Great Australian Bight Marine Park Management Plan Part B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equinor Environmental Plan in Brief
Our EP in brief Exploring safely for oil and gas in the Great Australian Bight A guide to Equinor’s draft Environment Plan for Stromlo-1 Exploration Drilling Program Published by Equinor Australia B.V. www.equinor.com.au/gabproject February 2019 Our EP in brief This booklet is a guide to our draft EP for the Stromlo-1 Exploration Program in the Great Australian Bight. The full draft EP is 1,500 pages and has taken two years to prepare, with extensive dialogue and engagement with stakeholders shaping its development. We are committed to transparency and have published this guide as a tool to facilitate the public comment period. For more information, please visit our website. www.equinor.com.au/gabproject What are we planning to do? Can it be done safely? We are planning to drill one exploration well in the Over decades, we have drilled and produced safely Great Australian Bight in accordance with our work from similar conditions around the world. In the EP, we program for exploration permit EPP39. See page 7. demonstrate how this well can also be drilled safely. See page 14. Who are we? How will it be approved? We are Equinor, a global energy company producing oil, gas and renewable energy and are among the world’s largest We abide by the rules set by the regulator, NOPSEMA. We offshore operators. See page 15. are required to submit draft environmental management plans for assessment and acceptance before we can begin any activities offshore. See page 20. CONTENTS 8 12 What’s in it for Australia? How we’re shaping the future of energy If oil or gas is found in the Great Australian Bight, it could How can an oil and gas producer be highly significant for South be part of a sustainable energy Australia. -
1 Australian Tidal Currents – Assessment of a Barotropic Model
https://doi.org/10.5194/gmd-2021-51 Preprint. Discussion started: 14 April 2021 c Author(s) 2021. CC BY 4.0 License. Australian tidal currents – assessment of a barotropic model (COMPAS v1.3.0 rev6631) with an unstructured grid. David A. Griffin1, Mike Herzfeld1, Mark Hemer1 and Darren Engwirda2 1Oceans and Atmosphere, CSIRO, Hobart, TAS 7000, Australia 2Center for Climate Systems Research, Columbia University, New York City, NY, USA and NASA Goddard Institute for 5 Space Studies, New York City, NY, USA Correspondence to: David Griffin ([email protected]) Abstract. While the variations of tidal range are large and fairly well known across Australia (less than 1 m near Perth but more than 14 m in King Sound), the properties of the tidal currents are not. We describe a new regional model of Australian 10 tides and assess it against a validation dataset comprising tidal height and velocity constituents at 615 tide gauge sites and 95 current meter sites. The model is a barotropic implementation of COMPAS, an unstructured-grid primitive-equation model that is forced at the open boundaries by TPXO9v1. The Mean Absolute value of the Error (MAE) of the modelled M2 height amplitude is 8.8 cm, or 12 % of the 73 cm mean observed amplitude. The MAE of phase (10°), however, is significant, so the M2 Mean Magnitude of Vector Error (MMVE, 18.2 cm) is significantly greater. The Root Sum Square over the 8 major 15 constituents is 26% of the observed amplitude.. We conclude that while the model has skill at height in all regions, there is definitely room for improvement (especially at some specific locations). -
Outer Boundaries of South Australia's Marine Parks Networks
