New Insights Into the Mechanism of Action of Viloxazine: Serotonin and Norepinephrine Modulating Properties

Total Page:16

File Type:pdf, Size:1020Kb

New Insights Into the Mechanism of Action of Viloxazine: Serotonin and Norepinephrine Modulating Properties Journal of Experimental Pharmacology Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH New Insights into the Mechanism of Action of Viloxazine: Serotonin and Norepinephrine Modulating Properties This article was published in the following Dove Press journal: Journal of Experimental Pharmacology Chungping Yu1 Background: Viloxazine was historically described as a norepinephrine reuptake inhibitor Jennie Garcia-Olivares1 (NRI). Since NRIs have previously demonstrated efficacy in attention deficit/hyperactivity Shawn Candler1 disorder (ADHD), viloxazine underwent contemporary investigation in the treatment of Stefan Schwabe1 ADHD. Its clinical and safety profile, however, was found to be distinct from other Vladimir Maletic2 ADHD medications targeting norepinephrine reuptake. Considering the complexity of neu­ ropsychiatric disorders, understanding the mechanism of action (MoA) is an important 1 Supernus Pharmaceuticals, Inc., differentiating point between viloxazine and other ADHD medications and provides phar­ Rockville, MD, USA; 2Department of Psychiatry/Behavioral Science, University macology-based rationale for physicians prescribing appropriate therapy. of South Carolina School of Medicine, Methods: Viloxazine was evaluated in a series of in vitro binding and functional assays. Its Greenville, SC, USA effect on neurotransmitter levels in the brain was evaluated using microdialysis in freely moving rats. Results: We report the effects of viloxazine on serotoninergic (5-HT) system. In vitro, viloxazine demonstrated antagonistic activity at 5-HT2B and agonistic activity at 5-HT2C receptors, along with predicted high receptor occupancy at clinical doses. In vivo, viloxazine increased extracellular 5-HT levels in the prefrontal cortex (PFC), a brain area implicated in ADHD. Viloxazine also exhibited moderate inhibitory effects on the norepinephrine trans­ porter (NET) in vitro and in vivo, and elicited moderate activity at noradrenergic and dopaminergic systems. Conclusion: Viloxazine’s ability to increase 5-HT levels in the PFC and its agonistic and antagonistic effects on certain 5-HT receptor subtypes, which were previously shown to suppress hyperlocomotion in animals, indicate that 5-HT modulating activity of viloxazine is an important (if not the predominant) component of its MoA, complemented by moderate NET inhibition. Supported by clinical data, these findings suggest the updated psychophar­ macological profile of viloxazine can be best explained by its action as a serotonin norepi­ nephrine modulating agent (SNMA). Keywords: viloxazine, ADHD, serotonin norepinephrine modulating agent, norepinephrine transporter, mechanism of action, SPN-812 Introduction Viloxazine was firstapproved in the 1970s in the United Kingdom and in several other European countries for the treatment of depression in adults, spurring a series of mechanistic studies into the compound during the 1970s and 1980s.1,2 During these Correspondence: Chungping Yu Supernus Pharmaceuticals, Inc., 9715 Key decades, viloxazine was characterized as a norepinephrine (NE) reuptake inhibitor West Avenue, Rockville, MD 20850, USA (NRI), which was supported by its similarity to the tricyclic antidepressants in its Tel +1 301 838 2679 3–5 Email [email protected] ability to potentiate noradrenergic effects across multiple animal models. submit your manuscript | www.dovepress.com Journal of Experimental Pharmacology 2020:12 285–300 285 DovePress © 2020 Yu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php http://doi.org/10.2147/JEP.S256586 and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Yu et al Dovepress Based on the original mechanism of action (MoA) and Table 1 Monoamine Uptake Inhibition, Transporter Binding the established therapeutic benefit of targeting NE neuro­ Affinity, and Selectivity for Viloxazine, Atomoxetine, and transmission in the treatment of attention-deficit/hyperac­ Reboxetine. tivity disorder (ADHD), an extended-release formulation Viloxazine Atomoxetine Reboxetine of this molecule, SPN-812 (viloxazine extended-release), [3H]-NE uptake 2300a 3.4b 8.2c is currently being developed for the treatment of ADHD in [3H]-5-HT uptake >10,000a 390b 1070c children, adolescents, and adults.6–9 In a proof-of-concept [3H]-DA uptake NCa 1750b NCc d d e e f study and recently completed Phase 3 trials,6–8 SPN-812 NET binding 155 2 –5 1.1 –11 SERT binding 17,300d 9d–77e 129e–440f was effective in reducing symptoms of hyperactivity, DAT binding >100,000d 1080d–1451e >10,000f impulsivity, and inattention in children and adolescents KD (SERT)/KD (NET) 111 4 10 with ADHD. Treatment with SPN-812 exhibited Ki (SERT)/Ki (NET) 15 40–117 −9 a a safety profile somewhat different from that of commonly Notes: All values in 10 M. Ki calculated from rat hypothalamic synaptosomes uptake b c assay. Ki calculated from rat cerebral cortex synaptosomes uptake assay. Ki calculated prescribed NRI antidepressants and ADHD pharma­ d from rat striatal synaptosomes uptake assay. KD calculated from competition assays cotherapies with potent NRI activity. Specifically, in con­ using [3H]-nisoxetine for hNET, [3H]-imipramine for hSERT, and [3H]-WIN35428 for e 3 3 hDAT. Ki calculated using specific radiolabeled ligands, [ H]-nisoxetine for NET, [ H]- trast to potent noradrenergic agents, SPN-812 3 f paroxetine for SERT, and [ H]-WIN35428 for DAT. Ki calculated using specific radiola­ demonstrated a low incidence of cardiac-related adverse beled ligands, [3H]-nisoxetine for NE, [3H]-citalopram for 5-HT, and [3H]-WIN35428 for 15–18 events.10−14 The low incidence of cardiovascular events DA uptake sites. Data from these studies. Abbreviations: 5-HT, serotonin; DA, dopamine; DAT, dopamine transporter; KD, (such as increased blood pressure or heart rate) associated dissociation constant; Ki, inhibition constant; NC, not calculated; NE, norepinephr­ ine; NET, norepinephrine transporter; SERT, serotonin transporter. with viloxazine—both historically and in these contempor­ ary investigations—suggests that viloxazine possesses only moderate noradrenergic activity.2,10,12 Distinct clinical profile of viloxazine compared to In addition to its clinical profile, historical in vitro NRIs observed in recent ADHD clinical trials, along pharmacology data indicate that the inhibitory potency of with limited in vitro and animal data emerging from viloxazine for NE and 5-HT uptake is different from that previous studies, led us to hypothesize a more complex of other known NRIs, such as atomoxetine and reboxetine. MoA of viloxazine than was previously suggested. Previous data have demonstrated that viloxazine exhibits A series of pharmacological studies using current tech­ a more moderate inhibitory effect on NE uptake, with an niques and methodologies were conducted in order to inhibitory constant (Ki) of 2300 nM, compared to the Ki of further elucidate the activity of viloxazine in neuro­ 3.4 and 8.2 nM for atomoxetine and reboxetine, respec­ transmitter systems, including comprehensive radioli­ tively (Table 1).15–18 Viloxazine is almost devoid of any gand binding affinity assays and in vitro cellular 5-HT uptake inhibitory activity (Ki > 10,000 nM), while functional activity assays at key monoamine transpor­ atomoxetine and reboxetine have a moderate potency for ters and receptors, and a brain microdialysis study. The 5-HT uptake inhibition (Ki = 390 and 1070 nM, respec­ microdialysis study focused on the prefrontal cortex tively). Likewise, viloxazine has consistently demon­ (PFC), nucleus accumbens (Acb), and amygdala strated a relatively low affinity towards the NE (Amg). The PFC is an established area associated transporter (NET) in in vitro binding competition assays. with ADHD pathophysiology, involving the regulation Still, viloxazine exhibits higher selectivity towards NET of attention, behavior, and emotions through extensive over the 5-HT transporter (SERT) (dissociation constant projections to multiple regions including Acb and KD ratio = 110) and almost negligible affinity for the Amg, which also play a key role in substance use 20,21 