Topology (H) Lecture 5 Lecturer: Zuoqin Wang Time: March 22, 2021

Total Page:16

File Type:pdf, Size:1020Kb

Topology (H) Lecture 5 Lecturer: Zuoqin Wang Time: March 22, 2021 Topology (H) Lecture 5 Lecturer: Zuoqin Wang Time: March 22, 2021 BASES AND SUB-BASES, INDUCED AND CO-INDUCED TOPOLOGIES 1. Bases and sub-bases of a topology { Topology defined via a basis. If you stare at the definitions of the topologies Tmetric, TSorgenfrey, Tp:c: and TX×Y , Tmetric = fU ⊂ X j 8x 2 U; 9r > 0 s.t. B(x; r) ⊂ Ug; TSorgenfrey = fU ⊂ R j 8x 2 U; 9" > 0 s.t. [x; x + ") ⊂ Ug; TX×Y = fW ⊂ X × Y j 8(x; y) 2 W; 9U 2 TX and V 2 TY s.t. (x; y) 2 U × V ⊂ W g; Tp:c: = fU ⊂ X j 8f0 2 U; 9x1; ··· ; xn 2 [0; 1] and " > 0 s.t. !(f0; x1; ··· ; xn; ") ⊂ Ug; you can easily find a common nature: They are all of the form (1.1) TB := fU ⊂ X j 8x 2 U; 9B 2 B s.t. x 2 B ⊂ Ug for a collection of sets B ⊂ P(X). There must be a general rule behind these definitions! Let's try to find it! Let B ⊂ P(X) be a collection of subsets of X, like B = all metric balls in a given metric space in the case of metric topology. Note: B itself is not a topology. Question : Under what assumption on B, the family TB defined by (1.1) is a topology? - By construction, ; 2 TB. - We want X 2 TB; so we need (B1) 8x 2 X; 9B 2 B s.t. x 2 B: - Suppose U1;U2 2 TB; we want U1 \ U2 2 TB, i.e. (?) 8x 2 U1 \ U2; 9B 2 B s.t. B ⊂ U1 \ U2: Unfortunately this condition involves U1;U2 2 TB, i.e. it is NOT a condition on the family B itself. However, by construction, 8x2U1 \ U2, 9B1;B2 2B s.t. x 2 B1 ⊂ U1; x 2 B2 ⊂ U2: So for (?) to be true, we may assume (B2) 8B1;B2 2 B; 8x 2 B1 \ B2; 9B 2 B s.t. x 2 B ⊂ B1 \ B2: 1 2 BASES AND SUB-BASES, INDUCED AND CO-INDUCED TOPOLOGIES Note: (B2) is NOT only a sufficient condition for (?), but also a necessary condition, since by construction, any element B 2 B is also an element B 2 TB: - Finally suppose Uα 2 TB. Then we automatically have [αUα 2 TB, since 8x 2 [αUα; 9α0 s.t. x 2 Uα0 . so 9B 2 B s.t. x 2 B ⊂ Uα0 , which implies x 2 B ⊂ [αUα i.e. [αUα 2 TB Answer : A necessary and sufficient condition for TB defined by (1.1) to be a topology on X is that the collection B satisfies conditions (B1) and (B2). Definition 1.1 (Basis of a topology). (1) A collection B ⊂ P(X) is called a basis (or a base) for a topology if it satisfies conditions (B1) and (B2). (2) The topology TB defined by (1.1) is called the topology generated by the basis B. Remark 1.2. Different bases could generate the same topology. For example, each of the following three collections is a basis that generates the Euclidean topology on R2;: 2 B1 = fB(x; r) j x 2 R ; r > 0g; 2 B2 = fB(x; r) j x 2 Q ; r 2 Q>0g; B3 = f(a; b) × (c; d) j a; b; c; d 2 Rg: Note that B2 is a countable family! Remark 1.3. Let's emphasis again: By definition, B ⊂ TB, i.e. every element in B is an open set in the topology TB. Usually the converse is not true. { Example: The box topology. Example 1.4 (The box topology). Suppose we have a family of topological spaces (Xα; Tα). We want to define a topology on the Cartesian product (maybe infinite/uncountable) Y Xα = f(xα) j xα 2 Xαg: α As in the case of the Cartesian product of two topological spaces, we may choose ¨ « Y B = Uα j Uα 2 Tα : α It is easy to check that B satisfies (B1), (B2), so we get a topology Y Y TBox = fU ⊂ Xα j 8(xα) 2 U; 9Uα 2 Tα s.t. (xα) 2 Uα ⊂ Ug: α α Q This is called the box topology on