading materials are listed in Section 7.

FACTORS TO CONSIDER IN SELECTING A TREATING PROCESS:

1. Treating Pressure (Inlet Gas Pressure)

2. Acid Gas Content (CO2+ H2S)

3. COS/CS2 Content

4. Treated Gas Specifications

5. Availability of Power

6. Environmental Constraints

K-1 SECTION 1

MONOETHANOL/DIETHANOL AMINE PROCESS

The Amine sweetening process has been widely accepted in removing co 2 and

H2s from streams. Monoethanol Amine has been used for many years* and lately Diethanol Amine has come into favor with the gas treating industry. Since both processes use essentially identical equipment, we will describe the process and then indicate differences in design calcu­ lations between the two.

The reader is referred to Gas Purification, by Kohl and Riesenfield, plus papers by Gene Goar, Charles Perry, Ward Rosen, and Allen Shell for more information on the Amine Process.** Jefferson Chemical has published brief design and operating considerations for amine treaters.

A. DESCRIPTION OF PROCESS

Referring to Figure 1-1, Natural Gas containing co2 and H2S is contacted in countercurrent gas-liquid absorption process in a

trayed or packed tower to provide intimate contact for a chemical

reaction between H2S - CO2 (acid gas) and Amine. Good design

practice dictates a scrubber on the inlet gas to remove entrained

liquids including distillate and water from the gas before it

enters the contactor. Also, a scrubber on the outlet gas to

recover any Amine solution carried over from the contactor should

be provided.

*The Monoethanol Amine process was first commercially applied as the "Girbitol" process in 1930.

**A complete set of references is listed in Section 7.

K-2 Rich Amine from the bottom of the contactor is flashed at reduced pressure to remove entrained gases, including part of the acid gas

and then heated in a rich-lean Amine exchanger. The solution is

then fed to the stripper tower where the solution is regenerated

and denuded of acid gas by steam stripping. Acid gases are con­

centrated in the overhead accumulator and disposed of by burning

in a flare, reboiler, or other incineration device. In cases

where sulfur exceeds 2-5 tons per day, the acid gases may be

processed for sulfur recovery. Lean amine solution from the

bottom of the reboiler is exchanged with rich amine in the

solution exchangers, then pumped in multi-stage pumps back to the

contactor to complete the process loop.

Inasmuch as a clean solution is a key to the success of a treating

system, good filtration is essential. Activated carbon filters

have been found to provide the best and most economical filtration

Also, MEA solutions may be reclaimed in a side stream reclaimer.

DEA solutions cannot be reclaimed due to the high boiling point of

DEA. (Our experience has indicated reclaiming is not necessary

for DEA solutions.)

B . DESIGN CALCULATIONS

1. Input Data

a. Gas Flow - Minimum, Normal, Maximum

b. Gas Pressure - Minimum, Normal, Maximum

c. Gas Temperature - Minimum, Normal, Maximum

d. Gas Composition - Sp Gr, H2s, CO2, cos, CS2, H2O e. Specs for Treated Gas

f. Utilities Available

K-3 2. Circulation

Circulation of amine solution is determined by the acid gas

content of the inlet gas, strength of the solution, and the

type of amine to be used. In Figure 1-2, we have provided

quick determination of circulations required as a function of

gas volume , acid gas content, and type of amine.

Amine circulation can be calculated by the following formulas :

For MEA: GPM = 41. 0 X QX/Z For DEA: GPM = 45.0 x QX/Z (conventional) GPM = 32.0 x QX/Z (high-load) For DGA: GPM = 77.0 x QX/Z Where Q = Gas to be processed, MMscfd X = Acid gas content, volume percent Grains H2S Mol % CO2+ = 632

z = Amine concentration, wt. %

The above formulas are based on mol loadings of 0.33 Mol/Mol

for MEA, 0.5 Mol/Mol for conventional DEA, 0.7 Mol/Mol for

high-lo ad DEA, and 0.3 Mol/Mol for DGA.

3. Contactor

Pressure and gas volume are major influences on the contactor

sizing. Referring to Figure 1-3, the size of the contactor may be determined as a function of pressure and gas flow.

K-4 4. Regeneration Vessels - Table 1-2

a. Still b. Surge tank c. Reflux Accumulator d. Flash-Skimmer Tank e. Carbon Filter 5. Heat Loads Estimates of heat loads and surface areas to be required are shown below as a function of circulation rates for amine

solutions:

Duty-Btu/Hr. Area-Sq. Ft.

a. Reboiler (Direct Fired) 72,000 x GPM -1 1 • 3 0 x GPM

b. Solution Exchangers 45,000 x GPM 11.25 x GPM

c. Solution Coolers 15,000 X GPM 1 0. 20 x GPM (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM

6. Power Required Power requirement for the process is largely for pumping of the amine solution. The table below gives approximate power requirements as a function of amine solution circulation: GPM x AP HP = 1713 (eff1c1ency of pump)

Solution Pumps GPM x Psig x 0.00065 = HP

Booster Pumps GPM x 0.06 = HP

Reflux Pumps GPM x 0.06 = HP Aerial Cooler GPM x 0.36 = HP

K-5 C. COST 1. Capital Investment

Capital investment for plants to use either MEA or DEA pro­

cess can be broken into two segments. First, the contactor

investment is a function of pressure, gas flow, and amine

circulation. The cost for the regenerator unit is a function

of amine circulation. Figure 1-4 presents investment data for

battery limit gas treating plants as a function of amine

circulation. It is assumed that the regenerator equipment

will be skid-mounted and assembled in a shop to minimize field

construction. The cost figures include transportation,

foundations, and piping required at the location as a turn key

installation.

2. Operating Expenses

Operating expenses for the amine unit will be largely

operating labor, power and fuel gas. Typical operating

expenses for a treating unit are presented Table 1-1.

K-6 TABLE 1-1

AMINE UNIT OPERATING COSTS

Basis: Treating plant with 40GPM circulation;treating 3MMcfd gas with 10% acid gas: January, 1981, cost index

¢/Mcf $/Year Operating Labor (2@ 22,000) •.•••.•••.•..•.•.....•. 4.07 44~000 Supervision (1@ 35,000) ...... •...... •... 3.24 35,000

Employee Benefits@ 35% Payroll ...... 2.59 28,000

Utilities 2.78 30,000

Chemicals & Supplies ...... 1. 39 15,000

Repair Materials & Labor@ 4% Investment ...... 4.44 48, 0,00

Direct Overhead@ 5% Investment ...... 5.57 60,000

Corporate Overhead@ 3.5% Investment ...... 3.89 42,000

Depreciation ( 10 Year Straight Line) ...•...... •.. 11.11 120,000

Interest (@ 20%, first year) ...•.....•..•...... 22.22 240,000

Insurance & Taxes@ 2% Investment ...... 2.22 24,000 63.52 686,000

Plant Investment Estimate $1,200,000

K-7 TABLE I - 2 REGENERATION VESSEL SIZES {Inches)

SG . Jtion ~ I (i r·cl . Rate St ill Surge Tank Reflux Ac cum. Elash Tank Carbon Filter (X) GPM Diamete r Diam. I Length Diam. Length Diam. Length Diam. Lenqth

I - ,----

. 10 16 24 72 16 36 24 72 16 84 25 24 42 96 24 48 42 96 24 84 50 30 48 144 30 96 48 144 36 96 .JO 42 60 192 42 96 60 192 48 96 200 60 84 288 60 96 84 288 60 96 300 72 84 384 72 96 84 384 72 96 400 84 96 384 84 96 96 384 84 96 Ir Contact or Aerial l Cooler

' ~ ,if. '. k ....'·" , 11 .· .: ,

~ I I.O

~r~k Slac 1 FIGURE I ~2 GPM CIRCULATION REQUIRED PER MMCFD AMINE CIRCULATION REQUIRED 0 3 5 6 7 8 9 10 ' ' 2

,- .... _ f-- ·- -..------,..._ - ....

