Introduction to Topology

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX 1 Chapter 1. Metric Spaces 1. De¯nition and Examples. As the course progresses we will need to review some basic notions about sets and functions. We begin with a little set theory. Let S be a set. For A; B ⊆ S, put A [ B := fs 2 S j s 2 A or s 2 Bg A \ B := fs 2 S j s 2 A and s 2 Bg S ¡ A := fs 2 S j s2 = Ag 1.1 Theorem. Let A; B ⊆ S. Then S ¡ (A [ B) = (S ¡ A) \ (S ¡ B). Exercise 1. Let A ⊆ S. Prove that S ¡ (S ¡ A) = A. Exercise 2. Let A; B ⊆ S. Prove that S ¡ (A \ B) = (S ¡ A) [ (S ¡ B). (Hint: Either prove this directly as in the proof of Theorem 1.1, or just use the statement of Theorem 1.1 together with Exercise 1.) Exercise 3. Let A; B; C ⊆ S. Prove that A M C ⊆ (A M B) [ (B M C), where A M B := (A [ B) ¡ (A \ B). 1.2 De¯nition. A metric space is a pair (X; d) where X is a non-empty set, and d is a function d : X £ X ! R such that for all x; y; z 2 X (1) d(x; y) ¸ 0, (2) d(x; y) = 0 if and only if x = y, (3) d(x; y) = d(y; x), and (4) d(x; z) · d(x; y) + d(y; z) (\triangle inequality"). In the de¯nition, d is called the distance function (or metric) and X is called the underlying set. 1.3 Example. For x; y 2 R, set d(x; y) = jx ¡ yj. Then (R; d) is a metric space. ½ 0 x = y; 1.4 Example. Let X be a non-empty set. For x; y 2 X, set d(x; y) = . Then 1 x 6= y: (X; d) is a metric space. (d is called the discrete metric on X.) 1.5 Example. Let X be the set of all continuous functions f :[a; b] ! R. For f; g 2 X, set R b d(f; g) = a jf(t) ¡ g(t)j dt. Then (X; d) is a metric space. 1.6 Example. Let p be a ¯xed prime number. For m; n 2 Z set ½ 0 m = n; d(m; n) = p¡t m 6= n; where m ¡ n = ptk with k an integer that is not divisible by p. Then (Z; d) is a metric space. 2 Exercise 4. Let X be the collection of the interiors of those rectangles in R2 having sides parallel to the coordinate axes. For A; B 2 X, let d(A; B) denote the area of A M B. Prove that (X; d) is a metric space. (Hint: Use Exercise 3.) For sets X1;:::;Xn, de¯ne Yn Xi := f(x1; : : : ; xn) j xi 2 Xig: i=1 This set is called the Cartesian product of X1;:::;Xn. Sometimes it is written X1£¢ ¢ ¢£Xn. Exercise 5. Let Rn := R £ ¢ ¢ ¢ £ R (n factors). For x; y 2 Rn; c 2 R set x + y = (x1 + y1; : : : ; xn + yn); cx = (cx1; : : : ; cxn); x ¢ y = x1y1 + ¢ ¢ ¢ + xnyn; 2 2 1=2 kxk = (x1 + ¢ ¢ ¢ + xn) Prove the following: a. x ¢ (y + z) = x ¢ y + x ¢ z: b. (cx) ¢ y = c(x ¢ y): ° °2 c. x ¢ y · jjxjj jjyjj (Hint: ° kykx ¡ kxky ° ¸ 0. Use the fact that kzk2 = z ¢ z together with (a) and (b) to expand the left hand side.) d. jjx + yjj · jjxjj + jjyjj (Hint: Square both sides and use (c).) £ ¤ n Pn 2 1=2 n Exercise 6. For x; y 2 R , set d(x; y) = i=1(xi ¡ yi) . Prove that (R ; d) is a metric space. (The function d is called the Euclidean metric on Rn.) (Hint: For the triangle inequality, note that d(x; z) = kx ¡ zk. Use Exercise 5(d).) Yn 1.7 Theorem. Let (X1; d1);:::; (Xn; dn) be metric spaces and let X = Xi. For i=1 x; y 2 X, set d(x; y) = maxfdi(xi; yi) j 1 · i · ng. Then (X; d) is a metric space. n n 1.8 Corollary. For x; y 2 R , set ½(x; y) = maxfjxi ¡ yij j 1 · i · ng. Then (R ; ½) is a metric space. The function ½ is called the square metric on Rn. 2. Continuous Functions. 2.1 De¯nition. Let (X; d) and (Y; d0) be metric spaces. A function f : X ! Y is continuous at the point a 2 X if for each ² > 0, there exists a ± > 0 such that whenever x 2 X satis¯es d(x; a) < ±; 3 then f(x) satis¯es d0(f(x); f(a)) < ²: The function f is continuous if it is continuous at each point of X. In the case X = Y = R (usual metric), we have d(x; a) = jx ¡ aj and d0(f(x); f(a)) = jf(x) ¡ f(a)j, so this de¯nition of continuity agrees with the usual de¯nition. 