X = α Xα: BASES AND SUB-BASES, INDUCED AND CO-INDUCED TOPOLOGIES 3 { Topology defined via a basis: Minimality. To understand the relation between B and TB, we give an alternative explanation of the sentence \the basis B generates the topology TB": Proposition 1.5. If B is a basis for a topology TB, then [ 0 TB = f B j B ⊂ Bg: B2B0 0 Proof. As we remarked above, B ⊂ TB. So for any sub-family B ⊂ B, we have [ B 2 TB: B2B0 Conversely, for any U 2 STB and any x 2 U, by definition there exists Bx 2 B s.t. x 2 Bx ⊂ U. It follows U = x2U Bx, i.e. U is of the given form. As a consequence, 0 0 Corollary 1.6. Let B be a basis for a topology TB, and T is a topology s.t. B ⊂ T . 0 Then TB ⊂ T . It follows that TB is the \smallest" topology so that all sets in B are open: \ 0 (F) TB = T : B⊂T 0 T 0 is a topology { The topology generated by an arbitrary family of subsets. It turns out that the formula (F) can be used to construct topology from any family of subsets that is not necessary a basis. To see this, we first observe: T Proposition 1.7. Given any family Tα of topologies on X, α Tα is a topology. Proof. •; ;X 2 Tα; 8α );;X 2 \αTα. • U1;U2 2 Tα; 8α ) U1 \ U2 2 Tα; 8α ) U1 \ U2 2 \αTα. • Uβ 2 Tα; 8α )[βUβ 2 Tα )[βUβ 2 \αTα. Now let S ⊂ P(X) be any collection of subset in X. Definition 1.8. The topology generated by S is \ 0 TS := T : S⊂T 0 T 0 is a topology So in other words, TS is the weakest topology so that all sets in S are open. A natural question is: What is TS ? 4 BASES AND SUB-BASES, INDUCED AND CO-INDUCED TOPOLOGIES Proposition 1.9. Let S ⊂ P(X) be a family of subsets, and denote (1.2) B = fB j 9S1; ··· ;Sm 2 S s.t. B = S1 \···\ Smg: S (1) If S2S S = X, thenSB is a basis of TS , i.e. TS = TB. 0 0 (2) In general, if X = S2S ⊂ X, then B is a basis of a topology TB on X , and TS = fXg [ TB. S S Proof. (1) By definition, S ⊂ B. So the condition S2S = X implies B2B = X, which is equivalent to say that the family B satisfies the condition (B1). By construction, B also satisfies the condition (B2). So B is a basis. Obviously for any topology T 0, T 0 ⊃ S () T 0 ⊃ B: T T 0 0 So S⊂T 0 T = B⊂T 0 T , i.e. the topology generated by B is exactly TS . (2) By (1), fXg [ TB is a topology on X. By construction, it is the weakest topology on X so that all sets in S are open. { The topology defined via a sub-basis. In view of Proposition 1.9, it is natural to define S Definition 1.10. If a family S ⊂ P(X) satisfies S2S S = X, we will call S a sub-basis (or a sub-base) of the topology TS . Example 1.11. For the pointwise convergence topology Tp:c: on M([0; 1]; R), B = f!(f; x1; ··· ; xn; ") j f 2 M([0; 1]; R); n 2 N; x1; ··· ; xn 2 [0; 1]; " > 0g is a basis, while S = f!(f; x; ") j f 2 M([0; 1]; R); x 2 [0; 1]; " > 0g is a sub-basis. Example 1.12. For the standard Euclidean topology on R, B = f(a; b) j a < bg is a basis, while S = f(−∞; a); (a; +1) j a 2 Rg is a sub-basis. Example 1.13. The the product topology on X × Y , B = fU × V j U 2 TX ;V 2 TY g is a basis, while [ S = fU × Y j U 2 TX g fX × V j V 2 TY g is a sub-basis. BASES AND SUB-BASES, INDUCED AND CO-INDUCED TOPOLOGIES 5 { Characterization of a basis/sub-basis. A natural questions is: Give a family B, how can we tell whether it is a basis of a given topology T ? Here is a simple criterion: Proposition 1.14. Let (X; T ) be a topological space. A collection B ⊂ P(X) is a basis for T if and only if (1) B ⊂ T , (2) for any U 