I I I I ,, _J I . I I I -t- t-~ 1- ,..._ I -- I -1 .... -t ,..._-t I- : -t I : - t- I I I I : I I I : I :- I '1 : I J I : ' ' ' . ' ' ' . ' ' ' . . ' ' ' . . ' ' - ·-,--,- .-- -,- r- - - ·- ..-- ~-,--, ,- - I 7 T- r-- I 1- -, I - I I- I -"""7 I -T I I -, I , I l J 1 ! I I _J I I .1 _L I I I 1 I I I I I I I I I I I I I I I I I I I ""llil ~ I~'" - ·-i-- --r-: r- - ~-,- '- - ~- r-- ~ f'... " ~ :'---- r-- t% AJ 'H IF s:: -- r-- r-.r--...... r--r-- -- ~I' i" C-.:::r----.. "n. "' . --- --,- - !-- - - ~ I -r-- .... ,o I I". ~ I I I I I I I I I "'k_"' r,.___r---: rr:::: r-1 r--~'1il, Nd I , I ..... I I I I I I I I I f'-...1'.._ ..... r--...... I r-+-- I"-.' ,__,.. ~1'._ I:- - f-- ~ -- -K - .-- - -- I - r--,.;:-.... ,A ..... I"-. "'' r--... r----. A.I' . 0 " I"--- - "' Yi: '" 'r--.... I'-- r---..,i'' "' I I "'-i ,...... ___ I ~ I , I I I I "'-.I I I I I I I I I I" ~ 6'>o ~I ,--"-IN ->------r- - - - ~,- ...... _ - """ ~iy ~ I'. I" ~~/, .. ' ~~u C _.__ ~ .... I'-.. - -1-- - ~ ~ - - - --..- .... I . I'( ~l),.( " I , ,"'--.. I" ~ I I I I "ft~ I I I I I I I I I I r0 "' . r, , . ' ' ,, _j "'-.' I'-. ~i I l_ i L- I_ .-- i " - i i_ _I i -.... -1 i ,..._ J_ i L' - I"\ I'-, 'r--.. ,_ __ _,__ - -r-- I"- -- - .-- -.... ,__ I I 1 J I I I !"'. ~ I I I I J I I I 1, I I I I I I I I I I'(: I I I : l : I- : I I : I I - ,-+ ' -f- . +- !-- I- ' - ' !- -I ! ---l ' ' ~ ' I -~

--- ,___ .... ,- -,-- ,__ -e- ,- - I -- : ' I I "' 0 2 ~ 4 5 6 · 7 8 9 "'10 I ' X ACiiO GAS I , I I - V ]• / - FIGURE 1-3 V CONTACT0R CAPACITY Jl - / .,. I / JO I / V 11!1 I / '.r

2.6 ;/ / I 2"4- ' / I V 2l. I 7 / / 10 I / ~/ Q u. ' / u ;fa (/) ,a I / ,,,,. ~ " ~ 16 ' I I ~/ ~ >= I V -- t: / ~ u '-4, ·/ I / "?Jo' .~ ~ V /"" 5 / 11 I / / 1/) I ... / V (.!)< 10 / V ..J II / ~I- < V .,:;;,,.--:- QC V ~ ::) ,_____. 8 /1 / ~ r- , ,,,,,,,..- z< 1...------~, _, ~ 6 '/ / 1--- ~ ~ ~ 16,, -+ '/v ~ ~ t.---~ __.,,, ~ 1 ~ ~

0 0 lOO •OO 600 800 1000 IZOO

OPERATING P~ESSURE

K-11 .,,., 100 200 300 400 ~00 600 700 800 900 1000 200 - - ~~7~=t=------~------~~-.--·----/v-/ 200

180 7 --·- ·- . 180

! ~ ------. --- --a---t--l---+--1---f--Y--1/.J___J

--- - · - · - - - . - - .. ··- · - -· -· - ·--·- --;-----t----t----lf-----1-----J-/-,IL/--l------1--- 160

,J --- -1- .------·--- - ·----- ·•··---i--t-t--1------1-l-7.?--t-----..1----,.__

14 ~ 01=~-~~~-:- ~ ==: :~---=~~---1------t--i----t---t-/-f-',7/-t..'---t---t--.L.----1140

120

_ T 120 ~ +- +-1__ Il~-- ---~------t--/---,'"l-v----l---f----¼---1-----1----1 ~ 100 7------r--~---1,--- -/~v~/--t-----t·--+--+---1--1---!---.--J 100

Ill 80 - ----:-v~-t---t---f---1-...1---L--1-...J.._--I 80

~ -;--~ --- ~ 1--t--~-t-v--:r-t---t---f---..,I FIGURE 1-4

J ---, . V INSTALLED AMINE PLANT COSTS 60 --- ,--- --7·------V ·, I APRIL 1977

4 0 -~-~+J-=fP~17-~ ---~-·===,====-=--=--~ ---=·--1----1 40 20 20 1 - - -- 4-_--__ ----l -- -l--+-~-- i--;---J----.1.---l--- -- 1-- 1------~ OL---1---L--L- 0 100 200 300 4 00 500 600 700 800 00 · Q SECTION 2

IRON SPONGE PROCESS

The iron sponge process is one of the oldest and simplest processes for treatng . However, economics normally limits its application to gases containing less than 20 grs. H2S per 100 Scf. It may be used on low pressure gas, but is more successful on high pressure gas. The sponge must be moist to be reactive, and if the feed gas is dehydrated, it must be resaturated with water before entering the sponge bed.

The iron sponge material is oak wood shavings impregnated with a hydrated iron oxide. It is available as both the 9 lb. and 15 lb. grade (based on iron content of 9 lbs/bushel and 15 lbs/bushel.) A bushel of sponge will occupy one cubic foot of space when packed in a treating unit.

A. DESCRIPTION OF THE PROCESS

An iron sponge treating unit is an open vessel sized for the

proper bed volume and cross sectional area for the volume of gas

to be processed. A screen, or coarse packing is placed in the

bottom of the vessel to support the sponge. The remainder of the

vessel is filled with iron sponge, leaving only a small void space

at the top. Gas enters a top connection, passe downward through

the bed, and then out the bottom connection. reacts with the iron oxide in the sponge to form iron sulfide,

thus sweetening the gas. does not react with the

sponge, and passes through the bed unchanged.

K-13 The iron sponge process is a batch process, thus requiring

multiple towers, on interruption of flow when the bed is changed

or regenerated.

B. DESIGN CALCULATIONS

An iron sponge treating vessel must be designed based both on

linear velocities through the bed and contact time. Once these

parameters are determined, it is necessary to determine if the bed

life will be satisfactory. The following is a description of

these steps.

1. Linear Velocity

The superficial linear velocity through the bed should not

exceed 10 ft. per minute based on the empty vessel cross

sectional area and the gas volume corrected to ACFM at flowing

temperature and pressure. Pressure drop through the bed

should be approximately 1 - 2 Psi per foot of bed depth.

2. Space Velocity (or Contact Time)

The sponge bed should be of sufficient size to allow a maximum

space velocity of 6.0 ACFH per cubic foot of bed for each

grain of H2s in the inlet gas. Figure 2-3 may be used to estimate the capacity of sponge

vessels at various pressures.

K-14 Space Velocity (cont'd)

In a typical sponge treating unit, the gas channels to some extent

along the shell of the vessel. The H2S front moves through the

bed as an inverted cone, and the greater the linear and space

velocities, the steeper will be this cone. Thus, if too high

linear and space velocities are used, when the H2S breaks

through around the vessel shell, there will be a large mass of

unreacted sponge in the center.

3. Bed Life

Iron sponge theoretically can pickup 0.56 lbs. of sulfur per pound

of iron oxide. For design purposes, this must be aerated by about

25%. The following forumula can be used to determine bed life:

Bu. Per Charge MMcf/Change = 4.69 Gr./100 of H2S

The above formula is for 15 lb. sponge. For 9 lb. sponge, the

constant 2.80 should be substituted for 4.69.