1 For further information, please contact: Coast and Marine Conservation Branch Department for Environment and Heritage GPO Box 1047 Adelaide SA 5001 Telephone: (08) 8124 4900 Facsimile: (08) 8214 4920 Cite as: Department for Environment and Heritage (2009). A technical report on the outer boundaries of South Australia’s marine parks network. Department for Environment and Heritage, South Australia. Mapping information: All maps created by the Department for Environment and Heritage unless otherwise stated. © Copyright Department for Environment and Heritage 2009. All rights reserved. All works and information displayed are subject to copyright. For the reproduction or publication beyond that permitted by the Copyright Act 1968 (Cwlth) written permission must be sought from the Department. Although every effort has been made to ensure the accuracy of the information displayed, the Department, its agents, officers and employees make no representations, either express or implied, that the information is accurate or fit for any purpose and expressly disclaims all liability for loss or damage arising from reliance upon the information displayed. ©Department for Environment and Heritage, 2009 ISBN No. 1 921238 36 4. 2 TABLE OF CONTENTS 1 Preface.......................................................................................................................................... 8 1.1 South Australia’s marine parks network...............................................................................8 2 Introduction.............................................................................................................................. -
South Australia's National Parks Guide
SOUTH AUSTRALIA’S NATIONAL PARKS GUIDE Explore some of South Australia’s most inspirational places INTRODUCTION Generations of South Australians and visitors to our State cherish memories of our national parks. From camping with family and friends in the iconic Flinders Ranges, picnicking at popular Adelaide parks such as Belair National Park or fishing and swimming along our long and winding coast, there are countless opportunities to connect with nature and discover landscapes of both natural and cultural significance. South Australia’s parks make an important contribution to the economic development of the State through nature- based tourism, recreation and biodiversity. They also contribute to the healthy lifestyles we as a community enjoy and they are cornerstones of our efforts to conserve South Australia’s native plants and animals. In recognition of the importance of our parks, the Department of Environment, Water and Natural Resources is enhancing experiences for visitors, such as improving park infrastructure and providing opportunities for volunteers to contribute to conservation efforts. It is important that we all continue to celebrate South Australia’s parks and recognise the contribution that people make to conservation. Helping achieve that vision is the fun part – all you need to do is visit a park and take advantage of all it has to offer. Hon lan Hunter MLC Minister for Sustainability, Environment and Conservation CONTENTS GENERAL INFORMATION FOR PARKS VISITORS ................11 Park categories.......................................................................11 -
Indigenous Design Issuesceduna Aboriginal Children and Family
INDIGENOUS DESIGN ISSUES: CEDUNA ABORIGINAL CHILDREN AND FAMILY CENTRE ___________________________________________________________________________________ 1 INDIGENOUS DESIGN ISSUES: CEDUNA ABORIGINAL CHILDREN AND FAMILY CENTRE ___________________________________________________________________________________ 2 INDIGENOUS DESIGN ISSUES: CEDUNA ABORIGINAL CHILDREN AND FAMILY CENTRE ___________________________________________________________________________________ TABLE OF CONTENTS PREFACE .................................................................................................................................... 5 ACKNOWELDGEMENTS............................................................................................................ 5 INTRODUCTION ......................................................................................................................... 5 PART 1: PRECEDENTS AND “BEST PRACTICE„ DESIGN ....................................................10 The Design of Early Learning, Child-care and Children and Family Centres for Aboriginal People ..................................................................................................................................10 Conceptions of Quality ........................................................................................................ 10 Precedents: Pre-Schools, Kindergartens, Child and Family Centres ..................................12 Kulai Aboriginal Preschool ............................................................................................. -