2 T and any x 2 U, there exists B 2 B such that x 2 B ⊂ U. Proof. By definition, if B is a basis for T , then (1), (2) holds. Conversely, it is obvious that (2) implies (B1), and (1), (2) together implies (B2). So B is a basis. Moreover, (2) implies T ⊂ TB. But by minimality, TB ⊂ T . So the topology generated by B is T . Similarly we have Proposition 1.15. Let (X; T ) be a topological space. A collection S ⊂ P(X) is a basis for T if and only if (1) S ⊂ T , (2) for any U 2 T and any x 2 U, there exists S1; ··· ;Sn 2 S such that x 2 n \i=1Si ⊂ U.
Recommended publications
  • The Topology of Subsets of Rn
    Lecture 1 The topology of subsets of Rn The basic material of this lecture should be familiar to you from Advanced Calculus courses, but we shall revise it in detail to ensure that you are comfortable with its main notions (the notions of open set and continuous map) and know how to work with them. 1.1. Continuous maps “Topology is the mathematics of continuity” Let R be the set of real numbers. A function f : R −→ R is called continuous at the point x0 ∈ R if for any ε> 0 there exists a δ> 0 such that the inequality |f(x0) − f(x)| < ε holds for all x ∈ R whenever |x0 − x| <δ. The function f is called contin- uous if it is continuous at all points x ∈ R. This is basic one-variable calculus. n Let R be n-dimensional space. By Or(p) denote the open ball of radius r> 0 and center p ∈ Rn, i.e., the set n Or(p) := {q ∈ R : d(p, q) < r}, where d is the distance in Rn. A function f : Rn −→ R is called contin- n uous at the point p0 ∈ R if for any ε> 0 there exists a δ> 0 such that f(p) ∈ Oε(f(p0)) for all p ∈ Oδ(p0). The function f is called continuous if it is continuous at all points p ∈ Rn. This is (more advanced) calculus in several variables. A set G ⊂ Rn is called open in Rn if for any point g ∈ G there exists a n δ> 0 such that Oδ(g) ⊂ G.
    [Show full text]
  • TOPOLOGY and ITS APPLICATIONS the Number of Complements in The
    TOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 55 (1994) 101-125 The number of complements in the lattice of topologies on a fixed set Stephen Watson Department of Mathematics, York Uniuersity, 4700 Keele Street, North York, Ont., Canada M3J IP3 (Received 3 May 1989) (Revised 14 November 1989 and 2 June 1992) Abstract In 1936, Birkhoff ordered the family of all topologies on a set by inclusion and obtained a lattice with 1 and 0. The study of this lattice ought to be a basic pursuit both in combinatorial set theory and in general topology. In this paper, we study the nature of complementation in this lattice. We say that topologies 7 and (T are complementary if and only if 7 A c = 0 and 7 V (T = 1. For simplicity, we call any topology other than the discrete and the indiscrete a proper topology. Hartmanis showed in 1958 that any proper topology on a finite set of size at least 3 has at least two complements. Gaifman showed in 1961 that any proper topology on a countable set has at least two complements. In 1965, Steiner showed that any topology has a complement. The question of the number of distinct complements a topology on a set must possess was first raised by Berri in 1964 who asked if every proper topology on an infinite set must have at least two complements. In 1969, Schnare showed that any proper topology on a set of infinite cardinality K has at least K distinct complements and at most 2” many distinct complements.