K-15 4. Air Regeneration

Iron Sponge may be regenerated with air, either batch wise or

continuously with some limitations . In batch regeneration, a

spent sponge bed is isolated and depressured. A blower is

used to circulate gas through the bed at atmospheric pressure .

Air is injected into the gas slowly over a 24 hour period,

allowing the oxygen content in the gas to slowly increase to 8% .

The bed life after each regeneration will be approximately 60%

of the previous bed life , resulting in only about 2 regenerations

being feasible. After a bed has been regenerated two or three

times, elemental sulfur formed on regeneration builds around

the sponge making it extremel y difficult to remove the spent

sponge.

-~ C. COST

L Capital Investment

Capital costs of approximately $15 , 000.00 per Mmcfd capacity

( up to 20 MMcfd) to $10,000.00 per MMcfd capacity (above 30

MMcfd) may be used to estimate installed costs for 1000 Psi

units.

~ Operating Expenses

For operating costs, 0.12/Mcf for each 5 gr./100 Scf in the

inlet gas will cover the costs of sponge, labor and amortization

of cost of equipment .

K-16 Table 2-1

BED CAPACITIES FOR COMMON SIZE SPONGE TREATERS

Bed Capacity, Bushels (or Cu. Ft) Vessel Dia., For Bed Depth Indicated Inches 10' 12' 15' 18' 20'

24 II OD 30 34 44 52 58

30 11 ID 50 60 74 88 98

36 II ID 70 84 104 118 140

42 11 ID 96 116 144 174 192

48 11 ID 126 150 190 226 252

54 11 ID 160 190 240 286 320

60" ID 196 236 294 354 392

66 11 ID 238 286 356 428 474

72 II ID 284 340 424 410 568

84 11 ID 384 462 578 692 768

96 II ID 500 600 752 902 1004

K-17 LDA\DIN~ "PLATf"ORrw1

SPONGE' ll?C'ATE:R VESSELS

E INLET)I----

GAS OUTLET 11,--""'--:!-+~---=------...... c:"-----'--4 < s'

TOC

FIGURE" .:l.-1

FLOW DIAGRAIYI FOR IJc>ON SPONGE T ~EATEK' PLJ>...N1 .1 F1GURE 2·1 CAPACJTY OF IRON OXIDE FOR SUUH GAS BETWEc.N RECHARGES

BASED ON : I 5 LB. F E.i O, I BUSHEL 0.56LB. S PICKUP/ LB. FE4 o~ 75 % BED SATURATION

IRON SPONGE - BUSHELS PER. CHARGE FORMULA FOR GRAPH: MMC F/ CHARGE= 4 69 _s_u_. ____ . GR.~l~cP SCF CRP FIGURE 1-3 LINEAR ANO SPACE VELOCITtES FOR IRON SPONGE TREATERS

BASED ON : MAXIMUM LINEAR VELOCITY : IOFT./MIN. MAXIMUM SPACE VELOCITY: 60 CU. FT. PER 'HOUR PER CU. FT. OF BED FO IO GR./ IO O H.2 S CONT ENT

fl ffi1 iii 1111111111![1~!1 I 1: ! II I!. . 7 _:' 111111 1 11 r. ~J.!! l!,4111_ • 1 ~.f I 1 !l!!!!P ! !!!!ll: 1:! .: :::::!P!i !i:l ]Ill . - >- i n :rr1 1 I - II ·:11I 111, T'!l!'':::!'l',1 11~11 I ·11TT, I I . rhjii:iiii11i I i:h:::i!tttmm':!: :•·; j: ..-: ,:.::; ii I, ill ~HilH++-H 1.:: :.. :· ; ffitt-Httt+l~t1t1 ! ,·:, ,!; '-'~· f j!:' TTTI:, :... ·r.·:-::::!:TT! 1, .TT;. I ~ 1111J!!:! -. I jl r !:!:'JI1 1 6 I: · ! ,:( j;; ::!:;::;;1~;:.(;!:'!;!: ' ' ·lll·y ~ : ffi1t:f -: ' ,;' 11±1:tttttttl ! :i,h 1 lj ii !li'llh!!'''•:1·1 ! I I l ](} I~ u~ · ~ , · Ii i~!,,- · - H ·· ! ·11 ~ I Im·)~ w;:;,/!:-?; :J 111, }~~l .f' ~ ~~ wru ! ~ l·t+-HHH H lt!Hflf::::;:·,H-l+Hi ...... 1 I f !ii:Fj! TP' P: j1iA 1~4 11, f! I~ l!:!1 ;\ i! fITi 11 i~ TiT 1 4 I'\ I I II I ' " ' " '' " : I " ; i ' ~ ' -~1· t ~ i i ; I ' r-:H'' ±' tt:ri+tt-l+Htll:tttHttttti:itttttttttlit-:1'l:H:!-blttttrffitttttttttiHttlttf:tttlttitttttrlt trl1 •- 1r111: H1ill !J:t::ll il1 !!I: t H:: -n .. :11 ! I ~11 :11!: ~ 1 : -· t , '1 1 , 1 •. Iii +½f:!!ftJMittr~~ ~!~ it~~ 1iUittJi i - , 11 , llll+-l-l-~+l-,! 1tdi 1mr •l'I • • , • iii 1 l1:ii;::. ·.f·· 1 ·it,:,::;: , --· , " - , 1rr1 ,:trr1w .1 ' • till''' j · I ll.l,, ... ,,I ' l " l ' l" · ' .. , .. ijl I I' I I '·, 1·:1; ill ,::· "!7~r::-7.. · ·w:~ j~::r:rer:r : '' ·:: ' ,·:·r::i1 : ' ' 11 ,· i;;,:,fi_r;1r+rmmirf.i:1 :' ·::::.'!iiti1+' 1hrif+11 '·ITTtIB ' ! 11• ! : .!1.,, ' • !;'l'T l1" '' G) , . ..,J :: 11·:· .. :· : · 1: 'I•' I.·:,:·' :.1.':'!::'::l:!!il;::: . "·i:::::·!!' ~1· ··::l ! :. '.,1 ,: • I ; ' I' I ,,."' ; --.:; ' ...... :-,~ I'' 11 • " ... ' 1 11 , , I .. . ,, I ' ,.,,,.,l.,.,.,1·1·····" 1" "'1•11 I ·11•1"1' 1'1' ..... : 11 I I '•'j'• :1·: : .:· .: ', , ~~:: .~ .. -~ ,{I ;. ,: ;1' '·: .•: .1. ::::: •. 1:, ,··, ... !,' ,"ii''.. I'":,:::: I:·;·:·:,··,'' ,!', ~\( I 11 :11•,, : .. :,,; ,-- I 1(1 "11 I",.,.. ' " ~.. , .. 1t't'. 1 <. · ·111I, I ' " "" i I ,1, ,. .... ,, .. . 11 111, .. .. "l' 'JI I'' "' ,1,,1 ... ,. ··· r· ·1 i I' u' '" I• 1 1 c3 .·• · · • :1 •·1·1 1~·: ... :; .:::: .. 7'·1 ~ ~ ~,!~ :~ _··i:~1~+:- ·- 1~ :•:::j ' · ,· · ,: i ... nn ·~ rnhi;11i1 1·• :i· ttn ,nn h;.. ,:1·~r.f:: 1 1:~: "w' rf:·1r 1 1 1 11 11 m 1 1 1 1 1 11 1 1111 11

2 l I 1! 111! '\T, :,·.: ,, ' ·:- ··TTrnr:TT ,:· :!1:,:r11·, ,•, m1 ' [1 1 111! 7 !· . . I ~, , I 111;, 1!,111: \1: , r ::! • I ; 1;1,,.: "" ,;: "' ' ' , . ~ :::1:::1 ::! :1;;1 : ! I ·11(1 11 ,:i: I I I' Ii I I ' I . 'I\ ' 11 · ,I'{ : ... ~ ,~ 111 ,1 . 11111 !'!!1m .rr mr ir 1t \ rim lT[ 111 T. ~~;,; t I 1:t111 rr t .:! iJ