2.2 Example. Given a ¯xed c 2 Y , the constant function f : X ! Y given by f(x) = c (x 2 X) is continuous. ½ 0 x = 0; 2.3 Example. The function f : R ! R given by f(x) = is discontinuous x=jxj x 6= 0; (i.e., not continuous). 2.4 Example. Let (X; d) be a metric space. The identity function f : X ! X given by f(x) = x is continuous. 2 2.5 Example. The function f : R ! R given by f(x1; x2) = x1 + x2 is continuous where R has the usual metric and R2 has the square metric. Exercise 7. Let a; b 2 R. Prove that the linear function f : R ! R given by f(x) = ax+b is continuous. (Hint: For the case a = 0 use Example 2.2.) Exercise 8. Let (X; d) be the metric space de¯ned in Example 1.5. Prove that the R b function F : X ! R given by F (f) = a f(t) dt is continuous where R has the usual metric. Let X; Y; Z be sets and let f : X ! Y and g : Y ! Z be functions. The composition of f and g is the function g ± f : X ! Z given by (g ± f)(x) = g(f(x)). 2.6 Theorem. Let (X; d), (Y; d0), (Z; d00) be metric spaces. If f : X ! Y and g : Y ! Z are continuous, then so is g ± f : X ! Z. Exercise 9. It is shown in calculus that the function f : R ! R given by f(x) = x2 is continuous. Assuming this, prove that the function g : R ! R given by g(x) = x4 +2x2 +1 is also continuous. 3. Limit of a Sequence. 3.1 De¯nition. Let (X; d) be a metric space and let (an) = (a1; a2;::: ) be a sequence of elements of X. An element a of X is called the limit of the sequence (an) if for each ² > 0 there exists a positive integer N such that d(an; a) < ² for all n > N. In this case we say that the sequence converges to a and write limn an = a. In the case X = R (usual metric), we have d(an; a) = jan ¡ aj, so this de¯nition of limit agrees with the usual de¯nition. Exercise 10. Prove that a sequence can have at most one limit. 4 3.2 Example. Let an = 1=n 2 R (usual metric). Then limn an = 0. 3.3 Example. Let (Z; d) be the metric space of Example 1.6 relative to the ¯xed prime n number p. We have limn p = 0. Exercise 11. Let (an) and (bn) be sequences in R (usual metric) and assume that limn an = a and limn bn = b. Prove that limn(an + bn) = a + b. Exercise 12. Let (X; d) be the metric space of Example 1.5 and let fn 2 X be given by fn(x) = x=n. Prove that limn fn = z, where z denotes the zero function (z(x) = 0 8 a · x · b). 3.4 Theorem. Let (X; d) and (Y; d0) be metric spaces. A function f : X ! Y is continuous at the point a 2 X if and only if for each sequence (an) in X converging to a, we have limn f(an) = f(a). 1 + 2n2 + n4 Exercise 13. Prove that lim = 1 by using only what we have shown in n n4 this course. (Hint: Use Exercise 9, Example 3.2, and Theorem 3.4.) 4. Open Sets. Let f : X ! Y be a function. We say that f is injective if f(x1) = f(x2) implies x1 = x2 (xi 2 X), f is surjective if for each y 2 Y , there exists x 2 X such that f(x) = y, f is bijective if it is both injective and surjective. Given A ⊆ X, the subset f(A) := ff(a) j a 2 Ag of Y is called the image of A under f. Given B ⊆ Y , the subset f ¡1(B) := fx 2 X j f(x) 2 Bg of X is called the inverse image of B under f. If f is bijective, then there exists an inverse function f ¡1 : Y ! X which sends f(x) to x, and in this case f ¡1(B) coincides with the image of B under f ¡1 as the notation suggests. However, the inverse image of B under f is de¯ned even when the inverse function f ¡1 is not.