dopamine (DA) transporter (DAT) (KD > 100,000 nM; disorders. To better understand the role of viloxa­ Table 1). zine in modulating neurotransmitter systems involved Furthermore, several in vitro and in vivo observations in ADHD and its potential risk of misuse, the neuro­ from previous studies have indicated that viloxazine might transmitter levels in all three brain regions were enhance 5-HT neurotransmission.19 Evidence also sug­ investigated. gests that viloxazine lacks the characteristic neurochemical These studies will help improve current understanding properties of the amphetamines or monoamine oxidase of the MoA of viloxazine providing a better pharmacol­ inhibitors, and is absent of inhibitory activity towards ogy-based rationale to treat patients with ADHD and pos­ peripheral acetylcholine (ACh) or histamine (His).2,3 sibly other neuropsychiatric disorders. 286 submit your
Recommended publications
  • Antinociceptive Effects of Monoamine Reuptake Inhibitors in Assays of Pain-Stimulated and Pain-Depressed Behaviors
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 Antinociceptive Effects of Monoamine Reuptake Inhibitors in Assays of Pain-Stimulated and Pain-Depressed Behaviors Marisa Rosenberg Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2715 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ANTINOCICEPTIVE EFFECTS OF MONOAMINE REUPTAKE INHIBITORS IN ASSAYS OF PAIN-STIMULATED AND PAIN-DEPRESSED BEHAVIOR A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University By Marisa B. Rosenberg Bachelor of Science, Temple University, 2008 Advisor: Sidney Stevens Negus, Ph.D. Professor, Department of Pharmacology/Toxicology Virginia Commonwealth University Richmond, VA May, 2012 Acknowledgement First and foremost, I’d like to thank my advisor Dr. Steven Negus, whose unwavering support, guidance and patience throughout my graduate career has helped me become the scientist I am today. His dedication to education, learning and the scientific process has instilled in me a quest for knowledge that I will continue to pursue in life. His thoroughness, attention to detail and understanding of pharmacology has been exemplary to a young person like me just starting out in the field of science. I’d also like to thank all of my committee members (Drs.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0203752 A1 Blough Et Al
    US 201302O3752A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0203752 A1 Blough et al. (43) Pub. Date: Aug. 8, 2013 (54) PHENYLMORPHOLINES AND ANALOGUES Publication Classification THEREOF (51) Int. Cl. (76) Inventors: Bruce E. Blough, Raleigh, NC (US); C07D 265/30 (2006.01) Richard Rothman, Ellicott City, MD (52) U.S. Cl. (US); Antonio Landavazo, Raleigh, NC CPC .................................... C07D 265/30 (2013.01) (US); Kevin M. Page, Willow Spring, USPC ......... 514/231.2: 544/106; 544/174: 544/163 NC (US); Ann Marie Decker, Durham, NC (US) (57) ABSTRACT (21) Appl. No.: 13/698,892 Provided herein are compounds and prodrugs and methods of (22) PCT Filed: May 20, 2011 preparation of compounds and prodrugs that are capable of functioning as releasers and/or uptake inhibitors of one or (86). PCT No.: PCT/US2011/037361 more monoamine neurotransmitters, including dopamine, serotonin, and norepinephrine. Also provided are pharmaceu S371 (c)(1), tical compositipos1u1ons compris1ng one or more OIf uneseth com (2), (4) Date: Mar. 4, 2013 pounds or prodrugs, which may further comprise one or more Related U.S. Application Data additional therapeutic agents. Also provided are methods of treatment of various conditions that may be responsive to (60) Provisional application No. 61/347,259, filed on May modification of monoamine neutrotransmitter levels, such as 21, 2010. pre-obesity, obesity, addiction, and depression. US 2013/0203752 A1 Aug. 8, 2013 PHENYLMORPHOLINES AND ANALOGUES 0006 Another anorectic, which was prescribed for the THEREOF short-term treatment of obesity, is phenmetrazine Phenmetra Zine is reportedly a potent Substrate for norephinephrine and FEDERALLY SPONSORED RESEARCHOR dopamine transporters and displays stimulant properties DEVELOPMENT similar to those of amphetamines.