• . -'I.,.,.,,, "'"'''"'fITT] In I "f' I~ nx 'I' .. '1 r ' ! I ,1, rr l en ·',!~ ' • I II I ul .. l I ii I'' I'I' IIIHI ,-1· -1-l-l-l-l-1-1-1-Ui-1-H-Hl-H

1 11 1 'f: '' ' ' · !•·1 ' "" ' 1 ' .. , 1 • 1 111 11:1• ~ 11 1 ,~Li Ii ·I · lili·l1 :,j:::: ., ;::1 , :::!,lli~'1 l1 111 , 11 lT i • , . t;~.r · ... 1.;: . ,: ·,• ~~... •, J.1' I - 1 1• • 1; I ,·· :!· 1·: !;:1:lf: .!· r: 1: !1 • , ,.,..., 1. i11 i·l'• l•l'i· .... ,.. ,11.:!:.!:j .... ·, :..: ,,11. ,o1 11 I ! / ~ 'rt!l 1.1'1· ,.. ,. ~ r·rm l'~i·rrrn m· ·; ·n~· r-~ 1 • i' ~/I j",I !lW'iiT:::., .:"/;:!! ! ' I 1f~~, I ii I I ! 11 1 1 2. 1II I, 11 ,,/ I: T~,, ,rH,:H1 · !lt·n;r!;'· I',:! :!f1 tt t-MlH 1/• I V, ' I',, ! Ii ihl-r!-, ni+- . ' ~ J ' ,, ! 11 1d1 Iii I " l y ,! ..'' ' ' 1!1 ,1 :i ·}1 I_; ·1·:,i; ' 1 !: : ! :: •· (' I. I

:t . v, . v· . i, . · 1 ·: ,, : · ,., . ... · ...... :·:: , ,. , :" 111 i l1l1,l.l-;+i'l 1i :1]: ..;:·:~ .I ~: 11 '1, I: !I ~i ,,1 '-I',i · ,:l1!1't1· I ~!! 1 · q,_li ,Ki,. ·li 11llr' ' I ! I ' 111 1 ' !! l1l1;l 'l,;:":::;1 :·1:11 11ri 11 111 I!!'" ' , II " 1,T I i I I ]1 .,Ji·'h lh :::: ·,i:: :: <: :!' 1~: :ii! I : J., I I 11 Ii ,.].. if:I :·i ;j: ! !::;:1ii :i,. :::::::,2;:;;~1~;kji' ~ . if W:::!:-1111 :1, ! l; . r i\ I~ r ~,ti I !~Ii!: :1~; 1 1 1 1 1 i: ;;t l!!!: :i;i ?/:::; ·.- .:: :;/~;: ::·1:} 1 1ii!i !•: :V • 1 ! ·!!1 llu : 1 I: ..!:::! 1! :: 1 1 111 11 11 1 :111!;:1:,:!: :'.!:::.l.•·: ·:.:!·:::1.·,: ~i: l ,1 1, · 11 • Pif " r µ .... ,,1 .. " 1 i:: .;: ::;! :::::!:::::: .. :. .;: .:.. : :,: ;I:~ !I 1 1 ,11, 1:i!i i 11, 1 iw, I 11 ,,1 ~ ,1 , l 1 1. , !!ii: :: .:,:: _ .... __._._~_...... ,...... ,_..~ _..,J....UA.,l.."-"-1.-Jw.....LI-'~...... l-.:.W.~~LU.il-=.u.LU,,LO=:-,u ...u.,,-,__,__....,...... , 1.~ u J 6 7 a ~ 100 lt!O 20 0 al'!l'9 300 _.oo ~QC 660 700 OOO t Od

TREATER OPERATING PRESSURE- PSI G

K-20 SECTION 3

PROPRIETARY LIQUID PROCESSES

A. DIGLYCOLAMINE (Econamine)

The Diglycolamine (DGA) process is carried out in equipment very

stmilar to the equipment for Ethanolamine. The major difference being

in the concentration of the Diglycolamine which is normally in the fifty

to sixty percent concentration range. The DGA process does require a

specialized purification unit on the side stream of the circulation.

Major advantages for the DGA process over the MEA process is a higher

allowable concentration of DGA that is up to 60% with resulting higher

acid gas loadings which leads to substantial savings in equipment size

and cost, and utility cost. Optimum applicability is in the range of

acid gas concentration from 1.5% to 8.0%. I

K-21 B. SULFINOL (Shell)

The Sulfinol process is unique in that it combines characteristics of a

solvent process and an amine process. The high solvency of sulfinol for

acid gases at high acid gas concentrations results in a greatly reduced

circulation rate which is the basis of the economic advantages. The

advantage disappears at low acid gas concentration. The sulfinol

process has limitations which must also be considered. It has a great

affinity for aromatics, therefore pre-treatment facilities must be

installed ahead of the acid gas if it is being fed to a sulfur recovery

plant. Initial cost for the sulfinol process is quite high due to high

sulfinol solution cost and royalties paid to Shell Development Company.

The process has numerous advantages, especially its ability to

selectively remove H2S leaving up to 50% of CO2 in the gas.

C. PROPYLENE CARBONATE

The Propylene Carbonate process has advantages over the Amine processes

in that it has high acid gas loading and corresponding decrease in

capital cost. Regeneration of the solvent is by pressure reduction

requiring no steam regeneration. Disadvantages for the Propylene

Carbonate process are similar to those of the Sulfinol process in that

the solvent will retain heavy hydrocarbons so that acid gas must be

treated to remove these hydrocarbons before being processed for sulfur

recovery.

K-22 D. SELEXOL Selexol process is a solvent process developed by Allied. Major advantages of the Selexol process are high solubility of H2S relative

to CO2 making it possible to remove all H2S, leaving a certain amount of CO2 in the residue gas. Selexol removes carbonyl sulfide, carbon disulfide, and mercaptan without degradation. The solvent will dehydrate natural gas if water is removed in the regeneration step. Disadvantages of the Selexol process is typical of other solvent processes, i.e., absorption of heavy hydrocarbons, expensive solvents, and royalty charges.

E. MDEA The ethanolamine amine process utilizing n-methyldiethanol amine "MDEA" is carried out in equipment very similiar to the equipment used for primary and secondary ethanolamines. The major difference being the concentration of the MDEA, the number of trays in the stripper and absorber, and the heat load for the process.

Major advantages of the MDEA process over MEA, or DEA, is the capacity of higher selectivity with respect to H2S in the presence of CO2. This can result in substantial savings in equipment size and cost, and utility cost depending on the desired and achievable selectivity.

K-23 ACID GAS ABSORBE:R FLASH DRUMS

. - TREATED E:A5

RECYCLE GAS

LEAN ~OLVENT

FIGURE:' 3-1 PROPYLENE CARBONATE PROCESS ABSOPBE~ HIGH INTE RME'DIAT£ LOW STRIPPER PR[SS.UR[ PQf!,~UJ?E PRE.S.SUl.'E f"LA5M FLA~H f"LASH

r-<-- ____R _ E:_CY__c ___ L_E: ___ __-1 VENT

~ I l'v V~NT U1

AIROR i--:s---0-lNERT &A:

F"IGURE 3 -1 StLEXOL PROCESS SECTION 4

PROPRIETARY SOLID PROCESS

(Molecular Sieve)

A. DESCRIPTION OF THE PROCESS

In the molecular sieve process, the sour gas passes through one of two,

three, or four fixed beds of molecular sieves where the hydrogen

sulfide, along with water and organic sulfur compounds, are removed from

the gas by a process similar to adsorption. Whenever the bed becomes

saturated with hydrogen sulfide, the main gas flow is switched to

. another bed which is freshly regenerated. This cycling of beds

continues on a regular cycle, based either on time, or on breakthrough

of hydrogen sulfide.

A side stream of the sweet gas (usually approximately 20%) is heated to

approximately 600°F. to 700°F. and passed through the last fouled bed to

regenerate it. The hot regeneration gas is then cooled and processed by

a wet process (usually amine or sulfinol) to remove the hydrogen sulfide

from the regeneration gas. After the regeneration gas is sweetened, it

rejoins the main gas stream downstream of the sieve beds.