    [Show full text]
  • [DRAFT] a Peripatetic Course in Algebraic Topology
    [DRAFT] A Peripatetic Course in Algebraic Topology Julian Salazar [email protected]• http://slzr.me July 22, 2016 Abstract These notes are based on lectures in algebraic topology taught by Peter May and Henry Chan at the 2016 University of Chicago Math REU. They are loosely chrono- logical, having been reorganized for my benefit and significantly annotated by my personal exposition, plus solutions to in-class/HW exercises, plus content from read- ings (from May’s Finite Book), books (e.g. May’s Concise Course, Munkres’ Elements of Algebraic Topology, and Hatcher’s Algebraic Topology), Wikipedia, etc. I Foundations + Weeks 1 to 33 1 Topological notions3 1.1 Topological spaces.................................3 1.2 Separation properties...............................4 1.3 Continuity and operations on spaces......................4 2 Algebraic notions5 2.1 Rings and modules................................6 2.2 Tensor products..................................7 3 Categorical notions 11 3.1 Categories..................................... 11 3.2 Functors...................................... 13 3.3 Natural transformations............................. 15 3.4 [DRAFT] Universal properties.......................... 17 3.5 Adjoint functors.................................. 20 1 4 The fundamental group 21 4.1 Connectedness and paths............................. 21 4.2 Homotopy and homotopy equivalence..................... 22 4.3 The fundamental group.............................. 24 4.4 Applications.................................... 26
    [Show full text]
  • ELEMENTARY TOPOLOGY I 1. Introduction 3 2. Metric Spaces 4 2.1
    ELEMENTARY TOPOLOGY I ALEX GONZALEZ 1. Introduction3 2. Metric spaces4 2.1. Continuous functions8 2.2. Limits 10 2.3. Open subsets and closed subsets 12 2.4. Continuity, convergence, and open/closed subsets 15 3. Topological spaces 18 3.1. Interior, closure and boundary 20 3.2. Continuous functions 23 3.3. Basis of a topology 24 3.4. The subspace topology 26 3.5. The product topology 27 3.6. The quotient topology 31 3.7. Other constructions 33 4. Connectedness 35 4.1. Path-connected spaces 40 4.2. Connected components 41 5. Compactness 43 5.1. Compact subspaces of Rn 46 5.2. Nets and Tychonoff’s Theorem 48 6. Countability and separation axioms 52 6.1. The countability axioms 52 6.2. The separation axioms 54 7. Urysohn metrization theorem 61 8. Topological manifolds 65 8.1. Compact manifolds 66 REFERENCES 67 Contents 1 2 ALEX GONZALEZ ELEMENTARY TOPOLOGY I 3 1. Introduction When we consider properties of a “reasonable” function, probably the first thing that comes to mind is that it exhibits continuity: the behavior of the function at a certain point is similar to the behavior of the function in a small neighborhood of the point. What’s more, the composition of two continuous functions is also continuous. Usually, when we think of a continuous functions, the first examples that come to mind are maps f : R ! R: • the identity function, f(x) = x for all x 2 R; • a constant function f(x) = k; • polynomial functions, for instance f(x) = xn, for some n 2 N; • the exponential function g(x) = ex; • trigonometric functions, for instance h(x) = cos(x).