    [Show full text]
  • The Use of Boron-Doped Diamond Electrode for the Determination of Selected Biocides in Water Samples
    water Article The Use of Boron-Doped Diamond Electrode for the Determination of Selected Biocides in Water Samples Katarzyna Mielech-Łukasiewicz * and Barbara Starczewska Institute of Chemistry, University of Białystok, Ciołkowskiego 1 K, 15-245 Białystok, Poland * Correspondence: [email protected]; Tel.: +48-85-738-80-65 Received: 24 June 2019; Accepted: 30 July 2019; Published: 31 July 2019 Abstract: In recent years, the remains of chemical substances in water environments, referred to as emerging organic contaminations, have been more and more often studied by analysts. This work shows the possibility of using a boron-doped diamond electrode to determine low concentration levels of remains of pharmaceuticals in environmental samples. The study focused on selected biocides from the group of azole fungicides (itraconazole and posaconazole) and was performed using quick and sensitive electrochemical methods. The cyclic voltammetry method was used in order to determine the properties of these compounds, whereas analytical characterization was performed using square wave voltammetry. The work involved the specification of the optimum electrooxidation conditions of the selected fungicides, their comparative characterization, and the development of a new, sensitive methods of itraconazole and posaconazole assay. The proposed procedures allowed us to determine itraconazole in the range from 7.9 10 8 to 1.2 10 6 moL L 1 and posaconazole in the range from × − × − · − 5.7 10 8 to 8.44 10 7 moL L 1. The relative standard deviation of the measurements did not × − × − · − exceed 5.85%. The developed procedures were successfully used to determine itraconazole and posaconazole concentration in water samples and the assay recovery was between 93.5% and 102.8%.
    [Show full text]
  • Joel L. Young, M.D
    Joel L. Young, M.D. 441 South Livernois Road, Suite 100 Rochester Hills, Michigan 48307 Phone: 248-608-8800 / Fax: 248-608-2490 / E-mail: [email protected] Professional History 2000 – Present: Chief Medical Officer and Founder, Clinical Trials Group at the Rochester Center for Behavioral Medicine, Rochester Hills, MI 1993 – Present: Medical Director and Founder, Rochester Center for Behavioral Medicine, Rochester Hills, MI (www.rcbm.net). 2008 (Current): Clinical Associate Professor of Psychiatry, Wayne State University, Detroit, MI. 2000 – 2007: Medical Director, Crittenton Network for Behavioral Health, Rochester, MI. 2000 – 2002: Chief of Staff, Department of Psychiatry, Crittenton Hospital, Rochester, MI. July, 1993 – 1997: Medical Director, Psychiatric Emergency Services, Crittenton Hospital. July, 1992 – June, 1993: Chief Resident of Adult Services, Department of Psychiatry, University of Michigan Hospitals, Ann Arbor, MI. Oct. 1991-Sept. 1993: Unit Psychiatrist, Bon Secours Adolescent Mental Health Unit, Grosse Pointe, MI. August, 1991 – 1996: Consulting Psychiatrist, Beacon Hill Clinic, Birmingham, MI. July, 1991 – June, 1992: Consulting Psychiatrist, Washtenaw County Community Mental Health Services, Ann Arbor, MI. July, 1990 – June, 1992: House Officer, Department of Psychiatry, University of Michigan Hospitals. June, 1989 – June, 1990: Intern, Departments of Internal Medicine, Pediatrics and Psychiatry, University of Michigan Hospitals. Boards 2018 Fellow: American Board of Psychiatry and Neurology 2017 Re-certification of Geriatric Qualifications by the American Board of Psychiatry and Neurology through 2027. 2017 Re-certification of Forensic Qualifications by the American Board of Psychiatry and Neurology through 2027 2014 Re-Certification by the American Board of Psychiatry and Neurology 2007 Re-certification by the American Board of Adolescent Psychiatry.