K-26 B. ADVANTAGES AND APPLICATIONS

The molecular sieve process may be used to selectively remove hydrogen

sulfide in the presence of carbon dioxide. Thus, if it is not necessary

to remove carbon dioxide from a gas stream, the molecular sieve process

may offer a lower capital cost, lower fuel requirements, and/or lower

operating expenses. Molecular sieves will also remove organic sulfur

compounds.

Offsetting these advantages, the necessity of a separate regeneration

gas tr~ating unit makes this process somewhat complicated and less

applicable to small streams. While the sieves can selectively remove

hydrogen sulfide, the presence of carbon dioxide does adversely affect

the capacity of the sieves for H2S. Also, sieves are subject to

attack by contaminants occasionally found in gas, and care muit be taken

to see that the incoming gas is free of contaminants.

I

K-27 sou~ GA.S •).-.------iA..l'------,------e-• 'NLCT ~£.4Tt:D GAS It-: ___,

:.

1------i------~------ADSORBING COOLING- DESORBING- AMtNE SCRu!!>e.t:J~ G-LrtoL scR"uBoFJ F"I GU SECTION 5

PROPRIETARY PROCESSES WITH DIRECT REDUCTION TO SULFUR

A. TOWNSEND PROCESS

In the Townsend Process, an SO2 rich organic solvent, such as

triethylene glycol, contacts the sour gas, and the hydrogen sulfide

reacts with the SO2 to form elemental sulfur and water. The glycol

solvent also absorbs additional water vapor from the gas. The solvent,

containing elemental sulfur and water, is heated to melt the sulfur and

distill out the water. The liquid sulfur is decanted, and a portion is

burned to form SO2, which is absorbed in the lean solvent, and

recyled to the contactor.

At present, various types of catalysts may be used to catalyze the

H2S - SO2 reaction, and other solvents are being investigated. B. STRETFORD PROCESS

The Stretford Process is an absorption process, in which the H2s rich solution is air blown to reduce the H2S to finely divided elemental

sulfur particles, which are removed by centrifuge or filtration. The

air blowing and reduction of the H2S regenerates the solvent for

recirculation.

The solvent used in the Stretford Process is an aqueous solution of

sodium carbonate and anthraquinone disulfonic acid with a sodium

metavanadate activator.

The chemicals in the solvent are all quite stable, but the presence of

air and sulfur does cause the formation of a small amount of

thiosulfate in the form of a sodium salt . The process produces good

purity sulfur) and can be used for low H2S: CO2 ratio streams.

K-30 C. TAKAHAX PROCESS

The Takahax Process is similar to the Stretford Process, in that a

special solvent removes the H2S from the gas, and the rich solution is

air blown to reduce the H2S to elemental sulfur and regenerate the

solvent.

In the Takahax Process, the solvent is an alkaline solution of

1,4-naphtaquinone, 2-sulfonate sodium, and a catalyst. Sulfur formed in

the solution during regeneration is removed by filtration.

K-31 SECTION 6

SULFUR RECOVERY PROCESS

A. CLAUS PROCESS FOR SULFUR RECOVERY

The most widely accepted process for recovering sulfur from acid

gas streams is the modified Claus Process. The basic Claus

reaction was disclosed in 1893:

For convenience in analyzing the steps in the plant operations,

this reaction can be broken down into two steps:

H2S + 3/202 --->~ H2O + SO2 2H2S = SO2 --->~ 2H2O + 3S The reader is referred to Gas Purification by Kohl and Riesenfeld

plus papers by Gene Goar. A series of articles by Dr. Richard K.

Kerr, Director of Applied Research and Development, Western

Research and Development of Calgary, Alberta, has appeared in

Energy Processing/ Canada, which describes the Claus Process

Thermodynamics and Kinetics.

1. DESCRIPTION OF PROCESS

Referring to Figure 6-1, acid gas from the amine treater

containing H2S and CO2 is pre-heated and injected into the

reaction furnace along with sufficient air to burn 1/3 of the

H2S. Sufficient resident t i me is provided in the reaction

furnace to permit a part of the reaction between H2S and

SO2 to proceed. Indeed, approximately 65% of the recovered

sulfur is formed in the reaction furnace. The reactants from

the furnace are cooled in a waste-heat recovery boiler to

approximately 1100uF.

K-32 The partially cooled reactants are split with a portion of the

1100°F. stream being cooled to 275°F. where molten sulfur is con­

densed. Unreacted H2S and SO2 join a portion of the hot gas

by-pass material for re-heat to approximately 600°F. for entry into

the first catalytic reactor where a bauxite (alumina) catalyst is

used to improve the reaction kinetics. The effluent from the No. l

reactor is cooled in No. 2 condenser to drop out liquid sulfur, with

unreacted H2S and SO2 passing on in similar manner to reactors

No. 2 and No. 3. Tailgas from the No. 4 condenser is normally sent

to an incinerator where the last traces of H2S are burned to SO2

and discharged in a tall stack.

Where very stringent environmental restrictions dictate a 99+%

recovery of sulfur, the tailgas will be further processed in a

"tailgas clean-up unit" such as Shell's SCOT Process or other other

tailgas clean-up processes.

2. CAPITAL INVESTMENT

Capital investment for Claus Sulfur Plants is somewhat dependent on

the percent of H2S in the acid gas from the sulfur plant. Figure

6-2 presents capital costs for a three-stage Claus unit plus

incinerator presented in a recent publication by the EPA.*

* "An Investigation of the Best Systems of Emission Reduction for Sulfur Compounds from Crude Oil and Natural Gas Field Processing Plants"; W.O. Herring and R.E. Jenkins, Research Triangle Park, North Carolina.

K-33 Figure 6-3 presents investment costs for a two-stage Claus unit plus

tailgas clean-up unit employing the Wellman-Lord process. Table 6-1

presents annual operating costs for Claus Sulfur Plants with

incinerators. Table 6-2 presents operating costs for Claus Sulfur

Recovery Unit with Wellman-Lord tailgas clean-up unit. These

operating costs are also taken from the EPA publication.

B. RECYCLE SELECTOX SULFUR RECOVERY PROCESS

A new technology recovering sulfur from gas streams has been developed

based on a new remarkable active Selectox catalyst which selectively

oxidizes H2S to sulfur using air at low temperatures without forming

SO2 or oxidizing either hydrogen or light hydrocarbons. The process

developed jointly by the Science and Technology Division of Union Oil

Company of California and The Ralph M. Parsons Company has application

in a wide range of H2S feed compositions, but especially shines in

concentrations from 1 to 40% H2S.

1. DESCRIPTION OF PROCESS

Referring to Figure 6-5 the acid gas is fed directly to the Selectox

catalyst after being mixed with a stoichemitric amount of air. Feed

temperature is about 350°F against 450°F for a standard Claus

catalyst. The reaction heats the gases which are cooled to condense

elemental sulfur. Part of the cool gas is recycled to the feed in

order to control the reaction temperature. The recycled gas dilutes

K-34 the H2S content to limit the temperature rise. Gas that is not

recycled continues to a second and third stage which may use

Selectox or less expensive conventional alumina catalyst. After the

third reactor the tail gas may be either thermally or catalytically

incinerated.

Because the Selectox process is entirely catalytic, no thermal

reaction furnace is used, instrumentation and process controls have

been greatly simplified resulting in simpler and more reliable

operation.

The Selectox catalyst is also in the BSR/Selectox I tail gas cleanup

process should the environmental restrictions dictate higher than

96% recovery.

2. CAPITAL INVESTMENT

Capital investment for Recycle Selectox Sulfur Plants should be

competitive with an equivalent size three stage Claus Sulfur Plant.