Recommended publications
  • Topological Paths, Cycles and Spanning Trees in Infinite Graphs
    Topological Paths, Cycles and Spanning Trees in Infinite Graphs Reinhard Diestel Daniela K¨uhn Abstract We study topological versions of paths, cycles and spanning trees in in- finite graphs with ends that allow more comprehensive generalizations of finite results than their standard notions. For some graphs it turns out that best results are obtained not for the standard space consist- ing of the graph and all its ends, but for one where only its topological ends are added as new points, while rays from other ends are made to converge to certain vertices. 1Introduction This paper is part of an on-going project in which we seek to explore how standard facts about paths and cycles in finite graphs can best be generalized to infinite graphs. The basic idea is that such generalizations can, and should, involve the ends of an infinite graph on a par with its other points (vertices or inner points of edges), both as endpoints of paths and as inner points of paths or cycles. To implement this idea we define paths and cycles topologically: in the space G consisting of a graph G together with its ends, we consider arcs (homeomorphic images of [0, 1]) instead of paths, and circles (homeomorphic images of the unit circle) instead of cycles. The topological version of a spanning tree, then, will be a path-connected subset of G that contains its vertices and ends but does not contain any circles. Let us look at an example. The double ladder L shown in Figure 1 has two ends, and its two sides (the top double ray R and the bottom double ray Q) will form a circle D with these ends: in the standard topology on L (to be defined later), every left-going ray converges to ω, while every right- going ray converges to ω.
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • I-Sequential Topological Spaces∗
    Applied Mathematics E-Notes, 14(2014), 236-241 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ -Sequential Topological Spaces I Sudip Kumar Pal y Received 10 June 2014 Abstract In this paper a new notion of topological spaces namely, I-sequential topo- logical spaces is introduced and investigated. This new space is a strictly weaker notion than the first countable space. Also I-sequential topological space is a quotient of a metric space. 1 Introduction The idea of convergence of real sequence have been extended to statistical convergence by [2, 14, 15] as follows: If N denotes the set of natural numbers and K N then Kn denotes the set k K : k n and Kn stands for the cardinality of the set Kn. The natural densityf of the2 subset≤ Kg is definedj j by Kn d(K) = lim j j, n n !1 provided the limit exists. A sequence xn n N of points in a metric space (X, ) is said to be statistically f g 2 convergent to l if for arbitrary " > 0, the set K(") = k N : (xk, l) " has natural density zero. A lot of investigation has been donef on2 this convergence≥ andg its topological consequences after initial works by [5, 13]. It is easy to check that the family Id = A N : d(A) = 0 forms a non-trivial f g admissible ideal of N (recall that I 2N is called an ideal if (i) A, B I implies A B I and (ii) A I,B A implies B I.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • A TEXTBOOK of TOPOLOGY Lltld
    SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Homology of Path Complexes and Hypergraphs
    Homology of path complexes and hypergraphs Alexander Grigor’yan Rolando Jimenez Department of Mathematics Instituto de Matematicas University of Bielefeld UNAM, Unidad Oaxaca 33501 Bielefeld, Germany 68000 Oaxaca, Mexico Yuri Muranov Shing-Tung Yau Faculty of Mathematics and Department of Mathematics Computer Science Harvard University University of Warmia and Mazury Cambridge MA 02138, USA 10-710 Olsztyn, Poland March 2019 Abstract The path complex and its homology were defined in the previous papers of authors. The theory of path complexes is a natural discrete generalization of the theory of simplicial complexes and the homology of path complexes provide homotopy invariant homology theory of digraphs and (nondirected) graphs. In the paper we study the homology theory of path complexes. In particular, we describe functorial properties of paths complexes, introduce notion of homo- topy for path complexes and prove the homotopy invariance of path homology groups. We prove also several theorems that are similar to the results of classical homology theory of simplicial complexes. Then we apply obtained results for construction homology theories on various categories of hypergraphs. We de- scribe basic properties of these homology theories and relations between them. As a particular case, these results give new homology theories on the category of simplicial complexes. Contents 1 Introduction 2 2 Path complexes on finite sets 2 3 Homotopy theory for path complexes 8 4 Relative path homology groups 13 5 The path homology of hypergraphs. 14 1 1 Introduction In this paper we study functorial and homotopy properties of path complexes that were introduced in [7] and [9] as a natural discrete generalization of the notion of a simplicial complex.