    [Show full text]
  • Supported by an Educational Grant from Sunovion Pharmaceuticals Inc. Faculty
    Supported by an educational grant from Sunovion Pharmaceuticals Inc. Faculty Leslie Citrome, MD, MPH C. Brendan Montano, MD Clinical Professor of Psychiatry and CT Clinical Research Behavioral Sciences Director, Principal Investigator New York Medical College Private Practice, Internal Medicine Valhalla, New York Cromwell, Connecticut Faculty Disclosure • Dr. Citrome: Consultant—Acadia, Alkermes, Allergan, Intra-Cellular Therapeutics, Janssen, Lundbeck, Merck, Neurocrine, Noven, Osmotica, Otsuka, Pfizer, Shire, Sunovion, Takeda, Teva, Vanda; Royalties—Springer Healthcare (book), UpToDate (reviewer), Wiley (Editor in Chief, International Journal of Clinical Practice); Shareholder (and spouse)—Bristol-Myers Squibb, Eli Lilly, J & J, Merck, Pfizer; Speaker—Acadia, Alkermes, Allergan, Janssen, Lundbeck, Merck, Neurocrine, Otsuka, Pfizer, Shire, Sunovion, Takeda, Teva. • Dr. Montano: Consultant—Allergan, Shire/Takeda Pharmaceutical Company Ltd., Sunovion Pharmaceuticals Inc., Arbor Pharmaceuticals Ltd.; Research Support—Allergan, Avanir, Sunovion Pharmaceuticals Inc., Tonix, BioHaven, Axsome Therapeutics, Arbor Pharmaceuticals Ltd.; Speakers Bureau— Allergan, Shire/Takeda Pharmaceutical Company Ltd., Arbor Pharmaceutical Ltd. Disclosure • The faculty have been informed of their responsibility to disclose to the audience if they will be discussing off-label or investigational use(s) of drugs, products, and/or devices (any use not approved by the US Food and Drug Administration). – The off-label and investigational use of antidepressants, topiramate,
    [Show full text]
  • Horizon Scanning Status Report June 2019
    Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI Institute under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG- 2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions. A representative from PCORI served as a contracting officer’s technical representative and provided input during the implementation of the horizon scanning system. PCORI does not directly participate in horizon scanning or assessing leads or topics and did not provide opinions regarding potential impact of interventions. Financial Disclosure Statement None of the individuals compiling this information have any affiliations or financial involvement that conflicts with the material presented in this report. Public Domain Notice This document is in the public domain and may be used and reprinted without special permission. Citation of the source is appreciated. All statements, findings, and conclusions in this publication are solely those of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI) or its Board of Governors.
    [Show full text]
  • Carbon-I I-D-Threo-Methylphenidate Binding to Dopamine Transporter in Baboon Brain
    Carbon-i i-d-threo-Methylphenidate Binding to Dopamine Transporter in Baboon Brain Yu-Shin Ding, Joanna S. Fowler, Nora D. Volkow, Jean Logan, S. John Gatley and Yuichi Sugano Brookhaven National Laboratory, Upton, New York; and Department of Psychiatry, SUNY Stony Brook@Stony Brook@NY children (1). MP is also used to treat narcolepsy (2). The The more active d-enantiomer of methyiphenidate (dI-threo psychostimulant properties of MP have been linked to its methyl-2-phenyl-2-(2-piperidyl)acetate, Ritalin)was labeled with binding to a site on the dopamine transporter, resulting in lic (t1,@:20.4 mm) to characterize its binding, examine its spec inhibition of dopamine reuptake and enhanced levels of ificftyfor the dopamine transporter and evaluate it as a radio synaptic dopamine. tracer forthe presynapticdopaminergicneuron. Methods PET We have developed a rapid synthesis of [11C]dl-threo studies were canied out inthe baboon. The pharmacokinetics of methylphenidate ([“C]MP)to examine its pharmacokinet r1c]d-th@O-msth@ha@idate @f'1C]d-thmo-MP)weremeasured ics and pharmacological profile in vivo and to evaluate its and compared with r1cY-th@o-MP and with fts racemate ff@1C]fl-thmo-meth@1phenidate,r1c]MP). Nonradioact,ve meth suitability as a radiotracer for the presynaptic dopaminergic ylphenidate was used to assess the reveralbilityand saturability neuron (3,4). These first PET studies of MP in the baboon of the binding. GBR 12909, 3@3-(4-iodophenyI)tropane-2-car and human brain demonstrated the saturable [1‘C]MP boxylic acid methyl ester (fi-Cfl), tomoxetine and citalopram binding to the dopamine transporter in the baboon brain were used to assess the binding specificity.