K-35 Tc.hle 6-1 . ANNUAL OPERATING COSTS FOR CLAUS SULFUR RECOVERY PLANTS WITH INCTI:E~TORSa /

Plant Size , Mq/d (1 td ) Component 5 10 100

~power per Shift 1/ 2 1/2 1/ 2 Direct Labor~ $6.41/hr.b/ $ 28,100 $ 28,100 $ 28,100

Supv. & Fringes@ 40\ D~ 11,200 11,200 11,200 Electric Power@ $0.030/Kwhc/ 1,800 3,500 35,300 Fuel@ $2l.20/lO3m3 {$0.60/MCF)d/ 2,100 4,100 41,300 Maintenance@ 3\ Inv. 22,700 27,200 83,500 Steam Credit @ $1 • l 0/Mg ( $0. 50/~'.LB) c/ (5,400) (10, 800) (108,400) ~ I w Sulfur Credit@ $24 ~61 /Mq ($25/LT) f / (~1,500) (83,000) (830,000) ·a-. Net .Operating Cost 19,000 (19,700) (739,000)

~/ 350 operating days p e~ year, 90~ a2 s gas stream. h/ U.S. Department of ~r,"Monthly Labor Review",October, 1975, p. 96. C/ 1'~unt from Ford, Bacon, and Davis, "Sulfur Recovery Plants", 1971, page 80 1 price from "' Typical Electric Bills, 1974, FPCR-83",Federal Power Commission. d/ Process Research, Inc., EPA Contract 68-02--0242, Task 2, 1973, page 75 (LTR. L.L. Zuber, Stauffer Chemical. to W.D. Beers, dtd. 3-21-72) . eJ Ford, Bacon, & Davis, .QE_. Cit. ~/ Assumes 95% recovery with tail gas . treatment. Table 6-2. ANNUAL COSTS FOR CLAUS SULFUR RECOVERY PIANTS WITH WELLMAN-LORD

Claus Plant Size Mg/d (ltd) Co nent 5 10 100

Hanpo-,.-er Per Shifta/ 2 2 2 Direct Labor@ $6.41/hr. 1J/ $112,400 $112,400 $112,400

Supv. & Fringes@ 40\ DL 45,000 45,000 45,000 Electric ~o~er@ $0.03/Kwhl:y 3,800 7,600 75,600 3 3 Fuel @ $21.20/10 ~ {~0.(0/MCF)a/ 2,100 4,100 41,300 7 .1-'..aintenance @ 3\ INV(Claus) 1,900 . 26,100 82,000 ~ 5\ INV (W-L) 18,300 22,500 89,400

Chemicals, @ $200/ton 50\ NaOHo/ 3,500 7,000 70,000 Soft Water@ $1.14/m3 ($0.?.0/MGAtf/ 100 200 1,700 steam Credit@ $1.10/Ma ($0.50/MLBS)a/ (4,800) (9,600) (96,.400) sulfur Credit@ $24.61/Mgd (~25/LT)f/ . {43 ~700) (87,500) (875,000) Net Operating Cost $158,600 $ _:~27 ,BOO $ (454,000)

. a/ Trip Report: Standard Oil-Company of California El Segundo Refinery,10/15/73 1 C.B, Seaan, EPA. b/ 350 operat~g days per ye~. c/. "Hydrocarbon Processing .. ,_ . ~riL 1973, p. 116 • d/ Scaling Exponent, 0.3. e/ Scal.ing Exponent, 0.6.

f/ ~..ssume 100% sulfur recove::y ~-~- ~ail gas unit. HOT GAS !IY-P/ISS TAIL GAS

1100 · r

nASiC H!£i ROILlR

:,:: I ACID w COND . 11 CX) GAS

•I ' s s s s

COMBUSTION AIR BLIII/CP. _,64 .. • •...··-...... - _.._,.._ ..... --...... ,ru~ ,..,..

N!"-1-- FIGURE 6-1 FLOW DIAGAAH ...... TYPICAL CLAUS PLANT .. -· FOR SULFUR RECOVERY

I I 40 .0 I I I I I I I I 30.0 30.0 20.0 20.0

A 15% H S in acid gas 2 10.0 1 0 50% ,-i s in acid gas ·- 9.0 8:8 2 8.0 8.0 in acid gas (:) 90% H2S 7.0 7.0 6.0 6.0 5.0 5.0 4.o· 4.0 '°-C> 3.0 ~ 3.0 ><

~ 2.0 2.0 -V, J-- V, ~ ,a I ·U w __. '-0 q;: LO ...... J-- 1.0 0.9 a.. o.~ 0.8 ·

0.2 0.2 ·

O. l .___ _.___.'--,__,_~1,_I I II I I I 11111( ·1 I I I I I o. 1 .1 . 3 .4 . 5 . 6 J B 91, 0 2 3 4 5 6 7 8 9 10 20 30 40 60 80 l 00 \ SULFU.R RECOVERY PLANT CAPACITY:V.g/_d,(LT/d}

Figure 6~2 . Claus (3- stage) plus inci~erator - c~pital cost. 40.0.------T I I 11 , -- ,-·11Tm r1 30.0 30.0 20.0 20.0

15% H S in acid g?s A 2 10.0 9.0 10. in acid gas 9. 0 50% H2S 8.0 8. 90% H S in acid gas 7.0 0 2 6.0 7.f6. 5.0 5. 4.cL 3.0 \0--- .-0 3. X 2.0 2. ~ --- -V) I . ..- ~ V) 0 . 0u l.O

_.J 0.9 c::c 1. 0.8 l- 0. 0.7 0... 0.8 -c::c - u 0.7 0.6 0. 6 0.5 0.5 0.4 0.4 - 0.J ·0 •.3 .:. 0.2 0.2