Chapter 5: Biostratigraphy
1 • PETROLEUM GEOLOGY OF SOUTH AUSTRALIA Volume 5: Great Australian Bight Biostratigraphy R Morgan1, AI Rowett2 and MR White3 5INTRODUCTION . 2 TERTIARY . 21 REFERENCES . 31 MIDDLE JURASSIC TO CRETACEOUS . 2 Palynology . .21 PLATE Palynology . .2 Zonation . .21 5.1 Horologinella sp. A, B, C and D, History of zonation . .2 Wells . .21 Jerboa 1 cuttings, 2400–05 m . 12 Zonation framework . .5 Western Bight Basin: FIGURES Wells . .8 Eyre Sub-basin . .21 5.1. Major features and well locations, Great Western Bight Basin: Central Bight Basin: Australian Bight . 4 central Ceduna Sub-basin . .22 Eyre Sub-basin . .10 5.2 Middle Jurassic to Cretaceous North–central Bight Basin: Eastern Bight Basin: Duntroon and biostratigraphic zonation of the Madura Shelf . .13 eastern Ceduna Sub-basins . .22 Bight and Polda Basins. 7 Central Bight Basin: central Foraminifera . .25 5.3 Middle Jurassic to Cretaceous Ceduna Sub-basin . .14 Zonation . .25 biostratigraphy (and older stratigraphy) Polda Basin . .14 Wells . .25 of wells in the Bight and Polda Basins . 9 Eastern Bight Basin: Duntroon Western Bight Basin: 5.4 Tertiary biostratigraphic zonation of the and eastern Ceduna Sub-basins . .15 Eyre Sub-basin . 25 portion of the Eucla Basin which overlies North–central Bight Basin: Foraminifera . .18 the Bight Basin and Tertiary foraminiferal Madura Shelf . .28 events recognised in southern Australia. 26 Summary . .19 Central Bight Basin: central 5.5 Integrated microfossil and palynological Permian to Middle Jurassic . .19 Ceduna Sub-basin . .29 Tertiary biostratigraphy of wells Cretaceous . .19 Eastern Bight Basin: Duntroon and penetrating the Eucla and Bight Basins 27 eastern Ceduna Sub-basins . -
Modeling Regional Coastal Evolution in the Bight Of
MODELING REGIONAL COASTAL EVOLUTION IN THE BIGHT OF BENIN, GULF OF GUINEA, WEST AFRICA Ondoa Gregoire Abessolo, Magnus Larson, Rafael Almar, Bruno Castelle, Edward Anthony, Johan Reyns To cite this version: Ondoa Gregoire Abessolo, Magnus Larson, Rafael Almar, Bruno Castelle, Edward Anthony, et al.. MODELING REGIONAL COASTAL EVOLUTION IN THE BIGHT OF BENIN, GULF OF GUINEA, WEST AFRICA. Coastal Sediments’19, May 2019, Tampa, United States. 10.1142/9789811204487_0178. hal-02394959 HAL Id: hal-02394959 https://hal.archives-ouvertes.fr/hal-02394959 Submitted on 11 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MODELING REGIONAL COASTAL EVOLUTION IN THE BIGHT OF BENIN, GULF OF GUINEA, WEST AFRICA ONDOA GREGOIRE ABESSOLO1,2, MAGNUS LARSON3, RAFAEL ALMAR1, BRUNO CASTELLE4, EDWARD J. ANTHONY5, J. REYNS6,7 1. LEGOS, OMP, UMR 5566 (CNRS/CNES/IRD/Université de Toulouse), 14 Avenue Edouard Belin, 31400, Toulouse, France. [email protected], [email protected]. 2. Ecosystems and Fisheries Resources Laboratory, University of Douala, BP 2701, Douala, Cameroun. 3. Department of Water Resources Engineering, Lund University, Box 118, S-221 00, Lund, Sweden. [email protected]. 4. EPOC, OASU, UMR 5805 (CNRS - Université de Bordeaux), Allée Geoffroy Saint- Hilaire – CS 50023 – 33615, Pessac Cedex, France. -
Aboriginal Agency, Institutionalisation and Survival
2q' t '9à ABORIGINAL AGENCY, INSTITUTIONALISATION AND PEGGY BROCK B. A. (Hons) Universit¡r of Adelaide Thesis submitted for the degree of Doctor of Philosophy in History/Geography, University of Adelaide March f99f ll TAT}LE OF CONTENTS ii LIST OF TAE}LES AND MAPS iii SUMMARY iv ACKNOWLEDGEMENTS . vii ABBREVIATIONS ix C}IAPTER ONE. INTRODUCTION I CFIAPTER TWO. TI{E HISTORICAL CONTEXT IN SOUTH AUSTRALIA 32 CHAPTER THREE. POONINDIE: HOME AWAY FROM COUNTRY 46 POONINDIE: AN trSTä,TILISHED COMMUNITY AND ITS DESTRUCTION 83 KOONIBBA: REFUGE FOR TI{E PEOPLE OF THE VI/EST COAST r22 CFIAPTER SIX. KOONIBBA: INSTITUTIONAL UPHtrAVAL AND ADJUSTMENT t70 C}IAPTER SEVEN. DISPERSAL OF KOONIBBA