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • The Fixed-Point Property for Represented Spaces Mathieu Hoyrup
    The fixed-point property for represented spaces Mathieu Hoyrup To cite this version: Mathieu Hoyrup. The fixed-point property for represented spaces. 2021. hal-03117745v1 HAL Id: hal-03117745 https://hal.inria.fr/hal-03117745v1 Preprint submitted on 21 Jan 2021 (v1), last revised 28 Jan 2021 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The fixed-point property for represented spaces Mathieu Hoyrup Universit´ede Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France [email protected] January 21, 2021 Abstract We investigate which represented spaces enjoy the fixed-point property, which is the property that every continuous multi-valued function has a fixed-point. We study the basic theory of this notion and of its uniform version. We provide a complete characterization of countable-based spaces with the fixed-point property, showing that they are exactly the pointed !-continuous dcpos. We prove that the spaces whose lattice of open sets enjoys the fixed-point property are exactly the countably-based spaces. While the role played by fixed-point free functions in the diagonal argument is well-known, we show how it can be adapted to fixed-point free multi-valued functions, and apply the technique to identify the base-complexity of the Kleene-Kreisel spaces, which was an open problem.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Admissibly Represented Spaces and Qcb-Spaces
    Admissibly Represented Spaces and Qcb-Spaces∗ Matthias Schr¨oder Abstract A basic concept of Type Two Theory of Effectivity (TTE) is the notion of an admissibly represented space. Admissibly represented spaces are closely related to qcb-spaces. The latter form a well-behaved subclass of topological spaces. We give a survey of basic facts about Type Two Theory of Effectivity, admissibly represented spaces, qcb-spaces and effective qcb-spaces. Moreover, we discuss the relationship of qcb-spaces to other categories relevant to Computable Analysis. 1 Introduction Computable Analysis investigates computability on real numbers and related spaces. Type Two Theory of Effectivity (TTE) constitutes a popular approach to Com- putable Analysis, providing a rigorous computational framework for non-discrete spaces with cardinality of the continuum (cf. [48, 49]). The basic tool of this frame- work are representations. A representation equips the objects of a given space with names, giving rise to the concept of a represented space. Computable functions be- tween represented spaces are those which are realized by a computable function on the names. The ensuing category of represented spaces and computable functions enjoys excellent closure properties. Any represented space is equipped with a natural topology, turning it into a arXiv:2004.09450v1 [cs.LO] 20 Apr 2020 qcb-space. Qcb-spaces form a subclass of topological spaces with a remarkably rich structure. For example it is cartesian closed, hence products and function spaces can be formed. Admissibility is a notion of topological well-behavedness for representations. The category of admissibly represented spaces and continuously realizable functions is equivalent to the category QCB0 of qcb-spaces with the T0-property.
    [Show full text]
  • Zuoqin Wang Time: March 25, 2021 the QUOTIENT TOPOLOGY 1. The
    Topology (H) Lecture 6 Lecturer: Zuoqin Wang Time: March 25, 2021 THE QUOTIENT TOPOLOGY 1. The quotient topology { The quotient topology. Last time we introduced several abstract methods to construct topologies on ab- stract spaces (which is widely used in point-set topology and analysis). Today we will introduce another way to construct topological spaces: the quotient topology. In fact the quotient topology is not a brand new method to construct topology. It is merely a simple special case of the co-induced topology that we introduced last time. However, since it is very concrete and \visible", it is widely used in geometry and algebraic topology. Here is the definition: Definition 1.1 (The quotient topology). (1) Let (X; TX ) be a topological space, Y be a set, and p : X ! Y be a surjective map. The co-induced topology on Y induced by the map p is called the quotient topology on Y . In other words, −1 a set V ⊂ Y is open if and only if p (V ) is open in (X; TX ). (2) A continuous surjective map p :(X; TX ) ! (Y; TY ) is called a quotient map, and Y is called the quotient space of X if TY coincides with the quotient topology on Y induced by p. (3) Given a quotient map p, we call p−1(y) the fiber of p over the point y 2 Y . Note: by definition, the composition of two quotient maps is again a quotient map. Here is a typical way to construct quotient maps/quotient topology: Start with a topological space (X; TX ), and define an equivalent relation ∼ on X.