I I J -I t I I I -0~l .3 4 5 6 7 89 10 .1 .2 • 3 • 4 • 5 • 6._7 -. 89 l ,. 0 2

SULFUR RECOVERY PU\NT CAPACITY, Mg/d,(LT/d) 2-sta~ lus Wellman-lord - capital cost. ' ------I--- - t---- I ' I • ~ ' I ; I ' I I I, +==-·----~---- I ' / - ---r--- ~_,~· -/ --=----=----=----=--i ~~:--=..--=..--=..--=..--=..••~--=----=----=----=---·::~t::~':~:~~t~:c:':• ~:~~:. ~.~;•~--t'~t~:,:~ ~===::::--! ------+-----1 ------<,'------=---=---=-· --1------l--- -t--1--'-..--,--, +-,,...·'"- - -l-- --- t-----~ --- /~"ti --,--- -t-----1- - ---l-----1-~...1..+,;•-i....r-"-~+-'--1•I .______I ~------,--,,f----~- ---__!- - - --<-,..,'·------,f------1 ---,- -+----,--1,,,1'-1'---+------,f------' / / , • I/ ✓ I I o I I I I _ _ __: ~,..-'------~'- -+--' ---t---- -+--•-~.,.Y'"-1- - ..:.l....;..l -1--...:...--'-I I - t---,-,--+-_--=_-~:_-·· -+----•~J+-----+----,f---- ·- I >-- - - , -- ~s I ------+--7 ------1------l- ---~--./,._-f-----t------1 _ _ /_ ,<:.J./ _ _ __, - -;/----+-~-- ,--+--~ I .,___ _ ...... ,.. ----1 - ---· - _ -- --+-- - - ·--,--- L . --- _ _ _ _!_ --- ,I ./7 + ---·------:;,,..C.../------1 - - --,- ,' - ---i--- - ~v·_~_c_.___ I - +----...... -- --t-~7-- -•!~- - --f-- 1-----'-'- ---· - - ·-l---- 1-----i-- I ---- -1 ---- h.,1'-----lf-----+-----./ I .... ' >------;---- ._ . ~ ----j ,' /I ./ ----,------l- ---t----,.'"!------;-'/ --- - -l- ,/ I I./ I 1-----ic-- - .._. =-,--= =-=11------l----f-----_-__·-=-:~--=--J--=- ..,c-=/--:~~-•/~:=1-:=--=-:=--=-:~--=-:=1:=--=-:=--=-:=--=-,"--=-./~~ll'i,ii.'~~./--=---=---=---=-t--=---=---=---=---=---=---=-t;--=---=---=---=---=---=-~--J---✓--,-./+-,,_;l!.I :._-+----..;:----1--- -~--~ I 1----~, ·- -za j . ~J - --- 17 I ,,, • ~ ----l----..!...I ~;- --~-:__:._LI ___ 1---- -~•'. ___·_- .1-~--=----=----=----=----+-- - - -l~~:._:=:._-_-_--1_~--=---=-~--=---=---=---=-i'--=---=---=---=---=---=--.:~~~~--.:--_-_,-::.._-:---r:---+;-_--=------~t:.,,,~~.,,,~-~./~::j1:::::::..-+_======j't==---/----::;~/,c___ ! I -J t-'-- - --!-i, --- - 1------1--- - !----,-1 1--'------If-- --,--+--.'~..,."~: --c~ ,J'-lf- ---'.-.L,,- , ---,,-1,,,"---'--,....-'---+-- .~ / ------t-:---+----+,~---+------1::::.,..,::_--j-- ' :.- l .- -I ' I i--.,_',---,-!- -",L~~~•,Jl- ____- --~f-----~--~-+ ---•- +-l- --~--•4,\"/f.-.~,-·...:..., ·---·- A~V~·:"7 ---➔---~L~~~t~"~/ ===1,======1=====~--t;;~:7'2· ~;: ✓· ~~=:i•f;~ :=~:=~:=~:~::=~:=~:=~:=~t=~:=~:=~:=~jt~:=~:=~:=~:~t•;• =~= :~:;~::~;1~~=~~=~:=~:=~~=~:=~:i~~=:j -- I 1 --·- ~:_...... ,- ,.------+- ---:; - - --1--...-''--, ;'f'---'i , X 'v,;-~1.•,V.__ _ _ t-:-,-' _--:-,1-_--_ ✓---:~11/·:::.--=---=---=--=---=---=-~t:--=---=---=---=---=---=---=-~L----1i--'---+------...,,.... ;1c' --==- ---'l---...:...- +-~I -___:-1 --',-"~f--i- __ .1 I 1--=~~~=~~:...:..._--__.-,-~ l""!__, _:======...... , _---:_ __ :.+ •\., _ r~___:_1 1 _...: , _ _._ -_-_-_-_-'_--;+_-_.,.,=====:;;-~:::~~=.:f;=-::::::::j;::::===:======::! 1----.!:~---=-~ ~-----'-l ___ _ ·,----.!--, )' I I r - 7 ! .- I __i_.,_ __ I ...... C-- - --=--=------')- - -l- · _, _ __j ti . -+ . J '/ f ·-h..:"!,, /'j- - .....-1. ----;:'--~f------~ : : . ------1 I · -j-!--~--...·:.,-;L...-~:: _c:___ I ~ - - -- - '. ----7~----;- -· ~ :~--x : ; ~/ : ,_···___ _ '--::::.:1;'::::::::-!t,:::~-::~:~i-1'r-_-_-_-__,-,,,-~----c::l:c--:..:;,_~_..._---- ~:..---=--...!.-I - - ~ ,i,.. ... -- ' / I I / ! • / I - -...,. I I I -- I-' - ~- --+----,-- ---,,t----~-- ,..,L-+--- - ~.,,:-;,,t~~~~~1;~~~~-i•~J,-~?,.,-/;;~:::~.:1;~~~~~~~.t~~~--:~~;j; ...~--1._-;,~ ..::., -...- "li-===--..._"'_~ =---_-_-j_~--=-----=----_-_-+~------=----_-_-,;_-- __,,- ;.....c::.=-- ~--- --: --_J ~ ------'f------+-,+--- I / )' ..... V ,~ . ., - ' ,__ I I 1.'I 1 / 1 / ./ / .I -- .- , 7 .__. ---- r-, t I i / / I .,,,. -~ I• ·:.,- ~ - ,...,.,,-=,.-i-'---...,r'--- -,1,---=--i====------I ..__ _ ...•_ - JO I I If / I ./ • • -, .- I ' LI. , _-,, r, 7 _,,_ I - ' I I /, I/ I ;/ : ...... _, • ' -'- -- • ,, .... ~---...--=---;..• - - ---'l-----~- - --1 nl' l 7 , I ~ I ·./ -:.- • 0 -. _J.,,,,o-" ., • ~ •- 1 / / I ./ I :/ , I : ~ ~ ~ I · 1- I - • ,.- I I I , 1 -, , 1 ✓ , ./ , : _;- - 1 1-u~·.;.-.c---=--1---'---+-•- - - -+---.:...:1--- -.:....I ----l 1-----_+-, - - -- I / . , : / ' . ./ I I · ~· ' : ' ..- I ~ I I tit, !7 - ✓ V ·./ ' ~ I • ' .- ' · --- ; I I __, I/ .,.,., V I V I ; t ' -- ' : I I I I I """'\ . I .11 . 1' I ./ I ! I -- ; I -1 I -- ' I . --- -- I ! I 1 ar _ / 1 7 1' . I ! / · ' _.- • · .....-r 1 __.- I I t I I I I - I ~ I I -;, f V =--- I ~ I ~ I ' I I - I I / ./• I ' I I ~I a/ 7 ! 7 1 ../ I : -- 1-"'.' 1 1 I 7 · ./ Y • , I ..- : : ' I 11 . ' --- -- 'I ' : I - ' ------1 --' , . ,, .,. ~ -ca-~---~:.---:::;,--=--+-- ---+---'--;--,+-' --- +--~: ....__..,.'-++:---;f-- - - t------+-----+-----a,-----'-,' ------+------a.,__ ___ - -;:;J_ . I 7 ./ I/ ..-- : ; ,C:_ I,. / .- .,-- , __..; I I _ LJ ___ I// v - .'-"-___,., I : ' • __ I _.._·1 . - ' 1-----~ •· - ---J.~-1- ~---===---....-,· ____ ·· --,.t :_-::-_-_-_-_- _-l--l-f- -~-:._-_--=..-_-;_-'-1- - - - ; --- : ~i -+---,-: - :--1--~--.f--!- :_ =·-- _-_-±.... --= - -+--:= +------­I j =t=- I t ~-:_-+---I ' -----1----o- I~ .' ,----f----':1-----1-a.....;,-'-~-+,- - -'--'---1----1---- I I ,_ I - I ; • ... : - ... ' - '-!. . I - I + "" I,,. I • L I ~ ,_ 1--, ---1, --- - ., ..... I l:J ' •.;;;:o ,' : I ; I ! '- ... i ! I I ' I ' , _P __!,_ • : I ·_: . .$"f_ i . --31) I :-, u I I ; :-;D I • 1 "'1 1 : 11 1 :, 11 1l ; : l 1 ll l lil '. I l ! l ! . j l l•]! I ~- - 111 ; ~• I I ,I , I , 1 1 1 _j_~J - · ' . ' ' I I I I . I : t I '· I ! ·1 ; I I I I I i I ; I _! 0 ! .l..!..! l .:_1_ , j - J.....!_ ' ..!...t:~...!...~-~ ! : J . ' I I ' : I I I J I I . ' l I ' I ' • I i ' ! ' ' . I ; I I : I ! ; i ,....,....-J ' ' 4 : ' ' I ' ' ! . ' . ; . , __1_ ' .. I ·-.-7 I I I ~=J-=-----:r:-: ~ FIGURE 6-4. d+±J s_y(j ....~i :w:...t: '""t"" iv"(J ;-i~-Gis·-·_( ·<·]}JcJ~~~~Ff7n~v--- +·7 -'_- , ~-~~- : I : : : -.--•. - ' ,,- - ~ - ...:.::~ I -== -~--- ·r-, ::· ·~----c-i.· .. .--.~i-·, ' '._j'! -1--+-I ', ,• · ,1 • ,' ; I I • I _·_. ~-rp!.! _.:. ---1 .!.~e-: q·· ...T .-- . 7 r - --,-,--.-. + . -; -;- : J ! I I I .• - -i ..J ! I I . .... J....!..J I _; . . -~~ ~_!_ I . +- -·.' _,I _:' ,7 ·. I______; . I --r~.·. ·---:-o ,l--;--·'. •...... ' •, Ti"",, I : : · I . - - · I . · T , ~ - - . - ,- -·_·_-_..c.;.....:...!..i..l..c... ..:.• __,...1- ~--- · -'-'__,_ ____ , _ _ __....._ ___ ....._ _ _ _ _,_ ____=r....1.. _ ___i ...;__ _ _ .L_ ___ _ J..L..:__:__· __...!._.:...._~_ ...!._...:.....'.._~!....l Figure 6-5 THREE STAGE SELECTOX PROCESS WITH RECYCLE