PEOPLE AND THE END OF TI{E MISSION ERA T98 CTIAPTER EIGHT. SURVTVAL WITHOUT INSTITUTIONALISATION236 C}IAPTER NINtr. NEPABUNNA: THtr MISSION FACTOR 268 CFIAPTER TEN. AE}ORIGINAL AGENCY, INSTITUTIONALISATION AND SURVTVAL 299 BIBLIOGRAPI{Y 320 ltt TABLES AND MAPS Table I L7 Table 2 128 Poonindie location map opposite 54 Poonindie land tenure map f 876 opposite 114 Poonindie land tenure map f 896 opposite r14 Koonibba location map opposite L27 Location of Adnyamathanha campsites in relation to pastoral station homesteads opposite 252 Map of North Flinders Ranges I93O opposite 269 lv SUMMARY The institutionalisation of Aborigines on missions and government stations has dominated Aboriginal-non-Aboriginal relations. Institutionalisation of Aborigines, under the guise of assimilation and protection policies, was only abandoned in.the lg7Os. It is therefore important to understand the implications of these policies for Aborigines and Australian society in general. I investigate the affect of institutionalisation on Aborigines, questioning the assumption tl.at they were passive victims forced onto missions and government stations and kept there as virtual prisoners. -
Dale Edward Bird
Dale Edward Bird 16903 Clan Macintosh 281-463-3816 (tel.) [email protected] Houston, Texas 77084 281-463-7899 (fax) www.birdgeo.com 713-203-1927 (cell.) Over thirty years experience in acquisition, processing, interpreting and marketing geophysical data, with an emphasis on gravity and magnetic data; Ph.D. in Geophysics; a volunteer in local and international earth science societies; a functional understanding of Spanish; and an avid chess player. Interpretation experience includes work in many basins, globally, including cratonic sag, rift, foreland, and passive margin environments. Research interests include regional geology / plate tectonics and marine geophysics, especially along continental margins and plate boundaries. EXPERIENCE Sole Proprietor. Bird Geophysical 1997-present . Consultancy providing potential fields data interpretation and management services to the petroleum exploration industry. Non-exclusive projects include: - Gulf of Mexico Evolution and Structure (GoMES) interpretation - Western Caribbean Plate interpretation - Southeast Asian basins interpretations; two phases: 1) Sunda Shelf and South China Sea, and 2) Central Indonesia - Reprocessed GEODAS open-file marine gravity and magnetic data; six areas: 1) Gulf of Mexico, 2) Caribbean, 3) Brazil & Argentina, 4) West Africa, 5) East Africa, and 6) India - Global Seismic refraction Catalog (GSC) ongoing joint project with the U.S. Geological Survey to compile and digitally capture published seismic refraction stations worldwide Adjunct Professor. University of Houston, Department of Earth & Atmospheric Sciences 2005-present . Teach graduate-level semester course: Basin Studies using Gravity & Magnetic Data . Participate with University of Houston faculty teaching short courses for industry professionals, and with invited programs at Universities abroad General Manager, Hydrocarbons. Aerodat, Inc. 1994-1997 . -
Island Wakes in the Southern California Bight R
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, C11012, doi:10.1029/2004JC002675, 2005 Island wakes in the Southern California Bight R. M. A. Caldeira,1,2 P. Marchesiello,3 N. P. Nezlin,4 P. M. DiGiacomo,5 and J. C. McWilliams3 Received 19 August 2004; revised 21 February 2005; accepted 14 June 2005; published 18 November 2005. [1] Wind- and current-induced island wakes were investigated using a multiplatform approach of in situ, remote sensing, and numerical model simulations for the Southern California Bight (SCB). Island wind wakes are a result of sheltering from the wind, with weak wind mixing, strong heat storage, and consequent high sea surface temperature (SST). Wind wakes around Santa Catalina Island are most persistent during spring and summer months. Current wakes, caused by the disruption of the poleward traveling California Countercurrent, induce eddies to form off the north end of Catalina Island, and these move poleward every 9–12 days. Current wake