    [Show full text]
  • Functional Characterization of the Dopaminergic Psychostimulant Sydnocarb As an Allosteric Modulator of the Human Dopamine Transporter
    biomedicines Article Functional Characterization of the Dopaminergic Psychostimulant Sydnocarb as an Allosteric Modulator of the Human Dopamine Transporter Shaili Aggarwal 1, Mary Hongying Cheng 2 , Joseph M. Salvino 3 , Ivet Bahar 2 and Ole Valente Mortensen 1,* 1 Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; [email protected] 2 Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.H.C.); [email protected] (I.B.) 3 The Wistar Institute, Philadelphia, PA 19104, USA; [email protected] * Correspondence: [email protected] Abstract: The dopamine transporter (DAT) serves a critical role in controlling dopamine (DA)- mediated neurotransmission by regulating the clearance of DA from the synapse and extrasynaptic regions and thereby modulating DA action at postsynaptic DA receptors. Major drugs of abuse such as amphetamine and cocaine interact with DATs to alter their actions resulting in an enhancement in extracellular DA concentrations. We previously identified a novel allosteric site in the DAT and the related human serotonin transporter that lies outside the central orthosteric substrate- and cocaine-binding pocket. Here, we demonstrate that the dopaminergic psychostimulant sydnocarb is a ligand of this novel allosteric site. We identified the molecular determinants of the interaction between sydnocarb and DAT at the allosteric site using molecular dynamics simulations. Biochemical- Citation: Aggarwal, S.; Cheng, M.H.; Salvino, J.M.; Bahar, I.; Mortensen, substituted cysteine scanning accessibility experiments have supported the computational predictions O.V. Functional Characterization of by demonstrating the occurrence of specific interactions between sydnocarb and amino acids within the Dopaminergic Psychostimulant the allosteric site.
    [Show full text]
  • Compositions and Methods for Selective Delivery of Oligonucleotide Molecules to Specific Neuron Types
    (19) TZZ ¥Z_T (11) EP 2 380 595 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.10.2011 Bulletin 2011/43 A61K 47/48 (2006.01) C12N 15/11 (2006.01) A61P 25/00 (2006.01) A61K 49/00 (2006.01) (2006.01) (21) Application number: 10382087.4 A61K 51/00 (22) Date of filing: 19.04.2010 (84) Designated Contracting States: • Alvarado Urbina, Gabriel AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Nepean Ontario K2G 4Z1 (CA) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Bortolozzi Biassoni, Analia Alejandra PT RO SE SI SK SM TR E-08036, Barcelona (ES) Designated Extension States: • Artigas Perez, Francesc AL BA ME RS E-08036, Barcelona (ES) • Vila Bover, Miquel (71) Applicant: Nlife Therapeutics S.L. 15006 La Coruna (ES) E-08035, Barcelona (ES) (72) Inventors: (74) Representative: ABG Patentes, S.L. • Montefeltro, Andrés Pablo Avenida de Burgos 16D E-08014, Barcelon (ES) Edificio Euromor 28036 Madrid (ES) (54) Compositions and methods for selective delivery of oligonucleotide molecules to specific neuron types (57) The invention provides a conjugate comprising nucleuc acid toi cell of interests and thus, for the treat- (i) a nucleic acid which is complementary to a target nu- ment of diseases which require a down-regulation of the cleic acid sequence and which expression prevents or protein encoded by the target nucleic acid as well as for reduces expression of the target nucleic acid and (ii) a the delivery of contrast agents to the cells for diagnostic selectivity agent which is capable of binding with high purposes.