HTM" HTM"

AIR-----

SELECTOX ----.::::: SELECTOX SELECTOX OR OR HTM" CATALYST ALUMINA ALUMINA ------=-.IL-- CATALYST __ CATALYST

---- TAIL GAS TO TREATING OR INCINERATOR ACID GAS ----t FEED IITM" 1 TO 40% HTM" t-12S RECYCLE BLOWER

s s s "HTM = HEAT TRANSFER MEDIUM APPROXIMATE SULFUR YIELD 82% 12% 2%

I SECTION 7

REFERENCES

1. Beaven, D.K., et al, "Developments in Selectox Technology," paper presented at the XX National Convention of AIChE (joint Mexican & American AIChE Meeting), October 15-17, 1980, Acapulco, Mexico.

2. Beaven, D.K., et al, "High Recovery, Lower Emissions Promised for Claus-Plant Tail Gas," The Oil and Gas Journal, March 12, 1979, pp. 76-80.

3. Berry, R.I., "Treating Hydrogen Sulfide: When Claus Is Not Enough," ­ Chemical Engineering, October 6, 1980, pp. 92-93.

4. Dingman, J.C., and Moore, T.F., "Compare DGA and MEA Sweetening Methods," Hydrocarbon Processing, Vol. 47, No. 7, July 1968.

5. Dingman, J.C., and Moore, T.F., "Gas Sweetening with Diglycolamine," Proceedings of the 1968 Gas Conditioning Conference, University of Oklahoma, Norman, Oklahoma.

6. Ducksworth, G.L., and Geddes, J.H., "Natural Gas desulfurized by the Iron Sponge Process," The Oil and Gas Journal, September 13, 1965.

7. Dunn, C.L., Freitas, E.R., Hill, E.S., and Sheeler, J.E.R., "Shell Reveals Commercial Data on Sulfinol Process,: The Oil and Gas Journal, March 29, 1965.

8. Fails, J.C., and Harris, W.D., "Practical Way to Sweeten Natural Gas," · The Oil and Gas Journal, July 11, 1960.

9. Goar, B.G., "Sulfinol Process Has Several Key Advantages," The Oil and Gas Journal, June 30, 1969.

10. Goar, B.G., "Today's Gas Treating Processes," Proceedings of the 1971 Gas Contitioning Conference, University of Oklahoma, Norman, Oklahoma.

11. Goar, B.G., "Today's Sulfur Recovery Processes," Hydrocarbon Processing, Vol. 47, No. 9, September, 1968.

1 2. Gustaf son, D. J. and Healy, M. J., "Removal of Hydrogen Sulfide from Natural Gas/Carbon Dioxide Mixtures with Molecular Sieves," Proceedings of the 1968 Gas Conditioning Conference, University of Oklahoma, Norman, Oklahoma.

13. Haas, R.H., Ingalls, M.N., Trinker, T.A., Goar, B. Gene, Purgason, R.S., "Packaged Selectox Units - A New Approach to Sulfur Recovery." Paper presented at the 60th Annual Gas Processors Association Convention, San Antonio, Texas, March 23 - 25, 1981.

K-43 14. Hegwer, A. M., arrl Harris, R. A., 11 Selexol Solves High H S/C0 Problens, 11 2 2 Hydrocarlxm Processing, Vol. 49, No. 4, April, 19 70 .

15. Holder, H. L., 11 Diglycolamine - A Pranising New Acid-cas Rerrover," rn,,e Oil and Gas Journal, May 2, 1966.

16. Kool, A.. L., and Riesenfeld, F. C., Gas Purification, McGraw-Hill Book Conpmy, Inc. , New York City, New York, 1960.

17. Maddox, R. N., and Burns, M. D., "Designing a Hot Carbonate Process," The Oil and Gas Journal, Noverrber 13, 1967.

18. Maddox, R. N., and Burns, M. D., "Hot Carbonate - Another Possibility," 'Ihe Oil and Gas Journal, October 9, 196 7.

19 . Maddox, R. N., and Burns, M. D., "Iron-Oxide Process Design calculations," rn,,e Oil and Gas Journal, August 12, 1968 .

20. Maddox, R. N. , and Burns, M. D., "MFA Process to be Considered First, 11 Th= Oil and Gas Journal, August 21, 196 7.

21. Maddox, R. N., and Burns, M. D., "Physical Solution is the Key to rn,,ese Treating Processes," 'Ihe Oil and Gas Journal, Janua:ry 8, 1968 .

22. Mason, J. R. , and Griffith, T. E. , "A Case History - Conversion of a sweetening Solution fran MFA to OOA, 11 Proceedings of the 1969 Gas Corrlitioning Conference, University of Oklahoma, Noman, Oklahana.

23 • Nicklin, T., and Bnmner, E. "Hew Stretford Process is Working," Hydrocarbon Processing, Decenber, 1961.

24. Perry, C.R., "A New IDok at Iron Sponge Treatrrent of Sour Gas," Proceedings of the 1970 Gas Conditioning Conference, University of Oklahorra, No.rman, Oklahana.

25 . Perry, C. R., "Basic Design and Cost Data on MEA Treat ing Units, 11 Portable Treaters, Inc., OOessa, Texas.

26. Per:ry, C. R., "Design and Operating Arnire Units for Trouble Free Unattended Operations," Proceedings of the 1969 Gas Conditioning Conference, University of Oklahoma, Nonrian, Cklahana.

27. Rcsen, W. D. , "Here's a Quick Design Method for Amine sweetening Plants," 'Ihe Oil and Gas Journal, March 18, 1968.

28. Rushton, W. w., and Hays, w., "Selective Adsorption to Renove HiS," The Oil and Gas Journal, Septerrber 18, 1961.

29 • Scheinrian, W. L., "Selection of Total Sulfur Recovery Systens Errploying the Stretford Process," Proceedings of the 1972 Gas Conditioning Conference., University of Oklahorra, No.rman, Oklahana.

30. Shell, A. D., "Consider Basic Prd:>lans in Irrproving MFA Filtration," 'Ihe Oil and Gas Journal, February 12, 1968.

K-44 31. 8wai.m, C. D., "Gas Sweetening Processes of the 1960's," Hydrocarbon Processing, Vol. 49, N:>. 3, March, 19 70 •

32. 8wai.m, C. D., "Takahax Desulfurization Process, 11 Proceedings of the 1972 Gas Conditioning Conference, University of Oklahana, Norman, Oklahana.

33 • 'Iaylor, D. K., "HCM to Desulfurize Natural Gas, 11 A series in '!he Oil and Gas Journal, N:>verrber 5 and N:>venber 19, Decenber 3 and Decerrber 10, 19 56 •

34. 'Ihonas, T. L., and Clark, E. L., "Molecular Sieves Reduce Econcrni.c Operational Process Problans, 11 'Ihe Oil and Gas Jow:nal, August 12, 1968

35. Tavnsend, F. M., arrl Reid, L. s., "N:!west Sulfur Recovery Process, 11 Petroleum Refiner, Novanber, 1958.

36. zapffe, F., "Gas sweetening," Proceedings of the 1965 Gas Conditioning Conference, University of Oklahorra, N:>nnan, Oklahana.

37. zapffe, F., "Iron Sponge Renoves M:rcaptans, 11 'llle Oil and Gas Journal, August 19, 1963 •

K-45