    [Show full text]
  • Zuoqin Wang Time: March 25, 2021 the QUOTIENT TOPOLOGY 1. The
    Topology (H) Lecture 6 Lecturer: Zuoqin Wang Time: March 25, 2021 THE QUOTIENT TOPOLOGY 1. The quotient topology { The quotient topology. Last time we introduced several abstract methods to construct topologies on ab- stract spaces (which is widely used in point-set topology and analysis). Today we will introduce another way to construct topological spaces: the quotient topology. In fact the quotient topology is not a brand new method to construct topology. It is merely a simple special case of the co-induced topology that we introduced last time. However, since it is very concrete and \visible", it is widely used in geometry and algebraic topology. Here is the definition: Definition 1.1 (The quotient topology). (1) Let (X; TX ) be a topological space, Y be a set, and p : X ! Y be a surjective map. The co-induced topology on Y induced by the map p is called the quotient topology on Y . In other words, −1 a set V ⊂ Y is open if and only if p (V ) is open in (X; TX ). (2) A continuous surjective map p :(X; TX ) ! (Y; TY ) is called a quotient map, and Y is called the quotient space of X if TY coincides with the quotient topology on Y induced by p. (3) Given a quotient map p, we call p−1(y) the fiber of p over the point y 2 Y . Note: by definition, the composition of two quotient maps is again a quotient map. Here is a typical way to construct quotient maps/quotient topology: Start with a topological space (X; TX ), and define an equivalent relation ∼ on X.
    [Show full text]
  • DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
    DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V .
    [Show full text]
  • Topology - Wikipedia, the Free Encyclopedia Page 1 of 7
    Topology - Wikipedia, the free encyclopedia Page 1 of 7 Topology From Wikipedia, the free encyclopedia Topology (from the Greek τόπος , “place”, and λόγος , “study”) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736. Toward the end of the 19th century, a distinct A Möbius strip, an object with only one discipline developed, which was referred to in Latin as the surface and one edge. Such shapes are an geometria situs (“geometry of place”) or analysis situs object of study in topology. (Greek-Latin for “picking apart of place”). This later acquired the modern name of topology. By the middle of the 20 th century, topology had become an important area of study within mathematics. The word topology is used both for the mathematical discipline and for a family of sets with certain properties that are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms , which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a homeomorphism of the real line. Topology includes many subfields. The most basic and traditional division within topology is point-set topology , which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces (basic examples include compactness and connectedness); algebraic topology , which generally tries to measure degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric topology , which primarily studies manifolds and their embeddings (placements) in other manifolds.
    [Show full text]
  • Topologies on Spaces of Continuous Functions
    Topologies on spaces of continuous functions Mart´ınEscard´o School of Computer Science, University of Birmingham Based on joint work with Reinhold Heckmann 7th November 2002 Path Let x0 and x1 be points of a space X. A path from x0 to x1 is a continuous map f : [0; 1] X ! with f(0) = x0 and f(1) = x1. 1 Homotopy Let f0; f1 : X Y be continuous maps. ! A homotopy from f0 to f1 is a continuous map H : [0; 1] X Y × ! with H(0; x) = f0(x) and H(1; x) = f1(x). 2 Homotopies as paths Let C(X; Y ) denote the set of continuous maps from X to Y . Then a homotopy H : [0; 1] X Y × ! can be seen as a path H : [0; 1] C(X; Y ) ! from f0 to f1. A continuous deformation of f0 into f1. 3 Really? This would be true if one could topologize C(X; Y ) in such a way that a function H : [0; 1] X Y × ! is continuous if and only if H : [0; 1] C(X; Y ) ! is continuous. This is the question Hurewicz posed to Fox in 1930. Is it possible to topologize C(X; Y ) in such a way that H is continuous if and only if H¯ is continuous? We are interested in the more general case when [0; 1] is replaced by an arbitrary topological space A. Fox published a partial answer in 1945. 4 The transpose of a function of two variables The transpose of a function g : A X Y × ! is the function g : A C(X; Y ) ! defined by g(a) = ga C(X; Y ) 2 where ga(x) = g(a; x): More concisely, g(a)(x) = g(a; x): 5 Weak, strong and exponential topologies A topology on the set C(X; Y ) is called weak if g : A X Y continuous = × ! ) g : A C(X; Y ) continuous, ! strong if g : A C(X; Y ) continuous = ! ) g : A X Y continuous, × ! exponential if it is both weak and strong.
    [Show full text]