    [Show full text]
  • DRUGS and DRIVING: January 1978 a SELECTED BIBLIOGRAPHY 6
    Technical Report Pocumtotim Pago 1. Rmrr He I. krrmmt Acce#r~mMe. (<izi19 ----- -- J. Ropott Oete DRUGS AND DRIVING: January 1978 A SELECTED BIBLIOGRAPHY 6. Pr~orn~ng~~gan~gotion code ----- . 8. Pmrfomrng Organctat~onUrnport NO. Alan C. Donelson UM-HSRI-78-3 10 Woh Un~tNo (TRAIS) I I. Conttect or Grant No. DOT-HS-7-01530 13. Type of Repoft and Petlod Covmrd ---------- '1 dministration , July 1975 - November 1976 14. Sponsoring Agency Codr This report presents a first supplement to Drugs and Driving: A Selected Bibliography (HS - 802 188), a bibliography of literature dealing with the relationship between drug use (other than alcohol alone) and highway safety. This supplement both updates the parent volume and expands coverage in certafn research areas related to the field of drugs and highway safety. In particular, 1i terature pertaining to drug usage patterns and drug analytical methodology has been included. A detailed description of the 1i terature scope and document selection process is provided. I I The bi bliography consists of four appendices, including a Topical Index, an Author Index, a Title Index, and Abstracts of nearly 400 i articles. A revised topical index was developed to improve user access to document abstracts. Within the topical index are cross-referenced lists of drugs by name and by usage. - ----&* 17. KO? Words 18. Dimhhtion Stotrmmnt Drugs, Drug Impaired Driving, Drug Avai labil ity is unlimited. Document Effect\, Drug Analytical Method01 ogy, may be re1eased to PIational Technical Drug Concentration-Effect Relation- 1 Information Service, Springfield, VA ships, Countermeasures 22161 for sale to public.
    [Show full text]
  • Monoamine Reuptake Inhibitors in Parkinson's Disease
    Hindawi Publishing Corporation Parkinson’s Disease Volume 2015, Article ID 609428, 71 pages http://dx.doi.org/10.1155/2015/609428 Review Article Monoamine Reuptake Inhibitors in Parkinson’s Disease Philippe Huot,1,2,3 Susan H. Fox,1,2 and Jonathan M. Brotchie1 1 Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8 2Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399BathurstStreet,Toronto,ON,CanadaM5T2S8 3Department of Pharmacology and Division of Neurology, Faculty of Medicine, UniversitedeMontr´ eal´ and Centre Hospitalier de l’UniversitedeMontr´ eal,´ Montreal,´ QC, Canada Correspondence should be addressed to Jonathan M. Brotchie; [email protected] Received 19 September 2014; Accepted 26 December 2014 Academic Editor: Maral M. Mouradian Copyright © 2015 Philippe Huot et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The motor manifestations of Parkinson’s disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters.
    [Show full text]
  • Mechanism of Action of Antidepressants and Mood Stabilizers
    79 MECHANISM OF ACTION OF ANTIDEPRESSANTS AND MOOD STABILIZERS ROBERT H. LENOX ALAN FRAZER Bipolar disorder (BPD), the province of mood stabilizers, the more recent understanding that antidepressants share has long been considered a recurrent disorder. For more this property in UPD have focused research on long-term than 50 years, lithium, the prototypal mood stabilizer, has events, such as alterations in gene expression and neuroplas- been known to be effective not only in acute mania but ticity, that may play a significant role in stabilizing the clini- also in the prophylaxis of recurrent episodes of mania and cal course of an illness. In our view, behavioral improvement depression. By contrast, the preponderance of past research and stabilization stem from the acute pharmacologic effects in depression has focused on the major depressive episode of antidepressants and mood stabilizers; thus, both the acute and its acute treatment. It is only relatively recently that and longer-term pharmacologic effects of both classes of investigators have begun to address the recurrent nature of drugs are emphasized in this chapter. unipolar disorder (UPD) and the prophylactic use of long- term antidepressant treatment. Thus, it is timely that we address in a single chapter the most promising research rele- vant to the pharmacodynamics of both mood stabilizers and MOOD STABILIZERS antidepressants. As we have outlined in Fig. 79.1, it is possible to charac- The term mood stabilizer within the clinical setting is com- terize both the course and treatment of bipolar and unipolar monly used to refer to a class of drugs that treat BPD.
    [Show full text]