eddies induce strong mixing, with low SST and high-density sea surface signatures, whereas wind wakes induce high sea surface temperature signatures associated with the formation of a well-defined shallow thermocline. Current wake eddies vary from 1 to 30 km in diameter. From numerical solutions we predicted the frequency of occurrence of current-induced wakes off Santa Catalina Island. Wind wakes were also observed off all the other islands of the SCB as seen from the analysis of synthetic aperture radar data. Time series analysis of the island mass effect phenomenon has shown a concurrence of low SST and high sea surface chlorophyll for Santa Catalina, San Nicholas, and San Clemente islands that might be related to the seasonality of the California Current and California Countercurrent. -
PETROLEUM SYSTEM of the GIPPSLAND BASIN, AUSTRALIA by Michele G
uses science for a changing world PETROLEUM SYSTEM OF THE GIPPSLAND BASIN, AUSTRALIA by Michele G. Bishop1 Open-File Report 99-50-Q 2000 This report is preliminary and has not been reviewed for conformity with the U. S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade names is for descriptive purposes only and does not imply endorsements by the U. S. government. U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Consultant, Wyoming PG-783, contracted to USGS, Denver, Colorado FOREWORD This report was prepared as part of the World Energy Project of the U.S. Geological Survey. In the project, the world was divided into 8 regions and 937 geologic provinces. The provinces have been ranked according to the discovered oil and gas volumes within each (Klett and others, 1997). Then, 76 "priority" provinces (exclusive of the U.S. and chosen for their high ranking) and 26 "boutique" provinces (exclusive of the U.S. and chosen for their anticipated petroleum richness or special regional economic importance) were selected for appraisal of oil and gas resources. The petroleum geology of these priority and boutique provinces is described in this series of reports. The purpose of this effort is to aid in assessing the quantities of oil, gas, and natural gas liquids that have the potential to be added to reserves within the next 30 years. These volumes either reside in undiscovered fields whose sizes exceed the stated minimum- field-size cutoff value for the assessment unit (variable, but must be at least 1 million barrels of oil equivalent) or occur as reserve growth of fields already discovered. -
Science for Solutions
Science for Solutions NOAA COASTAL OCEAN PROGRAM Decision Analysis Series No. 15 Characterization of Hypoxia Topic 1 Report for the Integrated Assessment on Hypoxia in the Gulf of Mexico Nancy N. Rabalais, R. Eugene Turner, Dubravko Justic´, Quay Dortch, and William J. Wiseman, Jr. May 1999 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Coastal Ocean Program GULF OF MEXICO HYPOXIA ASSESSMENT This report is the first in a series of six reports developed as the scientific basis for an integrated assessment of the causes and consequences of hypoxia in the Gulf of Mexico, as requested by the White House Office of Science and Technology Policy and as required by Section 604a of P.L. 105-383. For more information on the assessment and the assessment process, please contact the National Centers for Coastal Ocean Science at (301) 713-3060. DECISION ANALYSIS SERIES The Decision Analysis Series has been established by NOAA's Coastal Ocean Program (COP) to present documents for coastal decision mak- ers which contain analytical treatments of major issues or topics. The is- sues, topics, and principal investigators have been selected through an extensive peer review process. To learn more about the COP or the De- cision Analysis Series, please write to: NOAA National Centers for Coastal Ocean Science Coastal Ocean Program 1315 East-West Highway, Room 9700 Silver Spring, Maryland 20910 phone: 301-713-3338 fax: 301-713-4044 web: http://www.cop.noaa.gov e-mail: [email protected] Cover image: Extent of bottom water with dissolved oxygen less than 2 mg/l for July 1996 (based on data of Rabalais, Turner, and Wiseman).