    [Show full text]
  • Topology of Differentiable Manifolds
    TOPOLOGY OF DIFFERENTIABLE MANIFOLDS D. MART´INEZ TORRES Contents 1. Introduction 1 1.1. Topology 2 1.2. Manifolds 3 2. More definitions and basic results 5 2.1. Submanifold vs. embedding 7 2.2. The tangent bundle of a Cr-manifold, r ≥ 1. 7 2.3. Transversality and submanifolds 9 2.4. Topology with Cr-functions. 9 2.5. Manifolds with boundary 13 2.6. 1-dimensional manifolds 16 3. Function spaces 19 4. Approximations 27 5. Sard's theorem and transversality 32 5.1. Transversality 35 6. Tubular neighborhoods, homotopies and isotopies 36 6.1. Homotopies, isotopies and linearizations 38 6.2. Linearizations 39 7. Degree, intersection number and Euler characteristic 42 7.1. Orientations 42 7.2. The degree of a map 43 7.3. Intersection number and Euler characteristic 45 7.4. Vector fields 46 8. Isotopies and gluings and Morse theory 47 8.1. Gluings 48 8.2. Morse functions 49 8.3. More on k-handles and smoothings 57 9. 2 and 3 dimensional compact oriented manifolds 60 9.1. Compact, oriented surfaces 60 9.2. Compact, oriented three manifolds 64 9.3. Heegard decompositions 64 9.4. Lens spaces 65 9.5. Higher genus 66 10. Exercises 66 References 67 1. Introduction Let us say a few words about the two key concepts in the title of the course, topology and differentiable manifolds. 1 2 D. MART´INEZ TORRES 1.1. Topology. It studies topological spaces and continuous maps among them, i.e. the category TOP with objects topological spaces and arrows continuous maps.
    [Show full text]
  • 14. Arbitrary Products
    14. Arbitrary products Contents 1 Motivation 2 2 Background and preliminary definitions2 N 3 The space Rbox 4 N 4 The space Rprod 6 5 The uniform topology on RN, and completeness 12 6 Summary of results about RN 14 7 Arbitrary products 14 8 A final note on completeness, and completions 19 c 2018{ Ivan Khatchatourian 1 14. Arbitrary products 14.2. Background and preliminary definitions 1 Motivation In section 8 of the lecture notes we discussed a way of defining a topology on a finite product of topological spaces. That definition more or less agreed with our intuition. We should expect products of open sets in each coordinate space to be open in the product, for example, and the only issue that arises is that these sets only form a basis rather than a topology. So we simply generate a topology from them and call it the product topology. This product topology \played nicely" with the topologies on each of the factors in a number of ways. In that earlier section, we also saw that every topological property we had studied up to that point other than ccc-ness was finitely productive. Since then we have developed some new topological properties like regularity, normality, and metrizability, and learned that except for normality these are also finitely productive. So, ultimately, most of the properties we have studied are finitely productive. More importantly, the proofs that they are finitely productive have been easy. Look back for example to your proof that separability is finitely productive, and you will see that there was almost nothing to do.
    [Show full text]
  • Topologies on Spaces of Continuous Functions
    Topologies on spaces of continuous functions Mart´ınEscard´o School of Computer Science, University of Birmingham Based on joint work with Reinhold Heckmann 7th November 2002 Path Let x0 and x1 be points of a space X. A path from x0 to x1 is a continuous map f : [0; 1] X ! with f(0) = x0 and f(1) = x1. 1 Homotopy Let f0; f1 : X Y be continuous maps. ! A homotopy from f0 to f1 is a continuous map H : [0; 1] X Y × ! with H(0; x) = f0(x) and H(1; x) = f1(x). 2 Homotopies as paths Let C(X; Y ) denote the set of continuous maps from X to Y . Then a homotopy H : [0; 1] X Y × ! can be seen as a path H : [0; 1] C(X; Y ) ! from f0 to f1. A continuous deformation of f0 into f1. 3 Really? This would be true if one could topologize C(X; Y ) in such a way that a function H : [0; 1] X Y × ! is continuous if and only if H : [0; 1] C(X; Y ) ! is continuous. This is the question Hurewicz posed to Fox in 1930. Is it possible to topologize C(X; Y ) in such a way that H is continuous if and only if H¯ is continuous? We are interested in the more general case when [0; 1] is replaced by an arbitrary topological space A. Fox published a partial answer in 1945. 4 The transpose of a function of two variables The transpose of a function g : A X Y × ! is the function g : A C(X; Y ) ! defined by g(a) = ga C(X; Y ) 2 where ga(x) = g(a; x): More concisely, g(a)(x) = g(a; x): 5 Weak, strong and exponential topologies A topology on the set C(X; Y ) is called weak if g : A X Y continuous = × ! ) g : A C(X; Y ) continuous, ! strong if g : A C(X; Y ) continuous = ! ) g : A X Y continuous, × ! exponential if it is both weak and strong.
    [Show full text]